* nscd/selinux.c (audit_init): Print error string in the failure
[glibc.git] / stdio-common / printf_fp.c
blob8a68f1948d414bee11b5bbe6b66da4b60bfa904b
1 /* Floating point output for `printf'.
2 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2006
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
22 /* The gmp headers need some configuration frobs. */
23 #define HAVE_ALLOCA 1
25 #include <libioP.h>
26 #include <alloca.h>
27 #include <ctype.h>
28 #include <float.h>
29 #include <gmp-mparam.h>
30 #include <gmp.h>
31 #include <stdlib/gmp-impl.h>
32 #include <stdlib/longlong.h>
33 #include <stdlib/fpioconst.h>
34 #include <locale/localeinfo.h>
35 #include <limits.h>
36 #include <math.h>
37 #include <printf.h>
38 #include <string.h>
39 #include <unistd.h>
40 #include <stdlib.h>
41 #include <wchar.h>
43 #ifdef COMPILE_WPRINTF
44 # define CHAR_T wchar_t
45 #else
46 # define CHAR_T char
47 #endif
49 #include "_i18n_number.h"
51 #ifndef NDEBUG
52 # define NDEBUG /* Undefine this for debugging assertions. */
53 #endif
54 #include <assert.h>
56 /* This defines make it possible to use the same code for GNU C library and
57 the GNU I/O library. */
58 #define PUT(f, s, n) _IO_sputn (f, s, n)
59 #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : INTUSE(_IO_padn) (f, c, n))
60 /* We use this file GNU C library and GNU I/O library. So make
61 names equal. */
62 #undef putc
63 #define putc(c, f) (wide \
64 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
65 #define size_t _IO_size_t
66 #define FILE _IO_FILE
68 /* Macros for doing the actual output. */
70 #define outchar(ch) \
71 do \
72 { \
73 register const int outc = (ch); \
74 if (putc (outc, fp) == EOF) \
75 return -1; \
76 ++done; \
77 } while (0)
79 #define PRINT(ptr, wptr, len) \
80 do \
81 { \
82 register size_t outlen = (len); \
83 if (len > 20) \
84 { \
85 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
86 return -1; \
87 ptr += outlen; \
88 done += outlen; \
89 } \
90 else \
91 { \
92 if (wide) \
93 while (outlen-- > 0) \
94 outchar (*wptr++); \
95 else \
96 while (outlen-- > 0) \
97 outchar (*ptr++); \
98 } \
99 } while (0)
101 #define PADN(ch, len) \
102 do \
104 if (PAD (fp, ch, len) != len) \
105 return -1; \
106 done += len; \
108 while (0)
110 /* We use the GNU MP library to handle large numbers.
112 An MP variable occupies a varying number of entries in its array. We keep
113 track of this number for efficiency reasons. Otherwise we would always
114 have to process the whole array. */
115 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
117 #define MPN_ASSIGN(dst,src) \
118 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
119 #define MPN_GE(u,v) \
120 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
122 extern int __isinfl_internal (long double) attribute_hidden;
123 extern int __isnanl_internal (long double) attribute_hidden;
125 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
126 int *expt, int *is_neg,
127 double value);
128 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
129 int *expt, int *is_neg,
130 long double value);
131 extern unsigned int __guess_grouping (unsigned int intdig_max,
132 const char *grouping);
135 static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
136 unsigned int intdig_no, const char *grouping,
137 wchar_t thousands_sep, int ngroups)
138 internal_function;
142 ___printf_fp (FILE *fp,
143 const struct printf_info *info,
144 const void *const *args)
146 /* The floating-point value to output. */
147 union
149 double dbl;
150 __long_double_t ldbl;
152 fpnum;
154 /* Locale-dependent representation of decimal point. */
155 const char *decimal;
156 wchar_t decimalwc;
158 /* Locale-dependent thousands separator and grouping specification. */
159 const char *thousands_sep = NULL;
160 wchar_t thousands_sepwc = 0;
161 const char *grouping;
163 /* "NaN" or "Inf" for the special cases. */
164 const char *special = NULL;
165 const wchar_t *wspecial = NULL;
167 /* We need just a few limbs for the input before shifting to the right
168 position. */
169 mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
170 /* We need to shift the contents of fp_input by this amount of bits. */
171 int to_shift = 0;
173 /* The fraction of the floting-point value in question */
174 MPN_VAR(frac);
175 /* and the exponent. */
176 int exponent;
177 /* Sign of the exponent. */
178 int expsign = 0;
179 /* Sign of float number. */
180 int is_neg = 0;
182 /* Scaling factor. */
183 MPN_VAR(scale);
185 /* Temporary bignum value. */
186 MPN_VAR(tmp);
188 /* Digit which is result of last hack_digit() call. */
189 wchar_t digit;
191 /* The type of output format that will be used: 'e'/'E' or 'f'. */
192 int type;
194 /* Counter for number of written characters. */
195 int done = 0;
197 /* General helper (carry limb). */
198 mp_limb_t cy;
200 /* Nonzero if this is output on a wide character stream. */
201 int wide = info->wide;
203 auto wchar_t hack_digit (void);
205 wchar_t hack_digit (void)
207 mp_limb_t hi;
209 if (expsign != 0 && type == 'f' && exponent-- > 0)
210 hi = 0;
211 else if (scalesize == 0)
213 hi = frac[fracsize - 1];
214 frac[fracsize - 1] = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
216 else
218 if (fracsize < scalesize)
219 hi = 0;
220 else
222 hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
223 tmp[fracsize - scalesize] = hi;
224 hi = tmp[0];
226 fracsize = scalesize;
227 while (fracsize != 0 && frac[fracsize - 1] == 0)
228 --fracsize;
229 if (fracsize == 0)
231 /* We're not prepared for an mpn variable with zero
232 limbs. */
233 fracsize = 1;
234 return L'0' + hi;
238 mp_limb_t _cy = __mpn_mul_1 (frac, frac, fracsize, 10);
239 if (_cy != 0)
240 frac[fracsize++] = _cy;
243 return L'0' + hi;
247 /* Figure out the decimal point character. */
248 if (info->extra == 0)
250 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
251 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
253 else
255 decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
256 if (*decimal == '\0')
257 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
258 decimalwc = _NL_CURRENT_WORD (LC_MONETARY,
259 _NL_MONETARY_DECIMAL_POINT_WC);
260 if (decimalwc == L'\0')
261 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC,
262 _NL_NUMERIC_DECIMAL_POINT_WC);
264 /* The decimal point character must not be zero. */
265 assert (*decimal != '\0');
266 assert (decimalwc != L'\0');
268 if (info->group)
270 if (info->extra == 0)
271 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
272 else
273 grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
275 if (*grouping <= 0 || *grouping == CHAR_MAX)
276 grouping = NULL;
277 else
279 /* Figure out the thousands separator character. */
280 if (wide)
282 if (info->extra == 0)
283 thousands_sepwc =
284 _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC);
285 else
286 thousands_sepwc =
287 _NL_CURRENT_WORD (LC_MONETARY,
288 _NL_MONETARY_THOUSANDS_SEP_WC);
290 else
292 if (info->extra == 0)
293 thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
294 else
295 thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP);
298 if ((wide && thousands_sepwc == L'\0')
299 || (! wide && *thousands_sep == '\0'))
300 grouping = NULL;
301 else if (thousands_sepwc == L'\0')
302 /* If we are printing multibyte characters and there is a
303 multibyte representation for the thousands separator,
304 we must ensure the wide character thousands separator
305 is available, even if it is fake. */
306 thousands_sepwc = 0xfffffffe;
309 else
310 grouping = NULL;
312 /* Fetch the argument value. */
313 #ifndef __NO_LONG_DOUBLE_MATH
314 if (info->is_long_double && sizeof (long double) > sizeof (double))
316 fpnum.ldbl = *(const long double *) args[0];
318 /* Check for special values: not a number or infinity. */
319 if (__isnanl (fpnum.ldbl))
321 if (isupper (info->spec))
323 special = "NAN";
324 wspecial = L"NAN";
326 else
328 special = "nan";
329 wspecial = L"nan";
331 is_neg = 0;
333 else if (__isinfl (fpnum.ldbl))
335 if (isupper (info->spec))
337 special = "INF";
338 wspecial = L"INF";
340 else
342 special = "inf";
343 wspecial = L"inf";
345 is_neg = fpnum.ldbl < 0;
347 else
349 fracsize = __mpn_extract_long_double (fp_input,
350 (sizeof (fp_input) /
351 sizeof (fp_input[0])),
352 &exponent, &is_neg,
353 fpnum.ldbl);
354 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
357 else
358 #endif /* no long double */
360 fpnum.dbl = *(const double *) args[0];
362 /* Check for special values: not a number or infinity. */
363 if (__isnan (fpnum.dbl))
365 is_neg = 0;
366 if (isupper (info->spec))
368 special = "NAN";
369 wspecial = L"NAN";
371 else
373 special = "nan";
374 wspecial = L"nan";
377 else if (__isinf (fpnum.dbl))
379 is_neg = fpnum.dbl < 0;
380 if (isupper (info->spec))
382 special = "INF";
383 wspecial = L"INF";
385 else
387 special = "inf";
388 wspecial = L"inf";
391 else
393 fracsize = __mpn_extract_double (fp_input,
394 (sizeof (fp_input)
395 / sizeof (fp_input[0])),
396 &exponent, &is_neg, fpnum.dbl);
397 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
401 if (special)
403 int width = info->width;
405 if (is_neg || info->showsign || info->space)
406 --width;
407 width -= 3;
409 if (!info->left && width > 0)
410 PADN (' ', width);
412 if (is_neg)
413 outchar ('-');
414 else if (info->showsign)
415 outchar ('+');
416 else if (info->space)
417 outchar (' ');
419 PRINT (special, wspecial, 3);
421 if (info->left && width > 0)
422 PADN (' ', width);
424 return done;
428 /* We need three multiprecision variables. Now that we have the exponent
429 of the number we can allocate the needed memory. It would be more
430 efficient to use variables of the fixed maximum size but because this
431 would be really big it could lead to memory problems. */
433 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
434 / BITS_PER_MP_LIMB
435 + (LDBL_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4))
436 * sizeof (mp_limb_t);
437 frac = (mp_limb_t *) alloca (bignum_size);
438 tmp = (mp_limb_t *) alloca (bignum_size);
439 scale = (mp_limb_t *) alloca (bignum_size);
442 /* We now have to distinguish between numbers with positive and negative
443 exponents because the method used for the one is not applicable/efficient
444 for the other. */
445 scalesize = 0;
446 if (exponent > 2)
448 /* |FP| >= 8.0. */
449 int scaleexpo = 0;
450 int explog = LDBL_MAX_10_EXP_LOG;
451 int exp10 = 0;
452 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
453 int cnt_h, cnt_l, i;
455 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
457 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
458 fp_input, fracsize);
459 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
461 else
463 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
464 fp_input, fracsize,
465 (exponent + to_shift) % BITS_PER_MP_LIMB);
466 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
467 if (cy)
468 frac[fracsize++] = cy;
470 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
472 assert (powers > &_fpioconst_pow10[0]);
475 --powers;
477 /* The number of the product of two binary numbers with n and m
478 bits respectively has m+n or m+n-1 bits. */
479 if (exponent >= scaleexpo + powers->p_expo - 1)
481 if (scalesize == 0)
483 #ifndef __NO_LONG_DOUBLE_MATH
484 if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB
485 && info->is_long_double)
487 #define _FPIO_CONST_SHIFT \
488 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
489 - _FPIO_CONST_OFFSET)
490 /* 64bit const offset is not enough for
491 IEEE quad long double. */
492 tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
493 memcpy (tmp + _FPIO_CONST_SHIFT,
494 &__tens[powers->arrayoff],
495 tmpsize * sizeof (mp_limb_t));
496 MPN_ZERO (tmp, _FPIO_CONST_SHIFT);
497 /* Adjust exponent, as scaleexpo will be this much
498 bigger too. */
499 exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB;
501 else
502 #endif
504 tmpsize = powers->arraysize;
505 memcpy (tmp, &__tens[powers->arrayoff],
506 tmpsize * sizeof (mp_limb_t));
509 else
511 cy = __mpn_mul (tmp, scale, scalesize,
512 &__tens[powers->arrayoff
513 + _FPIO_CONST_OFFSET],
514 powers->arraysize - _FPIO_CONST_OFFSET);
515 tmpsize = scalesize + powers->arraysize - _FPIO_CONST_OFFSET;
516 if (cy == 0)
517 --tmpsize;
520 if (MPN_GE (frac, tmp))
522 int cnt;
523 MPN_ASSIGN (scale, tmp);
524 count_leading_zeros (cnt, scale[scalesize - 1]);
525 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
526 exp10 |= 1 << explog;
529 --explog;
531 while (powers > &_fpioconst_pow10[0]);
532 exponent = exp10;
534 /* Optimize number representations. We want to represent the numbers
535 with the lowest number of bytes possible without losing any
536 bytes. Also the highest bit in the scaling factor has to be set
537 (this is a requirement of the MPN division routines). */
538 if (scalesize > 0)
540 /* Determine minimum number of zero bits at the end of
541 both numbers. */
542 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
545 /* Determine number of bits the scaling factor is misplaced. */
546 count_leading_zeros (cnt_h, scale[scalesize - 1]);
548 if (cnt_h == 0)
550 /* The highest bit of the scaling factor is already set. So
551 we only have to remove the trailing empty limbs. */
552 if (i > 0)
554 MPN_COPY_INCR (scale, scale + i, scalesize - i);
555 scalesize -= i;
556 MPN_COPY_INCR (frac, frac + i, fracsize - i);
557 fracsize -= i;
560 else
562 if (scale[i] != 0)
564 count_trailing_zeros (cnt_l, scale[i]);
565 if (frac[i] != 0)
567 int cnt_l2;
568 count_trailing_zeros (cnt_l2, frac[i]);
569 if (cnt_l2 < cnt_l)
570 cnt_l = cnt_l2;
573 else
574 count_trailing_zeros (cnt_l, frac[i]);
576 /* Now shift the numbers to their optimal position. */
577 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
579 /* We cannot save any memory. So just roll both numbers
580 so that the scaling factor has its highest bit set. */
582 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
583 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
584 if (cy != 0)
585 frac[fracsize++] = cy;
587 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
589 /* We can save memory by removing the trailing zero limbs
590 and by packing the non-zero limbs which gain another
591 free one. */
593 (void) __mpn_rshift (scale, scale + i, scalesize - i,
594 BITS_PER_MP_LIMB - cnt_h);
595 scalesize -= i + 1;
596 (void) __mpn_rshift (frac, frac + i, fracsize - i,
597 BITS_PER_MP_LIMB - cnt_h);
598 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
600 else
602 /* We can only save the memory of the limbs which are zero.
603 The non-zero parts occupy the same number of limbs. */
605 (void) __mpn_rshift (scale, scale + (i - 1),
606 scalesize - (i - 1),
607 BITS_PER_MP_LIMB - cnt_h);
608 scalesize -= i;
609 (void) __mpn_rshift (frac, frac + (i - 1),
610 fracsize - (i - 1),
611 BITS_PER_MP_LIMB - cnt_h);
612 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
617 else if (exponent < 0)
619 /* |FP| < 1.0. */
620 int exp10 = 0;
621 int explog = LDBL_MAX_10_EXP_LOG;
622 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
623 mp_size_t used_limbs = fracsize - 1;
625 /* Now shift the input value to its right place. */
626 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
627 frac[fracsize++] = cy;
628 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
630 expsign = 1;
631 exponent = -exponent;
633 assert (powers != &_fpioconst_pow10[0]);
636 --powers;
638 if (exponent >= powers->m_expo)
640 int i, incr, cnt_h, cnt_l;
641 mp_limb_t topval[2];
643 /* The __mpn_mul function expects the first argument to be
644 bigger than the second. */
645 if (fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
646 cy = __mpn_mul (tmp, &__tens[powers->arrayoff
647 + _FPIO_CONST_OFFSET],
648 powers->arraysize - _FPIO_CONST_OFFSET,
649 frac, fracsize);
650 else
651 cy = __mpn_mul (tmp, frac, fracsize,
652 &__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
653 powers->arraysize - _FPIO_CONST_OFFSET);
654 tmpsize = fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
655 if (cy == 0)
656 --tmpsize;
658 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
659 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
660 + BITS_PER_MP_LIMB - 1 - cnt_h;
662 assert (incr <= powers->p_expo);
664 /* If we increased the exponent by exactly 3 we have to test
665 for overflow. This is done by comparing with 10 shifted
666 to the right position. */
667 if (incr == exponent + 3)
669 if (cnt_h <= BITS_PER_MP_LIMB - 4)
671 topval[0] = 0;
672 topval[1]
673 = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
675 else
677 topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
678 topval[1] = 0;
679 (void) __mpn_lshift (topval, topval, 2,
680 BITS_PER_MP_LIMB - cnt_h);
684 /* We have to be careful when multiplying the last factor.
685 If the result is greater than 1.0 be have to test it
686 against 10.0. If it is greater or equal to 10.0 the
687 multiplication was not valid. This is because we cannot
688 determine the number of bits in the result in advance. */
689 if (incr < exponent + 3
690 || (incr == exponent + 3 &&
691 (tmp[tmpsize - 1] < topval[1]
692 || (tmp[tmpsize - 1] == topval[1]
693 && tmp[tmpsize - 2] < topval[0]))))
695 /* The factor is right. Adapt binary and decimal
696 exponents. */
697 exponent -= incr;
698 exp10 |= 1 << explog;
700 /* If this factor yields a number greater or equal to
701 1.0, we must not shift the non-fractional digits down. */
702 if (exponent < 0)
703 cnt_h += -exponent;
705 /* Now we optimize the number representation. */
706 for (i = 0; tmp[i] == 0; ++i);
707 if (cnt_h == BITS_PER_MP_LIMB - 1)
709 MPN_COPY (frac, tmp + i, tmpsize - i);
710 fracsize = tmpsize - i;
712 else
714 count_trailing_zeros (cnt_l, tmp[i]);
716 /* Now shift the numbers to their optimal position. */
717 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
719 /* We cannot save any memory. Just roll the
720 number so that the leading digit is in a
721 separate limb. */
723 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
724 fracsize = tmpsize + 1;
725 frac[fracsize - 1] = cy;
727 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
729 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
730 BITS_PER_MP_LIMB - 1 - cnt_h);
731 fracsize = tmpsize - i;
733 else
735 /* We can only save the memory of the limbs which
736 are zero. The non-zero parts occupy the same
737 number of limbs. */
739 (void) __mpn_rshift (frac, tmp + (i - 1),
740 tmpsize - (i - 1),
741 BITS_PER_MP_LIMB - 1 - cnt_h);
742 fracsize = tmpsize - (i - 1);
745 used_limbs = fracsize - 1;
748 --explog;
750 while (powers != &_fpioconst_pow10[1] && exponent > 0);
751 /* All factors but 10^-1 are tested now. */
752 if (exponent > 0)
754 int cnt_l;
756 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
757 tmpsize = fracsize;
758 assert (cy == 0 || tmp[tmpsize - 1] < 20);
760 count_trailing_zeros (cnt_l, tmp[0]);
761 if (cnt_l < MIN (4, exponent))
763 cy = __mpn_lshift (frac, tmp, tmpsize,
764 BITS_PER_MP_LIMB - MIN (4, exponent));
765 if (cy != 0)
766 frac[tmpsize++] = cy;
768 else
769 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
770 fracsize = tmpsize;
771 exp10 |= 1;
772 assert (frac[fracsize - 1] < 10);
774 exponent = exp10;
776 else
778 /* This is a special case. We don't need a factor because the
779 numbers are in the range of 0.0 <= fp < 8.0. We simply
780 shift it to the right place and divide it by 1.0 to get the
781 leading digit. (Of course this division is not really made.) */
782 assert (0 <= exponent && exponent < 3 &&
783 exponent + to_shift < BITS_PER_MP_LIMB);
785 /* Now shift the input value to its right place. */
786 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
787 frac[fracsize++] = cy;
788 exponent = 0;
792 int width = info->width;
793 wchar_t *wbuffer, *wstartp, *wcp;
794 int buffer_malloced;
795 int chars_needed;
796 int expscale;
797 int intdig_max, intdig_no = 0;
798 int fracdig_min, fracdig_max, fracdig_no = 0;
799 int dig_max;
800 int significant;
801 int ngroups = 0;
803 if (_tolower (info->spec) == 'e')
805 type = info->spec;
806 intdig_max = 1;
807 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
808 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
809 /* d . ddd e +- ddd */
810 dig_max = INT_MAX; /* Unlimited. */
811 significant = 1; /* Does not matter here. */
813 else if (_tolower (info->spec) == 'f')
815 type = 'f';
816 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
817 dig_max = INT_MAX; /* Unlimited. */
818 significant = 1; /* Does not matter here. */
819 if (expsign == 0)
821 intdig_max = exponent + 1;
822 /* This can be really big! */ /* XXX Maybe malloc if too big? */
823 chars_needed = exponent + 1 + 1 + fracdig_max;
825 else
827 intdig_max = 1;
828 chars_needed = 1 + 1 + fracdig_max;
831 else
833 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
834 if ((expsign == 0 && exponent >= dig_max)
835 || (expsign != 0 && exponent > 4))
837 if ('g' - 'G' == 'e' - 'E')
838 type = 'E' + (info->spec - 'G');
839 else
840 type = isupper (info->spec) ? 'E' : 'e';
841 fracdig_max = dig_max - 1;
842 intdig_max = 1;
843 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
845 else
847 type = 'f';
848 intdig_max = expsign == 0 ? exponent + 1 : 0;
849 fracdig_max = dig_max - intdig_max;
850 /* We need space for the significant digits and perhaps
851 for leading zeros when < 1.0. The number of leading
852 zeros can be as many as would be required for
853 exponential notation with a negative two-digit
854 exponent, which is 4. */
855 chars_needed = dig_max + 1 + 4;
857 fracdig_min = info->alt ? fracdig_max : 0;
858 significant = 0; /* We count significant digits. */
861 if (grouping)
863 /* Guess the number of groups we will make, and thus how
864 many spaces we need for separator characters. */
865 ngroups = __guess_grouping (intdig_max, grouping);
866 chars_needed += ngroups;
869 /* Allocate buffer for output. We need two more because while rounding
870 it is possible that we need two more characters in front of all the
871 other output. If the amount of memory we have to allocate is too
872 large use `malloc' instead of `alloca'. */
873 buffer_malloced = ! __libc_use_alloca (chars_needed * 2 * sizeof (wchar_t));
874 if (buffer_malloced)
876 wbuffer = (wchar_t *) malloc ((2 + chars_needed) * sizeof (wchar_t));
877 if (wbuffer == NULL)
878 /* Signal an error to the caller. */
879 return -1;
881 else
882 wbuffer = (wchar_t *) alloca ((2 + chars_needed) * sizeof (wchar_t));
883 wcp = wstartp = wbuffer + 2; /* Let room for rounding. */
885 /* Do the real work: put digits in allocated buffer. */
886 if (expsign == 0 || type != 'f')
888 assert (expsign == 0 || intdig_max == 1);
889 while (intdig_no < intdig_max)
891 ++intdig_no;
892 *wcp++ = hack_digit ();
894 significant = 1;
895 if (info->alt
896 || fracdig_min > 0
897 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
898 *wcp++ = decimalwc;
900 else
902 /* |fp| < 1.0 and the selected type is 'f', so put "0."
903 in the buffer. */
904 *wcp++ = L'0';
905 --exponent;
906 *wcp++ = decimalwc;
909 /* Generate the needed number of fractional digits. */
910 while (fracdig_no < fracdig_min
911 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
913 ++fracdig_no;
914 *wcp = hack_digit ();
915 if (*wcp++ != L'0')
916 significant = 1;
917 else if (significant == 0)
919 ++fracdig_max;
920 if (fracdig_min > 0)
921 ++fracdig_min;
925 /* Do rounding. */
926 digit = hack_digit ();
927 if (digit > L'4')
929 wchar_t *wtp = wcp;
931 if (digit == L'5'
932 && ((*(wcp - 1) != decimalwc && (*(wcp - 1) & 1) == 0)
933 || ((*(wcp - 1) == decimalwc && (*(wcp - 2) & 1) == 0))))
935 /* This is the critical case. */
936 if (fracsize == 1 && frac[0] == 0)
937 /* Rest of the number is zero -> round to even.
938 (IEEE 754-1985 4.1 says this is the default rounding.) */
939 goto do_expo;
940 else if (scalesize == 0)
942 /* Here we have to see whether all limbs are zero since no
943 normalization happened. */
944 size_t lcnt = fracsize;
945 while (lcnt >= 1 && frac[lcnt - 1] == 0)
946 --lcnt;
947 if (lcnt == 0)
948 /* Rest of the number is zero -> round to even.
949 (IEEE 754-1985 4.1 says this is the default rounding.) */
950 goto do_expo;
954 if (fracdig_no > 0)
956 /* Process fractional digits. Terminate if not rounded or
957 radix character is reached. */
958 while (*--wtp != decimalwc && *wtp == L'9')
959 *wtp = '0';
960 if (*wtp != decimalwc)
961 /* Round up. */
962 (*wtp)++;
965 if (fracdig_no == 0 || *wtp == decimalwc)
967 /* Round the integer digits. */
968 if (*(wtp - 1) == decimalwc)
969 --wtp;
971 while (--wtp >= wstartp && *wtp == L'9')
972 *wtp = L'0';
974 if (wtp >= wstartp)
975 /* Round up. */
976 (*wtp)++;
977 else
978 /* It is more critical. All digits were 9's. */
980 if (type != 'f')
982 *wstartp = '1';
983 exponent += expsign == 0 ? 1 : -1;
985 else if (intdig_no == dig_max)
987 /* This is the case where for type %g the number fits
988 really in the range for %f output but after rounding
989 the number of digits is too big. */
990 *--wstartp = decimalwc;
991 *--wstartp = L'1';
993 if (info->alt || fracdig_no > 0)
995 /* Overwrite the old radix character. */
996 wstartp[intdig_no + 2] = L'0';
997 ++fracdig_no;
1000 fracdig_no += intdig_no;
1001 intdig_no = 1;
1002 fracdig_max = intdig_max - intdig_no;
1003 ++exponent;
1004 /* Now we must print the exponent. */
1005 type = isupper (info->spec) ? 'E' : 'e';
1007 else
1009 /* We can simply add another another digit before the
1010 radix. */
1011 *--wstartp = L'1';
1012 ++intdig_no;
1015 /* While rounding the number of digits can change.
1016 If the number now exceeds the limits remove some
1017 fractional digits. */
1018 if (intdig_no + fracdig_no > dig_max)
1020 wcp -= intdig_no + fracdig_no - dig_max;
1021 fracdig_no -= intdig_no + fracdig_no - dig_max;
1027 do_expo:
1028 /* Now remove unnecessary '0' at the end of the string. */
1029 while (fracdig_no > fracdig_min && *(wcp - 1) == L'0')
1031 --wcp;
1032 --fracdig_no;
1034 /* If we eliminate all fractional digits we perhaps also can remove
1035 the radix character. */
1036 if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
1037 --wcp;
1039 if (grouping)
1040 /* Add in separator characters, overwriting the same buffer. */
1041 wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
1042 ngroups);
1044 /* Write the exponent if it is needed. */
1045 if (type != 'f')
1047 *wcp++ = (wchar_t) type;
1048 *wcp++ = expsign ? L'-' : L'+';
1050 /* Find the magnitude of the exponent. */
1051 expscale = 10;
1052 while (expscale <= exponent)
1053 expscale *= 10;
1055 if (exponent < 10)
1056 /* Exponent always has at least two digits. */
1057 *wcp++ = L'0';
1058 else
1061 expscale /= 10;
1062 *wcp++ = L'0' + (exponent / expscale);
1063 exponent %= expscale;
1065 while (expscale > 10);
1066 *wcp++ = L'0' + exponent;
1069 /* Compute number of characters which must be filled with the padding
1070 character. */
1071 if (is_neg || info->showsign || info->space)
1072 --width;
1073 width -= wcp - wstartp;
1075 if (!info->left && info->pad != '0' && width > 0)
1076 PADN (info->pad, width);
1078 if (is_neg)
1079 outchar ('-');
1080 else if (info->showsign)
1081 outchar ('+');
1082 else if (info->space)
1083 outchar (' ');
1085 if (!info->left && info->pad == '0' && width > 0)
1086 PADN ('0', width);
1089 char *buffer = NULL;
1090 char *cp = NULL;
1091 char *tmpptr;
1093 if (! wide)
1095 /* Create the single byte string. */
1096 size_t decimal_len;
1097 size_t thousands_sep_len;
1098 wchar_t *copywc;
1100 decimal_len = strlen (decimal);
1102 if (thousands_sep == NULL)
1103 thousands_sep_len = 0;
1104 else
1105 thousands_sep_len = strlen (thousands_sep);
1107 if (buffer_malloced)
1109 buffer = (char *) malloc (2 + chars_needed + decimal_len
1110 + ngroups * thousands_sep_len);
1111 if (buffer == NULL)
1112 /* Signal an error to the caller. */
1113 return -1;
1115 else
1116 buffer = (char *) alloca (2 + chars_needed + decimal_len
1117 + ngroups * thousands_sep_len);
1119 /* Now copy the wide character string. Since the character
1120 (except for the decimal point and thousands separator) must
1121 be coming from the ASCII range we can esily convert the
1122 string without mapping tables. */
1123 for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
1124 if (*copywc == decimalwc)
1125 cp = (char *) __mempcpy (cp, decimal, decimal_len);
1126 else if (*copywc == thousands_sepwc)
1127 cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len);
1128 else
1129 *cp++ = (char) *copywc;
1132 tmpptr = buffer;
1133 if (__builtin_expect (info->i18n, 0))
1135 #ifdef COMPILE_WPRINTF
1136 wstartp = _i18n_number_rewrite (wstartp, wcp);
1137 #else
1138 tmpptr = _i18n_number_rewrite (tmpptr, cp);
1139 #endif
1142 PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
1144 /* Free the memory if necessary. */
1145 if (buffer_malloced)
1147 free (buffer);
1148 free (wbuffer);
1152 if (info->left && width > 0)
1153 PADN (info->pad, width);
1155 return done;
1157 ldbl_hidden_def (___printf_fp, __printf_fp)
1158 ldbl_strong_alias (___printf_fp, __printf_fp)
1160 /* Return the number of extra grouping characters that will be inserted
1161 into a number with INTDIG_MAX integer digits. */
1163 unsigned int
1164 __guess_grouping (unsigned int intdig_max, const char *grouping)
1166 unsigned int groups;
1168 /* We treat all negative values like CHAR_MAX. */
1170 if (*grouping == CHAR_MAX || *grouping <= 0)
1171 /* No grouping should be done. */
1172 return 0;
1174 groups = 0;
1175 while (intdig_max > (unsigned int) *grouping)
1177 ++groups;
1178 intdig_max -= *grouping++;
1180 if (*grouping == CHAR_MAX
1181 #if CHAR_MIN < 0
1182 || *grouping < 0
1183 #endif
1185 /* No more grouping should be done. */
1186 break;
1187 else if (*grouping == 0)
1189 /* Same grouping repeats. */
1190 groups += (intdig_max - 1) / grouping[-1];
1191 break;
1195 return groups;
1198 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1199 There is guaranteed enough space past BUFEND to extend it.
1200 Return the new end of buffer. */
1202 static wchar_t *
1203 internal_function
1204 group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
1205 const char *grouping, wchar_t thousands_sep, int ngroups)
1207 wchar_t *p;
1209 if (ngroups == 0)
1210 return bufend;
1212 /* Move the fractional part down. */
1213 __wmemmove (buf + intdig_no + ngroups, buf + intdig_no,
1214 bufend - (buf + intdig_no));
1216 p = buf + intdig_no + ngroups - 1;
1219 unsigned int len = *grouping++;
1221 *p-- = buf[--intdig_no];
1222 while (--len > 0);
1223 *p-- = thousands_sep;
1225 if (*grouping == CHAR_MAX
1226 #if CHAR_MIN < 0
1227 || *grouping < 0
1228 #endif
1230 /* No more grouping should be done. */
1231 break;
1232 else if (*grouping == 0)
1233 /* Same grouping repeats. */
1234 --grouping;
1235 } while (intdig_no > (unsigned int) *grouping);
1237 /* Copy the remaining ungrouped digits. */
1239 *p-- = buf[--intdig_no];
1240 while (p > buf);
1242 return bufend + ngroups;