1 /* Single-precision AdvSIMD inverse cos
3 Copyright (C) 2023-2024 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <https://www.gnu.org/licenses/>. */
21 #include "poly_advsimd_f32.h"
23 static const struct data
26 float32x4_t pi_over_2f
, pif
;
28 /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on
29 [ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */
30 .poly
= { V4 (0x1.55555ep
-3), V4 (0x1.33261ap
-4), V4 (0x1.70d7dcp
-5),
31 V4 (0x1.b059dp
-6), V4 (0x1.3af7d8p
-5) },
32 .pi_over_2f
= V4 (0x1.921fb6p
+0f
),
33 .pif
= V4 (0x1.921fb6p
+1f
),
36 #define AbsMask 0x7fffffff
37 #define Half 0x3f000000
38 #define One 0x3f800000
39 #define Small 0x32800000 /* 2^-26. */
42 static float32x4_t VPCS_ATTR NOINLINE
43 special_case (float32x4_t x
, float32x4_t y
, uint32x4_t special
)
45 return v_call_f32 (acosf
, x
, y
, special
);
49 /* Single-precision implementation of vector acos(x).
51 For |x| < Small, approximate acos(x) by pi/2 - x. Small = 2^-26 for correct
53 If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following
56 For |x| in [Small, 0.5], use order 4 polynomial P such that the final
57 approximation of asin is an odd polynomial:
59 acos(x) ~ pi/2 - (x + x^3 P(x^2)).
61 The largest observed error in this region is 1.26 ulps,
62 _ZGVnN4v_acosf (0x1.843bfcp-2) got 0x1.2e934cp+0 want 0x1.2e934ap+0.
64 For |x| in [0.5, 1.0], use same approximation with a change of variable
66 acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z).
68 The largest observed error in this region is 1.32 ulps,
69 _ZGVnN4v_acosf (0x1.15ba56p-1) got 0x1.feb33p-1
70 want 0x1.feb32ep-1. */
71 float32x4_t VPCS_ATTR NOINLINE
V_NAME_F1 (acos
) (float32x4_t x
)
73 const struct data
*d
= ptr_barrier (&data
);
75 uint32x4_t ix
= vreinterpretq_u32_f32 (x
);
76 uint32x4_t ia
= vandq_u32 (ix
, v_u32 (AbsMask
));
79 /* A single comparison for One, Small and QNaN. */
81 = vcgtq_u32 (vsubq_u32 (ia
, v_u32 (Small
)), v_u32 (One
- Small
));
82 if (__glibc_unlikely (v_any_u32 (special
)))
83 return special_case (x
, x
, v_u32 (0xffffffff));
86 float32x4_t ax
= vreinterpretq_f32_u32 (ia
);
87 uint32x4_t a_le_half
= vcleq_u32 (ia
, v_u32 (Half
));
89 /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with
90 z2 = x ^ 2 and z = |x| , if |x| < 0.5
91 z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
92 float32x4_t z2
= vbslq_f32 (a_le_half
, vmulq_f32 (x
, x
),
93 vfmsq_n_f32 (v_f32 (0.5), ax
, 0.5));
94 float32x4_t z
= vbslq_f32 (a_le_half
, ax
, vsqrtq_f32 (z2
));
96 /* Use a single polynomial approximation P for both intervals. */
97 float32x4_t p
= v_horner_4_f32 (z2
, d
->poly
);
98 /* Finalize polynomial: z + z * z2 * P(z2). */
99 p
= vfmaq_f32 (z
, vmulq_f32 (z
, z2
), p
);
101 /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
102 = 2 Q(|x|) , for 0.5 < x < 1.0
103 = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */
104 float32x4_t y
= vbslq_f32 (v_u32 (AbsMask
), p
, x
);
106 uint32x4_t is_neg
= vcltzq_f32 (x
);
107 float32x4_t off
= vreinterpretq_f32_u32 (
108 vandq_u32 (vreinterpretq_u32_f32 (d
->pif
), is_neg
));
109 float32x4_t mul
= vbslq_f32 (a_le_half
, v_f32 (-1.0), v_f32 (2.0));
110 float32x4_t add
= vbslq_f32 (a_le_half
, d
->pi_over_2f
, off
);
112 return vfmaq_f32 (add
, mul
, y
);
114 libmvec_hidden_def (V_NAME_F1(acos
))
115 HALF_WIDTH_ALIAS_F1 (acos
)