1 /* Single-precision SVE log1p
3 Copyright (C) 2023-2024 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <https://www.gnu.org/licenses/>. */
21 #include "poly_sve_f32.h"
23 static const struct data
27 uint32_t four
, three_quarters
;
28 } data
= {.poly
= {/* Do not store first term of polynomial, which is -0.5, as
29 this can be fmov-ed directly instead of including it in
30 the main load-and-mla polynomial schedule. */
31 0x1.5555aap
-2f
, -0x1.000038p
-2f
, 0x1.99675cp
-3f
,
32 -0x1.54ef78p
-3f
, 0x1.28a1f4p
-3f
, -0x1.0da91p
-3f
,
33 0x1.abcb6p
-4f
, -0x1.6f0d5ep
-5f
},
37 .three_quarters
= 0x3f400000};
39 #define SignExponentMask 0xff800000
41 static svfloat32_t NOINLINE
42 special_case (svfloat32_t x
, svfloat32_t y
, svbool_t special
)
44 return sv_call_f32 (log1pf
, x
, y
, special
);
47 /* Vector log1pf approximation using polynomial on reduced interval. Worst-case
48 error is 1.27 ULP very close to 0.5.
49 _ZGVsMxv_log1pf(0x1.fffffep-2) got 0x1.9f324p-2
50 want 0x1.9f323ep-2. */
51 svfloat32_t
SV_NAME_F1 (log1p
) (svfloat32_t x
, svbool_t pg
)
53 const struct data
*d
= ptr_barrier (&data
);
54 /* x < -1, Inf/Nan. */
55 svbool_t special
= svcmpeq (pg
, svreinterpret_u32 (x
), 0x7f800000);
56 special
= svorn_z (pg
, special
, svcmpge (pg
, x
, -1));
58 /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
60 log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2).
62 We approximate log1p(m) with a polynomial, then scale by
63 k*log(2). Instead of doing this directly, we use an intermediate
64 scale factor s = 4*k*log(2) to ensure the scale is representable
65 as a normalised fp32 number. */
66 svfloat32_t m
= svadd_x (pg
, x
, 1);
68 /* Choose k to scale x to the range [-1/4, 1/2]. */
70 = svand_x (pg
, svsub_x (pg
, svreinterpret_s32 (m
), d
->three_quarters
),
71 sv_s32 (SignExponentMask
));
73 /* Scale x by exponent manipulation. */
74 svfloat32_t m_scale
= svreinterpret_f32 (
75 svsub_x (pg
, svreinterpret_u32 (x
), svreinterpret_u32 (k
)));
77 /* Scale up to ensure that the scale factor is representable as normalised
78 fp32 number, and scale m down accordingly. */
79 svfloat32_t s
= svreinterpret_f32 (svsubr_x (pg
, k
, d
->four
));
80 m_scale
= svadd_x (pg
, m_scale
, svmla_x (pg
, sv_f32 (-1), s
, 0.25));
82 /* Evaluate polynomial on reduced interval. */
83 svfloat32_t ms2
= svmul_x (pg
, m_scale
, m_scale
),
84 ms4
= svmul_x (pg
, ms2
, ms2
);
85 svfloat32_t p
= sv_estrin_7_f32_x (pg
, m_scale
, ms2
, ms4
, d
->poly
);
86 p
= svmad_x (pg
, m_scale
, p
, -0.5);
87 p
= svmla_x (pg
, m_scale
, m_scale
, svmul_x (pg
, m_scale
, p
));
89 /* The scale factor to be applied back at the end - by multiplying float(k)
90 by 2^-23 we get the unbiased exponent of k. */
91 svfloat32_t scale_back
= svmul_x (pg
, svcvt_f32_x (pg
, k
), d
->exp_bias
);
93 /* Apply the scaling back. */
94 svfloat32_t y
= svmla_x (pg
, p
, scale_back
, d
->ln2
);
96 if (__glibc_unlikely (svptest_any (pg
, special
)))
97 return special_case (x
, y
, special
);