1 /* Single-precision SVE expm1
3 Copyright (C) 2023-2024 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <https://www.gnu.org/licenses/>. */
21 #include "poly_sve_f32.h"
23 /* Largest value of x for which expm1(x) should round to -1. */
24 #define SpecialBound 0x1.5ebc4p+6f
26 static const struct data
28 /* These 4 are grouped together so they can be loaded as one quadword, then
29 used with _lane forms of svmla/svmls. */
30 float c2
, c4
, ln2_hi
, ln2_lo
;
31 float c0
, c1
, c3
, inv_ln2
, special_bound
, shift
;
33 /* Generated using fpminimax. */
34 .c0
= 0x1.fffffep
-2, .c1
= 0x1.5554aep
-3,
35 .c2
= 0x1.555736p
-5, .c3
= 0x1.12287cp
-7,
38 .special_bound
= SpecialBound
, .shift
= 0x1.8p23f
,
39 .inv_ln2
= 0x1.715476p
+0f
, .ln2_hi
= 0x1.62e4p
-1f
,
40 .ln2_lo
= 0x1.7f7d1cp
-20f
,
43 #define C(i) sv_f32 (d->c##i)
45 static svfloat32_t NOINLINE
46 special_case (svfloat32_t x
, svbool_t pg
)
48 return sv_call_f32 (expm1f
, x
, x
, pg
);
51 /* Single-precision SVE exp(x) - 1. Maximum error is 1.52 ULP:
52 _ZGVsMxv_expm1f(0x1.8f4ebcp-2) got 0x1.e859dp-2
53 want 0x1.e859d4p-2. */
54 svfloat32_t
SV_NAME_F1 (expm1
) (svfloat32_t x
, svbool_t pg
)
56 const struct data
*d
= ptr_barrier (&data
);
59 svbool_t special
= svnot_z (pg
, svaclt (pg
, x
, d
->special_bound
));
61 if (__glibc_unlikely (svptest_any (pg
, special
)))
62 return special_case (x
, pg
);
64 /* This vector is reliant on layout of data - it contains constants
65 that can be used with _lane forms of svmla/svmls. Values are:
66 [ coeff_2, coeff_4, ln2_hi, ln2_lo ]. */
67 svfloat32_t lane_constants
= svld1rq (svptrue_b32 (), &d
->c2
);
69 /* Reduce argument to smaller range:
70 Let i = round(x / ln2)
71 and f = x - i * ln2, then f is in [-ln2/2, ln2/2].
72 exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
73 where 2^i is exact because i is an integer. */
74 svfloat32_t j
= svmla_x (pg
, sv_f32 (d
->shift
), x
, d
->inv_ln2
);
75 j
= svsub_x (pg
, j
, d
->shift
);
76 svint32_t i
= svcvt_s32_x (pg
, j
);
78 svfloat32_t f
= svmls_lane (x
, j
, lane_constants
, 2);
79 f
= svmls_lane (f
, j
, lane_constants
, 3);
81 /* Approximate expm1(f) using polynomial.
82 Taylor expansion for expm1(x) has the form:
83 x + ax^2 + bx^3 + cx^4 ....
84 So we calculate the polynomial P(f) = a + bf + cf^2 + ...
85 and assemble the approximation expm1(f) ~= f + f^2 * P(f). */
86 svfloat32_t p12
= svmla_lane (C (1), f
, lane_constants
, 0);
87 svfloat32_t p34
= svmla_lane (C (3), f
, lane_constants
, 1);
88 svfloat32_t f2
= svmul_x (pg
, f
, f
);
89 svfloat32_t p
= svmla_x (pg
, p12
, f2
, p34
);
90 p
= svmla_x (pg
, C (0), f
, p
);
91 p
= svmla_x (pg
, f
, f2
, p
);
93 /* Assemble the result.
94 expm1(x) ~= 2^i * (p + 1) - 1
96 svfloat32_t t
= svreinterpret_f32 (
97 svadd_x (pg
, svreinterpret_u32 (svlsl_x (pg
, i
, 23)), 0x3f800000));
98 return svmla_x (pg
, svsub_x (pg
, t
, 1), p
, t
);