1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
38 # define PARAMS(args) ()
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 /* We have to keep the namespace clean. */
61 # define regfree(preg) __regfree (preg)
62 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
63 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
64 # define regerror(errcode, preg, errbuf, errbuf_size) \
65 __regerror(errcode, preg, errbuf, errbuf_size)
66 # define re_set_registers(bu, re, nu, st, en) \
67 __re_set_registers (bu, re, nu, st, en)
68 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
69 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
70 # define re_match(bufp, string, size, pos, regs) \
71 __re_match (bufp, string, size, pos, regs)
72 # define re_search(bufp, string, size, startpos, range, regs) \
73 __re_search (bufp, string, size, startpos, range, regs)
74 # define re_compile_pattern(pattern, length, bufp) \
75 __re_compile_pattern (pattern, length, bufp)
76 # define re_set_syntax(syntax) __re_set_syntax (syntax)
77 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
78 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
79 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
84 /* This is for other GNU distributions with internationalized messages. */
85 #if HAVE_LIBINTL_H || defined _LIBC
88 # define gettext(msgid) (msgid)
92 /* This define is so xgettext can find the internationalizable
94 # define gettext_noop(String) String
97 /* The `emacs' switch turns on certain matching commands
98 that make sense only in Emacs. */
105 #else /* not emacs */
107 /* If we are not linking with Emacs proper,
108 we can't use the relocating allocator
109 even if config.h says that we can. */
112 # if defined STDC_HEADERS || defined _LIBC
119 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
120 If nothing else has been done, use the method below. */
121 # ifdef INHIBIT_STRING_HEADER
122 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
123 # if !defined bzero && !defined bcopy
124 # undef INHIBIT_STRING_HEADER
129 /* This is the normal way of making sure we have a bcopy and a bzero.
130 This is used in most programs--a few other programs avoid this
131 by defining INHIBIT_STRING_HEADER. */
132 # ifndef INHIBIT_STRING_HEADER
133 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
137 # define bzero(s, n) (memset (s, '\0', n), (s))
139 # define bzero(s, n) __bzero (s, n)
143 # include <strings.h>
145 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
148 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
153 /* Define the syntax stuff for \<, \>, etc. */
155 /* This must be nonzero for the wordchar and notwordchar pattern
156 commands in re_match_2. */
161 # ifdef SWITCH_ENUM_BUG
162 # define SWITCH_ENUM_CAST(x) ((int)(x))
164 # define SWITCH_ENUM_CAST(x) (x)
167 /* How many characters in the character set. */
168 # define CHAR_SET_SIZE 256
172 extern char *re_syntax_table
;
174 # else /* not SYNTAX_TABLE */
176 static char re_syntax_table
[CHAR_SET_SIZE
];
187 bzero (re_syntax_table
, sizeof re_syntax_table
);
189 for (c
= 'a'; c
<= 'z'; c
++)
190 re_syntax_table
[c
] = Sword
;
192 for (c
= 'A'; c
<= 'Z'; c
++)
193 re_syntax_table
[c
] = Sword
;
195 for (c
= '0'; c
<= '9'; c
++)
196 re_syntax_table
[c
] = Sword
;
198 re_syntax_table
['_'] = Sword
;
203 # endif /* not SYNTAX_TABLE */
205 # define SYNTAX(c) re_syntax_table[c]
207 #endif /* not emacs */
209 /* Get the interface, including the syntax bits. */
212 /* isalpha etc. are used for the character classes. */
215 /* Jim Meyering writes:
217 "... Some ctype macros are valid only for character codes that
218 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
219 using /bin/cc or gcc but without giving an ansi option). So, all
220 ctype uses should be through macros like ISPRINT... If
221 STDC_HEADERS is defined, then autoconf has verified that the ctype
222 macros don't need to be guarded with references to isascii. ...
223 Defining isascii to 1 should let any compiler worth its salt
224 eliminate the && through constant folding."
225 Solaris defines some of these symbols so we must undefine them first. */
228 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
229 # define ISASCII(c) 1
231 # define ISASCII(c) isascii(c)
235 # define ISBLANK(c) (ISASCII (c) && isblank (c))
237 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
240 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
242 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
246 #define ISPRINT(c) (ISASCII (c) && isprint (c))
247 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
248 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
249 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
250 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
251 #define ISLOWER(c) (ISASCII (c) && islower (c))
252 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
253 #define ISSPACE(c) (ISASCII (c) && isspace (c))
254 #define ISUPPER(c) (ISASCII (c) && isupper (c))
255 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
258 # define NULL (void *)0
261 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
262 since ours (we hope) works properly with all combinations of
263 machines, compilers, `char' and `unsigned char' argument types.
264 (Per Bothner suggested the basic approach.) */
265 #undef SIGN_EXTEND_CHAR
267 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
268 #else /* not __STDC__ */
269 /* As in Harbison and Steele. */
270 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
273 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
274 use `alloca' instead of `malloc'. This is because using malloc in
275 re_search* or re_match* could cause memory leaks when C-g is used in
276 Emacs; also, malloc is slower and causes storage fragmentation. On
277 the other hand, malloc is more portable, and easier to debug.
279 Because we sometimes use alloca, some routines have to be macros,
280 not functions -- `alloca'-allocated space disappears at the end of the
281 function it is called in. */
285 # define REGEX_ALLOCATE malloc
286 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
287 # define REGEX_FREE free
289 #else /* not REGEX_MALLOC */
291 /* Emacs already defines alloca, sometimes. */
294 /* Make alloca work the best possible way. */
296 # define alloca __builtin_alloca
297 # else /* not __GNUC__ */
300 # endif /* HAVE_ALLOCA_H */
301 # endif /* not __GNUC__ */
303 # endif /* not alloca */
305 # define REGEX_ALLOCATE alloca
307 /* Assumes a `char *destination' variable. */
308 # define REGEX_REALLOCATE(source, osize, nsize) \
309 (destination = (char *) alloca (nsize), \
310 memcpy (destination, source, osize))
312 /* No need to do anything to free, after alloca. */
313 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
315 #endif /* not REGEX_MALLOC */
317 /* Define how to allocate the failure stack. */
319 #if defined REL_ALLOC && defined REGEX_MALLOC
321 # define REGEX_ALLOCATE_STACK(size) \
322 r_alloc (&failure_stack_ptr, (size))
323 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
324 r_re_alloc (&failure_stack_ptr, (nsize))
325 # define REGEX_FREE_STACK(ptr) \
326 r_alloc_free (&failure_stack_ptr)
328 #else /* not using relocating allocator */
332 # define REGEX_ALLOCATE_STACK malloc
333 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
334 # define REGEX_FREE_STACK free
336 # else /* not REGEX_MALLOC */
338 # define REGEX_ALLOCATE_STACK alloca
340 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
341 REGEX_REALLOCATE (source, osize, nsize)
342 /* No need to explicitly free anything. */
343 # define REGEX_FREE_STACK(arg)
345 # endif /* not REGEX_MALLOC */
346 #endif /* not using relocating allocator */
349 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
350 `string1' or just past its end. This works if PTR is NULL, which is
352 #define FIRST_STRING_P(ptr) \
353 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
355 /* (Re)Allocate N items of type T using malloc, or fail. */
356 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
357 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
358 #define RETALLOC_IF(addr, n, t) \
359 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
360 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
362 #define BYTEWIDTH 8 /* In bits. */
364 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
368 #define MAX(a, b) ((a) > (b) ? (a) : (b))
369 #define MIN(a, b) ((a) < (b) ? (a) : (b))
371 typedef char boolean
;
375 static int re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
376 const char *string1
, int size1
,
377 const char *string2
, int size2
,
379 struct re_registers
*regs
,
382 /* These are the command codes that appear in compiled regular
383 expressions. Some opcodes are followed by argument bytes. A
384 command code can specify any interpretation whatsoever for its
385 arguments. Zero bytes may appear in the compiled regular expression. */
391 /* Succeed right away--no more backtracking. */
394 /* Followed by one byte giving n, then by n literal bytes. */
397 /* Matches any (more or less) character. */
400 /* Matches any one char belonging to specified set. First
401 following byte is number of bitmap bytes. Then come bytes
402 for a bitmap saying which chars are in. Bits in each byte
403 are ordered low-bit-first. A character is in the set if its
404 bit is 1. A character too large to have a bit in the map is
405 automatically not in the set. */
408 /* Same parameters as charset, but match any character that is
409 not one of those specified. */
412 /* Start remembering the text that is matched, for storing in a
413 register. Followed by one byte with the register number, in
414 the range 0 to one less than the pattern buffer's re_nsub
415 field. Then followed by one byte with the number of groups
416 inner to this one. (This last has to be part of the
417 start_memory only because we need it in the on_failure_jump
421 /* Stop remembering the text that is matched and store it in a
422 memory register. Followed by one byte with the register
423 number, in the range 0 to one less than `re_nsub' in the
424 pattern buffer, and one byte with the number of inner groups,
425 just like `start_memory'. (We need the number of inner
426 groups here because we don't have any easy way of finding the
427 corresponding start_memory when we're at a stop_memory.) */
430 /* Match a duplicate of something remembered. Followed by one
431 byte containing the register number. */
434 /* Fail unless at beginning of line. */
437 /* Fail unless at end of line. */
440 /* Succeeds if at beginning of buffer (if emacs) or at beginning
441 of string to be matched (if not). */
444 /* Analogously, for end of buffer/string. */
447 /* Followed by two byte relative address to which to jump. */
450 /* Same as jump, but marks the end of an alternative. */
453 /* Followed by two-byte relative address of place to resume at
454 in case of failure. */
457 /* Like on_failure_jump, but pushes a placeholder instead of the
458 current string position when executed. */
459 on_failure_keep_string_jump
,
461 /* Throw away latest failure point and then jump to following
462 two-byte relative address. */
465 /* Change to pop_failure_jump if know won't have to backtrack to
466 match; otherwise change to jump. This is used to jump
467 back to the beginning of a repeat. If what follows this jump
468 clearly won't match what the repeat does, such that we can be
469 sure that there is no use backtracking out of repetitions
470 already matched, then we change it to a pop_failure_jump.
471 Followed by two-byte address. */
474 /* Jump to following two-byte address, and push a dummy failure
475 point. This failure point will be thrown away if an attempt
476 is made to use it for a failure. A `+' construct makes this
477 before the first repeat. Also used as an intermediary kind
478 of jump when compiling an alternative. */
481 /* Push a dummy failure point and continue. Used at the end of
485 /* Followed by two-byte relative address and two-byte number n.
486 After matching N times, jump to the address upon failure. */
489 /* Followed by two-byte relative address, and two-byte number n.
490 Jump to the address N times, then fail. */
493 /* Set the following two-byte relative address to the
494 subsequent two-byte number. The address *includes* the two
498 wordchar
, /* Matches any word-constituent character. */
499 notwordchar
, /* Matches any char that is not a word-constituent. */
501 wordbeg
, /* Succeeds if at word beginning. */
502 wordend
, /* Succeeds if at word end. */
504 wordbound
, /* Succeeds if at a word boundary. */
505 notwordbound
/* Succeeds if not at a word boundary. */
508 ,before_dot
, /* Succeeds if before point. */
509 at_dot
, /* Succeeds if at point. */
510 after_dot
, /* Succeeds if after point. */
512 /* Matches any character whose syntax is specified. Followed by
513 a byte which contains a syntax code, e.g., Sword. */
516 /* Matches any character whose syntax is not that specified. */
521 /* Common operations on the compiled pattern. */
523 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
525 #define STORE_NUMBER(destination, number) \
527 (destination)[0] = (number) & 0377; \
528 (destination)[1] = (number) >> 8; \
531 /* Same as STORE_NUMBER, except increment DESTINATION to
532 the byte after where the number is stored. Therefore, DESTINATION
533 must be an lvalue. */
535 #define STORE_NUMBER_AND_INCR(destination, number) \
537 STORE_NUMBER (destination, number); \
538 (destination) += 2; \
541 /* Put into DESTINATION a number stored in two contiguous bytes starting
544 #define EXTRACT_NUMBER(destination, source) \
546 (destination) = *(source) & 0377; \
547 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
551 static void extract_number
_RE_ARGS ((int *dest
, unsigned char *source
));
553 extract_number (dest
, source
)
555 unsigned char *source
;
557 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
558 *dest
= *source
& 0377;
562 # ifndef EXTRACT_MACROS /* To debug the macros. */
563 # undef EXTRACT_NUMBER
564 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
565 # endif /* not EXTRACT_MACROS */
569 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
570 SOURCE must be an lvalue. */
572 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
574 EXTRACT_NUMBER (destination, source); \
579 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
580 unsigned char **source
));
582 extract_number_and_incr (destination
, source
)
584 unsigned char **source
;
586 extract_number (destination
, *source
);
590 # ifndef EXTRACT_MACROS
591 # undef EXTRACT_NUMBER_AND_INCR
592 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
593 extract_number_and_incr (&dest, &src)
594 # endif /* not EXTRACT_MACROS */
598 /* If DEBUG is defined, Regex prints many voluminous messages about what
599 it is doing (if the variable `debug' is nonzero). If linked with the
600 main program in `iregex.c', you can enter patterns and strings
601 interactively. And if linked with the main program in `main.c' and
602 the other test files, you can run the already-written tests. */
606 /* We use standard I/O for debugging. */
609 /* It is useful to test things that ``must'' be true when debugging. */
612 static int debug
= 0;
614 # define DEBUG_STATEMENT(e) e
615 # define DEBUG_PRINT1(x) if (debug) printf (x)
616 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
617 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
618 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
619 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
620 if (debug) print_partial_compiled_pattern (s, e)
621 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
622 if (debug) print_double_string (w, s1, sz1, s2, sz2)
625 /* Print the fastmap in human-readable form. */
628 print_fastmap (fastmap
)
631 unsigned was_a_range
= 0;
634 while (i
< (1 << BYTEWIDTH
))
640 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
656 /* Print a compiled pattern string in human-readable form, starting at
657 the START pointer into it and ending just before the pointer END. */
660 print_partial_compiled_pattern (start
, end
)
661 unsigned char *start
;
666 unsigned char *p
= start
;
667 unsigned char *pend
= end
;
675 /* Loop over pattern commands. */
678 printf ("%d:\t", p
- start
);
680 switch ((re_opcode_t
) *p
++)
688 printf ("/exactn/%d", mcnt
);
699 printf ("/start_memory/%d/%d", mcnt
, *p
++);
704 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
708 printf ("/duplicate/%d", *p
++);
718 register int c
, last
= -100;
719 register int in_range
= 0;
721 printf ("/charset [%s",
722 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
724 assert (p
+ *p
< pend
);
726 for (c
= 0; c
< 256; c
++)
728 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
730 /* Are we starting a range? */
731 if (last
+ 1 == c
&& ! in_range
)
736 /* Have we broken a range? */
737 else if (last
+ 1 != c
&& in_range
)
766 case on_failure_jump
:
767 extract_number_and_incr (&mcnt
, &p
);
768 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
771 case on_failure_keep_string_jump
:
772 extract_number_and_incr (&mcnt
, &p
);
773 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
776 case dummy_failure_jump
:
777 extract_number_and_incr (&mcnt
, &p
);
778 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
781 case push_dummy_failure
:
782 printf ("/push_dummy_failure");
786 extract_number_and_incr (&mcnt
, &p
);
787 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
790 case pop_failure_jump
:
791 extract_number_and_incr (&mcnt
, &p
);
792 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
796 extract_number_and_incr (&mcnt
, &p
);
797 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
801 extract_number_and_incr (&mcnt
, &p
);
802 printf ("/jump to %d", p
+ mcnt
- start
);
806 extract_number_and_incr (&mcnt
, &p
);
808 extract_number_and_incr (&mcnt2
, &p
);
809 printf ("/succeed_n to %d, %d times", p1
- start
, mcnt2
);
813 extract_number_and_incr (&mcnt
, &p
);
815 extract_number_and_incr (&mcnt2
, &p
);
816 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
820 extract_number_and_incr (&mcnt
, &p
);
822 extract_number_and_incr (&mcnt2
, &p
);
823 printf ("/set_number_at location %d to %d", p1
- start
, mcnt2
);
827 printf ("/wordbound");
831 printf ("/notwordbound");
843 printf ("/before_dot");
851 printf ("/after_dot");
855 printf ("/syntaxspec");
857 printf ("/%d", mcnt
);
861 printf ("/notsyntaxspec");
863 printf ("/%d", mcnt
);
868 printf ("/wordchar");
872 printf ("/notwordchar");
884 printf ("?%d", *(p
-1));
890 printf ("%d:\tend of pattern.\n", p
- start
);
895 print_compiled_pattern (bufp
)
896 struct re_pattern_buffer
*bufp
;
898 unsigned char *buffer
= bufp
->buffer
;
900 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
901 printf ("%ld bytes used/%ld bytes allocated.\n",
902 bufp
->used
, bufp
->allocated
);
904 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
906 printf ("fastmap: ");
907 print_fastmap (bufp
->fastmap
);
910 printf ("re_nsub: %d\t", bufp
->re_nsub
);
911 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
912 printf ("can_be_null: %d\t", bufp
->can_be_null
);
913 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
914 printf ("no_sub: %d\t", bufp
->no_sub
);
915 printf ("not_bol: %d\t", bufp
->not_bol
);
916 printf ("not_eol: %d\t", bufp
->not_eol
);
917 printf ("syntax: %lx\n", bufp
->syntax
);
918 /* Perhaps we should print the translate table? */
923 print_double_string (where
, string1
, size1
, string2
, size2
)
936 if (FIRST_STRING_P (where
))
938 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
939 putchar (string1
[this_char
]);
944 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
945 putchar (string2
[this_char
]);
956 #else /* not DEBUG */
961 # define DEBUG_STATEMENT(e)
962 # define DEBUG_PRINT1(x)
963 # define DEBUG_PRINT2(x1, x2)
964 # define DEBUG_PRINT3(x1, x2, x3)
965 # define DEBUG_PRINT4(x1, x2, x3, x4)
966 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
967 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
969 #endif /* not DEBUG */
971 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
972 also be assigned to arbitrarily: each pattern buffer stores its own
973 syntax, so it can be changed between regex compilations. */
974 /* This has no initializer because initialized variables in Emacs
975 become read-only after dumping. */
976 reg_syntax_t re_syntax_options
;
979 /* Specify the precise syntax of regexps for compilation. This provides
980 for compatibility for various utilities which historically have
981 different, incompatible syntaxes.
983 The argument SYNTAX is a bit mask comprised of the various bits
984 defined in regex.h. We return the old syntax. */
987 re_set_syntax (syntax
)
990 reg_syntax_t ret
= re_syntax_options
;
992 re_syntax_options
= syntax
;
994 if (syntax
& RE_DEBUG
)
996 else if (debug
) /* was on but now is not */
1002 weak_alias (__re_set_syntax
, re_set_syntax
)
1005 /* This table gives an error message for each of the error codes listed
1006 in regex.h. Obviously the order here has to be same as there.
1007 POSIX doesn't require that we do anything for REG_NOERROR,
1008 but why not be nice? */
1010 static const char *re_error_msgid
[] =
1012 gettext_noop ("Success"), /* REG_NOERROR */
1013 gettext_noop ("No match"), /* REG_NOMATCH */
1014 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1015 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1016 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1017 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1018 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1019 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1020 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1021 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1022 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1023 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1024 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1025 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1026 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1027 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1028 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1031 /* Avoiding alloca during matching, to placate r_alloc. */
1033 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1034 searching and matching functions should not call alloca. On some
1035 systems, alloca is implemented in terms of malloc, and if we're
1036 using the relocating allocator routines, then malloc could cause a
1037 relocation, which might (if the strings being searched are in the
1038 ralloc heap) shift the data out from underneath the regexp
1041 Here's another reason to avoid allocation: Emacs
1042 processes input from X in a signal handler; processing X input may
1043 call malloc; if input arrives while a matching routine is calling
1044 malloc, then we're scrod. But Emacs can't just block input while
1045 calling matching routines; then we don't notice interrupts when
1046 they come in. So, Emacs blocks input around all regexp calls
1047 except the matching calls, which it leaves unprotected, in the
1048 faith that they will not malloc. */
1050 /* Normally, this is fine. */
1051 #define MATCH_MAY_ALLOCATE
1053 /* When using GNU C, we are not REALLY using the C alloca, no matter
1054 what config.h may say. So don't take precautions for it. */
1059 /* The match routines may not allocate if (1) they would do it with malloc
1060 and (2) it's not safe for them to use malloc.
1061 Note that if REL_ALLOC is defined, matching would not use malloc for the
1062 failure stack, but we would still use it for the register vectors;
1063 so REL_ALLOC should not affect this. */
1064 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1065 # undef MATCH_MAY_ALLOCATE
1069 /* Failure stack declarations and macros; both re_compile_fastmap and
1070 re_match_2 use a failure stack. These have to be macros because of
1071 REGEX_ALLOCATE_STACK. */
1074 /* Number of failure points for which to initially allocate space
1075 when matching. If this number is exceeded, we allocate more
1076 space, so it is not a hard limit. */
1077 #ifndef INIT_FAILURE_ALLOC
1078 # define INIT_FAILURE_ALLOC 5
1081 /* Roughly the maximum number of failure points on the stack. Would be
1082 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1083 This is a variable only so users of regex can assign to it; we never
1084 change it ourselves. */
1088 # if defined MATCH_MAY_ALLOCATE
1089 /* 4400 was enough to cause a crash on Alpha OSF/1,
1090 whose default stack limit is 2mb. */
1091 long int re_max_failures
= 4000;
1093 long int re_max_failures
= 2000;
1096 union fail_stack_elt
1098 unsigned char *pointer
;
1102 typedef union fail_stack_elt fail_stack_elt_t
;
1106 fail_stack_elt_t
*stack
;
1107 unsigned long int size
;
1108 unsigned long int avail
; /* Offset of next open position. */
1111 #else /* not INT_IS_16BIT */
1113 # if defined MATCH_MAY_ALLOCATE
1114 /* 4400 was enough to cause a crash on Alpha OSF/1,
1115 whose default stack limit is 2mb. */
1116 int re_max_failures
= 20000;
1118 int re_max_failures
= 2000;
1121 union fail_stack_elt
1123 unsigned char *pointer
;
1127 typedef union fail_stack_elt fail_stack_elt_t
;
1131 fail_stack_elt_t
*stack
;
1133 unsigned avail
; /* Offset of next open position. */
1136 #endif /* INT_IS_16BIT */
1138 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1139 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1140 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1143 /* Define macros to initialize and free the failure stack.
1144 Do `return -2' if the alloc fails. */
1146 #ifdef MATCH_MAY_ALLOCATE
1147 # define INIT_FAIL_STACK() \
1149 fail_stack.stack = (fail_stack_elt_t *) \
1150 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1152 if (fail_stack.stack == NULL) \
1155 fail_stack.size = INIT_FAILURE_ALLOC; \
1156 fail_stack.avail = 0; \
1159 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1161 # define INIT_FAIL_STACK() \
1163 fail_stack.avail = 0; \
1166 # define RESET_FAIL_STACK()
1170 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1172 Return 1 if succeeds, and 0 if either ran out of memory
1173 allocating space for it or it was already too large.
1175 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1177 #define DOUBLE_FAIL_STACK(fail_stack) \
1178 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1180 : ((fail_stack).stack = (fail_stack_elt_t *) \
1181 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1182 (fail_stack).size * sizeof (fail_stack_elt_t), \
1183 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1185 (fail_stack).stack == NULL \
1187 : ((fail_stack).size <<= 1, \
1191 /* Push pointer POINTER on FAIL_STACK.
1192 Return 1 if was able to do so and 0 if ran out of memory allocating
1194 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1195 ((FAIL_STACK_FULL () \
1196 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1198 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1201 /* Push a pointer value onto the failure stack.
1202 Assumes the variable `fail_stack'. Probably should only
1203 be called from within `PUSH_FAILURE_POINT'. */
1204 #define PUSH_FAILURE_POINTER(item) \
1205 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1207 /* This pushes an integer-valued item onto the failure stack.
1208 Assumes the variable `fail_stack'. Probably should only
1209 be called from within `PUSH_FAILURE_POINT'. */
1210 #define PUSH_FAILURE_INT(item) \
1211 fail_stack.stack[fail_stack.avail++].integer = (item)
1213 /* Push a fail_stack_elt_t value onto the failure stack.
1214 Assumes the variable `fail_stack'. Probably should only
1215 be called from within `PUSH_FAILURE_POINT'. */
1216 #define PUSH_FAILURE_ELT(item) \
1217 fail_stack.stack[fail_stack.avail++] = (item)
1219 /* These three POP... operations complement the three PUSH... operations.
1220 All assume that `fail_stack' is nonempty. */
1221 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1222 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1223 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1225 /* Used to omit pushing failure point id's when we're not debugging. */
1227 # define DEBUG_PUSH PUSH_FAILURE_INT
1228 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1230 # define DEBUG_PUSH(item)
1231 # define DEBUG_POP(item_addr)
1235 /* Push the information about the state we will need
1236 if we ever fail back to it.
1238 Requires variables fail_stack, regstart, regend, reg_info, and
1239 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1242 Does `return FAILURE_CODE' if runs out of memory. */
1244 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1246 char *destination; \
1247 /* Must be int, so when we don't save any registers, the arithmetic \
1248 of 0 + -1 isn't done as unsigned. */ \
1249 /* Can't be int, since there is not a shred of a guarantee that int \
1250 is wide enough to hold a value of something to which pointer can \
1252 active_reg_t this_reg; \
1254 DEBUG_STATEMENT (failure_id++); \
1255 DEBUG_STATEMENT (nfailure_points_pushed++); \
1256 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1257 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1258 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1260 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1261 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1263 /* Ensure we have enough space allocated for what we will push. */ \
1264 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1266 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1267 return failure_code; \
1269 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1270 (fail_stack).size); \
1271 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1274 /* Push the info, starting with the registers. */ \
1275 DEBUG_PRINT1 ("\n"); \
1278 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1281 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1282 DEBUG_STATEMENT (num_regs_pushed++); \
1284 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1285 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1287 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1288 PUSH_FAILURE_POINTER (regend[this_reg]); \
1290 DEBUG_PRINT2 (" info: %p\n ", \
1291 reg_info[this_reg].word.pointer); \
1292 DEBUG_PRINT2 (" match_null=%d", \
1293 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1294 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1295 DEBUG_PRINT2 (" matched_something=%d", \
1296 MATCHED_SOMETHING (reg_info[this_reg])); \
1297 DEBUG_PRINT2 (" ever_matched=%d", \
1298 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1299 DEBUG_PRINT1 ("\n"); \
1300 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1303 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1304 PUSH_FAILURE_INT (lowest_active_reg); \
1306 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1307 PUSH_FAILURE_INT (highest_active_reg); \
1309 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1310 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1311 PUSH_FAILURE_POINTER (pattern_place); \
1313 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1314 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1316 DEBUG_PRINT1 ("'\n"); \
1317 PUSH_FAILURE_POINTER (string_place); \
1319 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1320 DEBUG_PUSH (failure_id); \
1323 /* This is the number of items that are pushed and popped on the stack
1324 for each register. */
1325 #define NUM_REG_ITEMS 3
1327 /* Individual items aside from the registers. */
1329 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1331 # define NUM_NONREG_ITEMS 4
1334 /* We push at most this many items on the stack. */
1335 /* We used to use (num_regs - 1), which is the number of registers
1336 this regexp will save; but that was changed to 5
1337 to avoid stack overflow for a regexp with lots of parens. */
1338 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1340 /* We actually push this many items. */
1341 #define NUM_FAILURE_ITEMS \
1343 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1347 /* How many items can still be added to the stack without overflowing it. */
1348 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1351 /* Pops what PUSH_FAIL_STACK pushes.
1353 We restore into the parameters, all of which should be lvalues:
1354 STR -- the saved data position.
1355 PAT -- the saved pattern position.
1356 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1357 REGSTART, REGEND -- arrays of string positions.
1358 REG_INFO -- array of information about each subexpression.
1360 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1361 `pend', `string1', `size1', `string2', and `size2'. */
1363 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1365 DEBUG_STATEMENT (unsigned failure_id;) \
1366 active_reg_t this_reg; \
1367 const unsigned char *string_temp; \
1369 assert (!FAIL_STACK_EMPTY ()); \
1371 /* Remove failure points and point to how many regs pushed. */ \
1372 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1373 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1374 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1376 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1378 DEBUG_POP (&failure_id); \
1379 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1381 /* If the saved string location is NULL, it came from an \
1382 on_failure_keep_string_jump opcode, and we want to throw away the \
1383 saved NULL, thus retaining our current position in the string. */ \
1384 string_temp = POP_FAILURE_POINTER (); \
1385 if (string_temp != NULL) \
1386 str = (const char *) string_temp; \
1388 DEBUG_PRINT2 (" Popping string %p: `", str); \
1389 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1390 DEBUG_PRINT1 ("'\n"); \
1392 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1393 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1394 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1396 /* Restore register info. */ \
1397 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1398 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1400 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1401 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1404 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1406 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1408 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1409 DEBUG_PRINT2 (" info: %p\n", \
1410 reg_info[this_reg].word.pointer); \
1412 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1413 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1415 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1416 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1420 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1422 reg_info[this_reg].word.integer = 0; \
1423 regend[this_reg] = 0; \
1424 regstart[this_reg] = 0; \
1426 highest_active_reg = high_reg; \
1429 set_regs_matched_done = 0; \
1430 DEBUG_STATEMENT (nfailure_points_popped++); \
1431 } /* POP_FAILURE_POINT */
1435 /* Structure for per-register (a.k.a. per-group) information.
1436 Other register information, such as the
1437 starting and ending positions (which are addresses), and the list of
1438 inner groups (which is a bits list) are maintained in separate
1441 We are making a (strictly speaking) nonportable assumption here: that
1442 the compiler will pack our bit fields into something that fits into
1443 the type of `word', i.e., is something that fits into one item on the
1447 /* Declarations and macros for re_match_2. */
1451 fail_stack_elt_t word
;
1454 /* This field is one if this group can match the empty string,
1455 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1456 #define MATCH_NULL_UNSET_VALUE 3
1457 unsigned match_null_string_p
: 2;
1458 unsigned is_active
: 1;
1459 unsigned matched_something
: 1;
1460 unsigned ever_matched_something
: 1;
1462 } register_info_type
;
1464 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1465 #define IS_ACTIVE(R) ((R).bits.is_active)
1466 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1467 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1470 /* Call this when have matched a real character; it sets `matched' flags
1471 for the subexpressions which we are currently inside. Also records
1472 that those subexprs have matched. */
1473 #define SET_REGS_MATCHED() \
1476 if (!set_regs_matched_done) \
1479 set_regs_matched_done = 1; \
1480 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1482 MATCHED_SOMETHING (reg_info[r]) \
1483 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1490 /* Registers are set to a sentinel when they haven't yet matched. */
1491 static char reg_unset_dummy
;
1492 #define REG_UNSET_VALUE (®_unset_dummy)
1493 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1495 /* Subroutine declarations and macros for regex_compile. */
1497 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1498 reg_syntax_t syntax
,
1499 struct re_pattern_buffer
*bufp
));
1500 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1501 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1502 int arg1
, int arg2
));
1503 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1504 int arg
, unsigned char *end
));
1505 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1506 int arg1
, int arg2
, unsigned char *end
));
1507 static boolean at_begline_loc_p
_RE_ARGS ((const char *pattern
, const char *p
,
1508 reg_syntax_t syntax
));
1509 static boolean at_endline_loc_p
_RE_ARGS ((const char *p
, const char *pend
,
1510 reg_syntax_t syntax
));
1511 static reg_errcode_t compile_range
_RE_ARGS ((const char **p_ptr
,
1514 reg_syntax_t syntax
,
1517 /* Fetch the next character in the uncompiled pattern---translating it
1518 if necessary. Also cast from a signed character in the constant
1519 string passed to us by the user to an unsigned char that we can use
1520 as an array index (in, e.g., `translate'). */
1522 # define PATFETCH(c) \
1523 do {if (p == pend) return REG_EEND; \
1524 c = (unsigned char) *p++; \
1525 if (translate) c = (unsigned char) translate[c]; \
1529 /* Fetch the next character in the uncompiled pattern, with no
1531 #define PATFETCH_RAW(c) \
1532 do {if (p == pend) return REG_EEND; \
1533 c = (unsigned char) *p++; \
1536 /* Go backwards one character in the pattern. */
1537 #define PATUNFETCH p--
1540 /* If `translate' is non-null, return translate[D], else just D. We
1541 cast the subscript to translate because some data is declared as
1542 `char *', to avoid warnings when a string constant is passed. But
1543 when we use a character as a subscript we must make it unsigned. */
1545 # define TRANSLATE(d) \
1546 (translate ? (char) translate[(unsigned char) (d)] : (d))
1550 /* Macros for outputting the compiled pattern into `buffer'. */
1552 /* If the buffer isn't allocated when it comes in, use this. */
1553 #define INIT_BUF_SIZE 32
1555 /* Make sure we have at least N more bytes of space in buffer. */
1556 #define GET_BUFFER_SPACE(n) \
1557 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1560 /* Make sure we have one more byte of buffer space and then add C to it. */
1561 #define BUF_PUSH(c) \
1563 GET_BUFFER_SPACE (1); \
1564 *b++ = (unsigned char) (c); \
1568 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1569 #define BUF_PUSH_2(c1, c2) \
1571 GET_BUFFER_SPACE (2); \
1572 *b++ = (unsigned char) (c1); \
1573 *b++ = (unsigned char) (c2); \
1577 /* As with BUF_PUSH_2, except for three bytes. */
1578 #define BUF_PUSH_3(c1, c2, c3) \
1580 GET_BUFFER_SPACE (3); \
1581 *b++ = (unsigned char) (c1); \
1582 *b++ = (unsigned char) (c2); \
1583 *b++ = (unsigned char) (c3); \
1587 /* Store a jump with opcode OP at LOC to location TO. We store a
1588 relative address offset by the three bytes the jump itself occupies. */
1589 #define STORE_JUMP(op, loc, to) \
1590 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1592 /* Likewise, for a two-argument jump. */
1593 #define STORE_JUMP2(op, loc, to, arg) \
1594 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1596 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1597 #define INSERT_JUMP(op, loc, to) \
1598 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1600 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1601 #define INSERT_JUMP2(op, loc, to, arg) \
1602 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1605 /* This is not an arbitrary limit: the arguments which represent offsets
1606 into the pattern are two bytes long. So if 2^16 bytes turns out to
1607 be too small, many things would have to change. */
1608 /* Any other compiler which, like MSC, has allocation limit below 2^16
1609 bytes will have to use approach similar to what was done below for
1610 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1611 reallocating to 0 bytes. Such thing is not going to work too well.
1612 You have been warned!! */
1613 #if defined _MSC_VER && !defined WIN32
1614 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1615 The REALLOC define eliminates a flurry of conversion warnings,
1616 but is not required. */
1617 # define MAX_BUF_SIZE 65500L
1618 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1620 # define MAX_BUF_SIZE (1L << 16)
1621 # define REALLOC(p,s) realloc ((p), (s))
1624 /* Extend the buffer by twice its current size via realloc and
1625 reset the pointers that pointed into the old block to point to the
1626 correct places in the new one. If extending the buffer results in it
1627 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1628 #define EXTEND_BUFFER() \
1630 unsigned char *old_buffer = bufp->buffer; \
1631 if (bufp->allocated == MAX_BUF_SIZE) \
1633 bufp->allocated <<= 1; \
1634 if (bufp->allocated > MAX_BUF_SIZE) \
1635 bufp->allocated = MAX_BUF_SIZE; \
1636 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1637 if (bufp->buffer == NULL) \
1638 return REG_ESPACE; \
1639 /* If the buffer moved, move all the pointers into it. */ \
1640 if (old_buffer != bufp->buffer) \
1642 b = (b - old_buffer) + bufp->buffer; \
1643 begalt = (begalt - old_buffer) + bufp->buffer; \
1644 if (fixup_alt_jump) \
1645 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1647 laststart = (laststart - old_buffer) + bufp->buffer; \
1648 if (pending_exact) \
1649 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1654 /* Since we have one byte reserved for the register number argument to
1655 {start,stop}_memory, the maximum number of groups we can report
1656 things about is what fits in that byte. */
1657 #define MAX_REGNUM 255
1659 /* But patterns can have more than `MAX_REGNUM' registers. We just
1660 ignore the excess. */
1661 typedef unsigned regnum_t
;
1664 /* Macros for the compile stack. */
1666 /* Since offsets can go either forwards or backwards, this type needs to
1667 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1668 /* int may be not enough when sizeof(int) == 2. */
1669 typedef long pattern_offset_t
;
1673 pattern_offset_t begalt_offset
;
1674 pattern_offset_t fixup_alt_jump
;
1675 pattern_offset_t inner_group_offset
;
1676 pattern_offset_t laststart_offset
;
1678 } compile_stack_elt_t
;
1683 compile_stack_elt_t
*stack
;
1685 unsigned avail
; /* Offset of next open position. */
1686 } compile_stack_type
;
1689 #define INIT_COMPILE_STACK_SIZE 32
1691 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1692 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1694 /* The next available element. */
1695 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1698 /* Set the bit for character C in a list. */
1699 #define SET_LIST_BIT(c) \
1700 (b[((unsigned char) (c)) / BYTEWIDTH] \
1701 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1704 /* Get the next unsigned number in the uncompiled pattern. */
1705 #define GET_UNSIGNED_NUMBER(num) \
1709 while (ISDIGIT (c)) \
1713 num = num * 10 + c - '0'; \
1721 #if defined _LIBC || WIDE_CHAR_SUPPORT
1722 /* The GNU C library provides support for user-defined character classes
1723 and the functions from ISO C amendement 1. */
1724 # ifdef CHARCLASS_NAME_MAX
1725 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1727 /* This shouldn't happen but some implementation might still have this
1728 problem. Use a reasonable default value. */
1729 # define CHAR_CLASS_MAX_LENGTH 256
1733 # define IS_CHAR_CLASS(string) __wctype (string)
1735 # define IS_CHAR_CLASS(string) wctype (string)
1738 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1740 # define IS_CHAR_CLASS(string) \
1741 (STREQ (string, "alpha") || STREQ (string, "upper") \
1742 || STREQ (string, "lower") || STREQ (string, "digit") \
1743 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1744 || STREQ (string, "space") || STREQ (string, "print") \
1745 || STREQ (string, "punct") || STREQ (string, "graph") \
1746 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1749 #ifndef MATCH_MAY_ALLOCATE
1751 /* If we cannot allocate large objects within re_match_2_internal,
1752 we make the fail stack and register vectors global.
1753 The fail stack, we grow to the maximum size when a regexp
1755 The register vectors, we adjust in size each time we
1756 compile a regexp, according to the number of registers it needs. */
1758 static fail_stack_type fail_stack
;
1760 /* Size with which the following vectors are currently allocated.
1761 That is so we can make them bigger as needed,
1762 but never make them smaller. */
1763 static int regs_allocated_size
;
1765 static const char ** regstart
, ** regend
;
1766 static const char ** old_regstart
, ** old_regend
;
1767 static const char **best_regstart
, **best_regend
;
1768 static register_info_type
*reg_info
;
1769 static const char **reg_dummy
;
1770 static register_info_type
*reg_info_dummy
;
1772 /* Make the register vectors big enough for NUM_REGS registers,
1773 but don't make them smaller. */
1776 regex_grow_registers (num_regs
)
1779 if (num_regs
> regs_allocated_size
)
1781 RETALLOC_IF (regstart
, num_regs
, const char *);
1782 RETALLOC_IF (regend
, num_regs
, const char *);
1783 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1784 RETALLOC_IF (old_regend
, num_regs
, const char *);
1785 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1786 RETALLOC_IF (best_regend
, num_regs
, const char *);
1787 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1788 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1789 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1791 regs_allocated_size
= num_regs
;
1795 #endif /* not MATCH_MAY_ALLOCATE */
1797 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1801 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1802 Returns one of error codes defined in `regex.h', or zero for success.
1804 Assumes the `allocated' (and perhaps `buffer') and `translate'
1805 fields are set in BUFP on entry.
1807 If it succeeds, results are put in BUFP (if it returns an error, the
1808 contents of BUFP are undefined):
1809 `buffer' is the compiled pattern;
1810 `syntax' is set to SYNTAX;
1811 `used' is set to the length of the compiled pattern;
1812 `fastmap_accurate' is zero;
1813 `re_nsub' is the number of subexpressions in PATTERN;
1814 `not_bol' and `not_eol' are zero;
1816 The `fastmap' and `newline_anchor' fields are neither
1817 examined nor set. */
1819 /* Return, freeing storage we allocated. */
1820 #define FREE_STACK_RETURN(value) \
1821 return (free (compile_stack.stack), value)
1823 static reg_errcode_t
1824 regex_compile (pattern
, size
, syntax
, bufp
)
1825 const char *pattern
;
1827 reg_syntax_t syntax
;
1828 struct re_pattern_buffer
*bufp
;
1830 /* We fetch characters from PATTERN here. Even though PATTERN is
1831 `char *' (i.e., signed), we declare these variables as unsigned, so
1832 they can be reliably used as array indices. */
1833 register unsigned char c
, c1
;
1835 /* A random temporary spot in PATTERN. */
1838 /* Points to the end of the buffer, where we should append. */
1839 register unsigned char *b
;
1841 /* Keeps track of unclosed groups. */
1842 compile_stack_type compile_stack
;
1844 /* Points to the current (ending) position in the pattern. */
1845 const char *p
= pattern
;
1846 const char *pend
= pattern
+ size
;
1848 /* How to translate the characters in the pattern. */
1849 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1851 /* Address of the count-byte of the most recently inserted `exactn'
1852 command. This makes it possible to tell if a new exact-match
1853 character can be added to that command or if the character requires
1854 a new `exactn' command. */
1855 unsigned char *pending_exact
= 0;
1857 /* Address of start of the most recently finished expression.
1858 This tells, e.g., postfix * where to find the start of its
1859 operand. Reset at the beginning of groups and alternatives. */
1860 unsigned char *laststart
= 0;
1862 /* Address of beginning of regexp, or inside of last group. */
1863 unsigned char *begalt
;
1865 /* Place in the uncompiled pattern (i.e., the {) to
1866 which to go back if the interval is invalid. */
1867 const char *beg_interval
;
1869 /* Address of the place where a forward jump should go to the end of
1870 the containing expression. Each alternative of an `or' -- except the
1871 last -- ends with a forward jump of this sort. */
1872 unsigned char *fixup_alt_jump
= 0;
1874 /* Counts open-groups as they are encountered. Remembered for the
1875 matching close-group on the compile stack, so the same register
1876 number is put in the stop_memory as the start_memory. */
1877 regnum_t regnum
= 0;
1880 DEBUG_PRINT1 ("\nCompiling pattern: ");
1883 unsigned debug_count
;
1885 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1886 putchar (pattern
[debug_count
]);
1891 /* Initialize the compile stack. */
1892 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1893 if (compile_stack
.stack
== NULL
)
1896 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1897 compile_stack
.avail
= 0;
1899 /* Initialize the pattern buffer. */
1900 bufp
->syntax
= syntax
;
1901 bufp
->fastmap_accurate
= 0;
1902 bufp
->not_bol
= bufp
->not_eol
= 0;
1904 /* Set `used' to zero, so that if we return an error, the pattern
1905 printer (for debugging) will think there's no pattern. We reset it
1909 /* Always count groups, whether or not bufp->no_sub is set. */
1912 #if !defined emacs && !defined SYNTAX_TABLE
1913 /* Initialize the syntax table. */
1914 init_syntax_once ();
1917 if (bufp
->allocated
== 0)
1920 { /* If zero allocated, but buffer is non-null, try to realloc
1921 enough space. This loses if buffer's address is bogus, but
1922 that is the user's responsibility. */
1923 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1926 { /* Caller did not allocate a buffer. Do it for them. */
1927 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1929 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1931 bufp
->allocated
= INIT_BUF_SIZE
;
1934 begalt
= b
= bufp
->buffer
;
1936 /* Loop through the uncompiled pattern until we're at the end. */
1945 if ( /* If at start of pattern, it's an operator. */
1947 /* If context independent, it's an operator. */
1948 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1949 /* Otherwise, depends on what's come before. */
1950 || at_begline_loc_p (pattern
, p
, syntax
))
1960 if ( /* If at end of pattern, it's an operator. */
1962 /* If context independent, it's an operator. */
1963 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1964 /* Otherwise, depends on what's next. */
1965 || at_endline_loc_p (p
, pend
, syntax
))
1975 if ((syntax
& RE_BK_PLUS_QM
)
1976 || (syntax
& RE_LIMITED_OPS
))
1980 /* If there is no previous pattern... */
1983 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1984 FREE_STACK_RETURN (REG_BADRPT
);
1985 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1990 /* Are we optimizing this jump? */
1991 boolean keep_string_p
= false;
1993 /* 1 means zero (many) matches is allowed. */
1994 char zero_times_ok
= 0, many_times_ok
= 0;
1996 /* If there is a sequence of repetition chars, collapse it
1997 down to just one (the right one). We can't combine
1998 interval operators with these because of, e.g., `a{2}*',
1999 which should only match an even number of `a's. */
2003 zero_times_ok
|= c
!= '+';
2004 many_times_ok
|= c
!= '?';
2012 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2015 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2017 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2020 if (!(c1
== '+' || c1
== '?'))
2035 /* If we get here, we found another repeat character. */
2038 /* Star, etc. applied to an empty pattern is equivalent
2039 to an empty pattern. */
2043 /* Now we know whether or not zero matches is allowed
2044 and also whether or not two or more matches is allowed. */
2046 { /* More than one repetition is allowed, so put in at the
2047 end a backward relative jump from `b' to before the next
2048 jump we're going to put in below (which jumps from
2049 laststart to after this jump).
2051 But if we are at the `*' in the exact sequence `.*\n',
2052 insert an unconditional jump backwards to the .,
2053 instead of the beginning of the loop. This way we only
2054 push a failure point once, instead of every time
2055 through the loop. */
2056 assert (p
- 1 > pattern
);
2058 /* Allocate the space for the jump. */
2059 GET_BUFFER_SPACE (3);
2061 /* We know we are not at the first character of the pattern,
2062 because laststart was nonzero. And we've already
2063 incremented `p', by the way, to be the character after
2064 the `*'. Do we have to do something analogous here
2065 for null bytes, because of RE_DOT_NOT_NULL? */
2066 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2068 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2069 && !(syntax
& RE_DOT_NEWLINE
))
2070 { /* We have .*\n. */
2071 STORE_JUMP (jump
, b
, laststart
);
2072 keep_string_p
= true;
2075 /* Anything else. */
2076 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
2078 /* We've added more stuff to the buffer. */
2082 /* On failure, jump from laststart to b + 3, which will be the
2083 end of the buffer after this jump is inserted. */
2084 GET_BUFFER_SPACE (3);
2085 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2093 /* At least one repetition is required, so insert a
2094 `dummy_failure_jump' before the initial
2095 `on_failure_jump' instruction of the loop. This
2096 effects a skip over that instruction the first time
2097 we hit that loop. */
2098 GET_BUFFER_SPACE (3);
2099 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
2114 boolean had_char_class
= false;
2116 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2118 /* Ensure that we have enough space to push a charset: the
2119 opcode, the length count, and the bitset; 34 bytes in all. */
2120 GET_BUFFER_SPACE (34);
2124 /* We test `*p == '^' twice, instead of using an if
2125 statement, so we only need one BUF_PUSH. */
2126 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2130 /* Remember the first position in the bracket expression. */
2133 /* Push the number of bytes in the bitmap. */
2134 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2136 /* Clear the whole map. */
2137 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2139 /* charset_not matches newline according to a syntax bit. */
2140 if ((re_opcode_t
) b
[-2] == charset_not
2141 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2142 SET_LIST_BIT ('\n');
2144 /* Read in characters and ranges, setting map bits. */
2147 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2151 /* \ might escape characters inside [...] and [^...]. */
2152 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2154 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2161 /* Could be the end of the bracket expression. If it's
2162 not (i.e., when the bracket expression is `[]' so
2163 far), the ']' character bit gets set way below. */
2164 if (c
== ']' && p
!= p1
+ 1)
2167 /* Look ahead to see if it's a range when the last thing
2168 was a character class. */
2169 if (had_char_class
&& c
== '-' && *p
!= ']')
2170 FREE_STACK_RETURN (REG_ERANGE
);
2172 /* Look ahead to see if it's a range when the last thing
2173 was a character: if this is a hyphen not at the
2174 beginning or the end of a list, then it's the range
2177 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2178 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2182 = compile_range (&p
, pend
, translate
, syntax
, b
);
2183 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2186 else if (p
[0] == '-' && p
[1] != ']')
2187 { /* This handles ranges made up of characters only. */
2190 /* Move past the `-'. */
2193 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2194 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2197 /* See if we're at the beginning of a possible character
2200 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2201 { /* Leave room for the null. */
2202 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2207 /* If pattern is `[[:'. */
2208 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2213 if ((c
== ':' && *p
== ']') || p
== pend
)
2215 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2218 /* This is in any case an invalid class name. */
2223 /* If isn't a word bracketed by `[:' and `:]':
2224 undo the ending character, the letters, and leave
2225 the leading `:' and `[' (but set bits for them). */
2226 if (c
== ':' && *p
== ']')
2228 #if defined _LIBC || WIDE_CHAR_SUPPORT
2229 boolean is_lower
= STREQ (str
, "lower");
2230 boolean is_upper
= STREQ (str
, "upper");
2234 wt
= IS_CHAR_CLASS (str
);
2236 FREE_STACK_RETURN (REG_ECTYPE
);
2238 /* Throw away the ] at the end of the character
2242 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2244 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2247 if (__iswctype (__btowc (ch
), wt
))
2250 if (iswctype (btowc (ch
), wt
))
2254 if (translate
&& (is_upper
|| is_lower
)
2255 && (ISUPPER (ch
) || ISLOWER (ch
)))
2259 had_char_class
= true;
2262 boolean is_alnum
= STREQ (str
, "alnum");
2263 boolean is_alpha
= STREQ (str
, "alpha");
2264 boolean is_blank
= STREQ (str
, "blank");
2265 boolean is_cntrl
= STREQ (str
, "cntrl");
2266 boolean is_digit
= STREQ (str
, "digit");
2267 boolean is_graph
= STREQ (str
, "graph");
2268 boolean is_lower
= STREQ (str
, "lower");
2269 boolean is_print
= STREQ (str
, "print");
2270 boolean is_punct
= STREQ (str
, "punct");
2271 boolean is_space
= STREQ (str
, "space");
2272 boolean is_upper
= STREQ (str
, "upper");
2273 boolean is_xdigit
= STREQ (str
, "xdigit");
2275 if (!IS_CHAR_CLASS (str
))
2276 FREE_STACK_RETURN (REG_ECTYPE
);
2278 /* Throw away the ] at the end of the character
2282 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2284 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2286 /* This was split into 3 if's to
2287 avoid an arbitrary limit in some compiler. */
2288 if ( (is_alnum
&& ISALNUM (ch
))
2289 || (is_alpha
&& ISALPHA (ch
))
2290 || (is_blank
&& ISBLANK (ch
))
2291 || (is_cntrl
&& ISCNTRL (ch
)))
2293 if ( (is_digit
&& ISDIGIT (ch
))
2294 || (is_graph
&& ISGRAPH (ch
))
2295 || (is_lower
&& ISLOWER (ch
))
2296 || (is_print
&& ISPRINT (ch
)))
2298 if ( (is_punct
&& ISPUNCT (ch
))
2299 || (is_space
&& ISSPACE (ch
))
2300 || (is_upper
&& ISUPPER (ch
))
2301 || (is_xdigit
&& ISXDIGIT (ch
)))
2303 if ( translate
&& (is_upper
|| is_lower
)
2304 && (ISUPPER (ch
) || ISLOWER (ch
)))
2307 had_char_class
= true;
2308 #endif /* libc || wctype.h */
2317 had_char_class
= false;
2322 had_char_class
= false;
2327 /* Discard any (non)matching list bytes that are all 0 at the
2328 end of the map. Decrease the map-length byte too. */
2329 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2337 if (syntax
& RE_NO_BK_PARENS
)
2344 if (syntax
& RE_NO_BK_PARENS
)
2351 if (syntax
& RE_NEWLINE_ALT
)
2358 if (syntax
& RE_NO_BK_VBAR
)
2365 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2366 goto handle_interval
;
2372 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2374 /* Do not translate the character after the \, so that we can
2375 distinguish, e.g., \B from \b, even if we normally would
2376 translate, e.g., B to b. */
2382 if (syntax
& RE_NO_BK_PARENS
)
2383 goto normal_backslash
;
2389 if (COMPILE_STACK_FULL
)
2391 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2392 compile_stack_elt_t
);
2393 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2395 compile_stack
.size
<<= 1;
2398 /* These are the values to restore when we hit end of this
2399 group. They are all relative offsets, so that if the
2400 whole pattern moves because of realloc, they will still
2402 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2403 COMPILE_STACK_TOP
.fixup_alt_jump
2404 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2405 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2406 COMPILE_STACK_TOP
.regnum
= regnum
;
2408 /* We will eventually replace the 0 with the number of
2409 groups inner to this one. But do not push a
2410 start_memory for groups beyond the last one we can
2411 represent in the compiled pattern. */
2412 if (regnum
<= MAX_REGNUM
)
2414 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2415 BUF_PUSH_3 (start_memory
, regnum
, 0);
2418 compile_stack
.avail
++;
2423 /* If we've reached MAX_REGNUM groups, then this open
2424 won't actually generate any code, so we'll have to
2425 clear pending_exact explicitly. */
2431 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2433 if (COMPILE_STACK_EMPTY
)
2435 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2436 goto normal_backslash
;
2438 FREE_STACK_RETURN (REG_ERPAREN
);
2443 { /* Push a dummy failure point at the end of the
2444 alternative for a possible future
2445 `pop_failure_jump' to pop. See comments at
2446 `push_dummy_failure' in `re_match_2'. */
2447 BUF_PUSH (push_dummy_failure
);
2449 /* We allocated space for this jump when we assigned
2450 to `fixup_alt_jump', in the `handle_alt' case below. */
2451 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2454 /* See similar code for backslashed left paren above. */
2455 if (COMPILE_STACK_EMPTY
)
2457 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2460 FREE_STACK_RETURN (REG_ERPAREN
);
2463 /* Since we just checked for an empty stack above, this
2464 ``can't happen''. */
2465 assert (compile_stack
.avail
!= 0);
2467 /* We don't just want to restore into `regnum', because
2468 later groups should continue to be numbered higher,
2469 as in `(ab)c(de)' -- the second group is #2. */
2470 regnum_t this_group_regnum
;
2472 compile_stack
.avail
--;
2473 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2475 = COMPILE_STACK_TOP
.fixup_alt_jump
2476 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2478 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2479 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2480 /* If we've reached MAX_REGNUM groups, then this open
2481 won't actually generate any code, so we'll have to
2482 clear pending_exact explicitly. */
2485 /* We're at the end of the group, so now we know how many
2486 groups were inside this one. */
2487 if (this_group_regnum
<= MAX_REGNUM
)
2489 unsigned char *inner_group_loc
2490 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2492 *inner_group_loc
= regnum
- this_group_regnum
;
2493 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2494 regnum
- this_group_regnum
);
2500 case '|': /* `\|'. */
2501 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2502 goto normal_backslash
;
2504 if (syntax
& RE_LIMITED_OPS
)
2507 /* Insert before the previous alternative a jump which
2508 jumps to this alternative if the former fails. */
2509 GET_BUFFER_SPACE (3);
2510 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2514 /* The alternative before this one has a jump after it
2515 which gets executed if it gets matched. Adjust that
2516 jump so it will jump to this alternative's analogous
2517 jump (put in below, which in turn will jump to the next
2518 (if any) alternative's such jump, etc.). The last such
2519 jump jumps to the correct final destination. A picture:
2525 If we are at `b', then fixup_alt_jump right now points to a
2526 three-byte space after `a'. We'll put in the jump, set
2527 fixup_alt_jump to right after `b', and leave behind three
2528 bytes which we'll fill in when we get to after `c'. */
2531 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2533 /* Mark and leave space for a jump after this alternative,
2534 to be filled in later either by next alternative or
2535 when know we're at the end of a series of alternatives. */
2537 GET_BUFFER_SPACE (3);
2546 /* If \{ is a literal. */
2547 if (!(syntax
& RE_INTERVALS
)
2548 /* If we're at `\{' and it's not the open-interval
2550 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2551 || (p
- 2 == pattern
&& p
== pend
))
2552 goto normal_backslash
;
2556 /* If got here, then the syntax allows intervals. */
2558 /* At least (most) this many matches must be made. */
2559 int lower_bound
= -1, upper_bound
= -1;
2561 beg_interval
= p
- 1;
2565 if (syntax
& RE_NO_BK_BRACES
)
2566 goto unfetch_interval
;
2568 FREE_STACK_RETURN (REG_EBRACE
);
2571 GET_UNSIGNED_NUMBER (lower_bound
);
2575 GET_UNSIGNED_NUMBER (upper_bound
);
2576 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2579 /* Interval such as `{1}' => match exactly once. */
2580 upper_bound
= lower_bound
;
2582 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2583 || lower_bound
> upper_bound
)
2585 if (syntax
& RE_NO_BK_BRACES
)
2586 goto unfetch_interval
;
2588 FREE_STACK_RETURN (REG_BADBR
);
2591 if (!(syntax
& RE_NO_BK_BRACES
))
2593 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2600 if (syntax
& RE_NO_BK_BRACES
)
2601 goto unfetch_interval
;
2603 FREE_STACK_RETURN (REG_BADBR
);
2606 /* We just parsed a valid interval. */
2608 /* If it's invalid to have no preceding re. */
2611 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2612 FREE_STACK_RETURN (REG_BADRPT
);
2613 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2616 goto unfetch_interval
;
2619 /* If the upper bound is zero, don't want to succeed at
2620 all; jump from `laststart' to `b + 3', which will be
2621 the end of the buffer after we insert the jump. */
2622 if (upper_bound
== 0)
2624 GET_BUFFER_SPACE (3);
2625 INSERT_JUMP (jump
, laststart
, b
+ 3);
2629 /* Otherwise, we have a nontrivial interval. When
2630 we're all done, the pattern will look like:
2631 set_number_at <jump count> <upper bound>
2632 set_number_at <succeed_n count> <lower bound>
2633 succeed_n <after jump addr> <succeed_n count>
2635 jump_n <succeed_n addr> <jump count>
2636 (The upper bound and `jump_n' are omitted if
2637 `upper_bound' is 1, though.) */
2639 { /* If the upper bound is > 1, we need to insert
2640 more at the end of the loop. */
2641 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2643 GET_BUFFER_SPACE (nbytes
);
2645 /* Initialize lower bound of the `succeed_n', even
2646 though it will be set during matching by its
2647 attendant `set_number_at' (inserted next),
2648 because `re_compile_fastmap' needs to know.
2649 Jump to the `jump_n' we might insert below. */
2650 INSERT_JUMP2 (succeed_n
, laststart
,
2651 b
+ 5 + (upper_bound
> 1) * 5,
2655 /* Code to initialize the lower bound. Insert
2656 before the `succeed_n'. The `5' is the last two
2657 bytes of this `set_number_at', plus 3 bytes of
2658 the following `succeed_n'. */
2659 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2662 if (upper_bound
> 1)
2663 { /* More than one repetition is allowed, so
2664 append a backward jump to the `succeed_n'
2665 that starts this interval.
2667 When we've reached this during matching,
2668 we'll have matched the interval once, so
2669 jump back only `upper_bound - 1' times. */
2670 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2674 /* The location we want to set is the second
2675 parameter of the `jump_n'; that is `b-2' as
2676 an absolute address. `laststart' will be
2677 the `set_number_at' we're about to insert;
2678 `laststart+3' the number to set, the source
2679 for the relative address. But we are
2680 inserting into the middle of the pattern --
2681 so everything is getting moved up by 5.
2682 Conclusion: (b - 2) - (laststart + 3) + 5,
2683 i.e., b - laststart.
2685 We insert this at the beginning of the loop
2686 so that if we fail during matching, we'll
2687 reinitialize the bounds. */
2688 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2689 upper_bound
- 1, b
);
2694 beg_interval
= NULL
;
2699 /* If an invalid interval, match the characters as literals. */
2700 assert (beg_interval
);
2702 beg_interval
= NULL
;
2704 /* normal_char and normal_backslash need `c'. */
2707 if (!(syntax
& RE_NO_BK_BRACES
))
2709 if (p
> pattern
&& p
[-1] == '\\')
2710 goto normal_backslash
;
2715 /* There is no way to specify the before_dot and after_dot
2716 operators. rms says this is ok. --karl */
2724 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2730 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2736 if (syntax
& RE_NO_GNU_OPS
)
2739 BUF_PUSH (wordchar
);
2744 if (syntax
& RE_NO_GNU_OPS
)
2747 BUF_PUSH (notwordchar
);
2752 if (syntax
& RE_NO_GNU_OPS
)
2758 if (syntax
& RE_NO_GNU_OPS
)
2764 if (syntax
& RE_NO_GNU_OPS
)
2766 BUF_PUSH (wordbound
);
2770 if (syntax
& RE_NO_GNU_OPS
)
2772 BUF_PUSH (notwordbound
);
2776 if (syntax
& RE_NO_GNU_OPS
)
2782 if (syntax
& RE_NO_GNU_OPS
)
2787 case '1': case '2': case '3': case '4': case '5':
2788 case '6': case '7': case '8': case '9':
2789 if (syntax
& RE_NO_BK_REFS
)
2795 FREE_STACK_RETURN (REG_ESUBREG
);
2797 /* Can't back reference to a subexpression if inside of it. */
2798 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
2802 BUF_PUSH_2 (duplicate
, c1
);
2808 if (syntax
& RE_BK_PLUS_QM
)
2811 goto normal_backslash
;
2815 /* You might think it would be useful for \ to mean
2816 not to translate; but if we don't translate it
2817 it will never match anything. */
2825 /* Expects the character in `c'. */
2827 /* If no exactn currently being built. */
2830 /* If last exactn not at current position. */
2831 || pending_exact
+ *pending_exact
+ 1 != b
2833 /* We have only one byte following the exactn for the count. */
2834 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2836 /* If followed by a repetition operator. */
2837 || *p
== '*' || *p
== '^'
2838 || ((syntax
& RE_BK_PLUS_QM
)
2839 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2840 : (*p
== '+' || *p
== '?'))
2841 || ((syntax
& RE_INTERVALS
)
2842 && ((syntax
& RE_NO_BK_BRACES
)
2844 : (p
[0] == '\\' && p
[1] == '{'))))
2846 /* Start building a new exactn. */
2850 BUF_PUSH_2 (exactn
, 0);
2851 pending_exact
= b
- 1;
2858 } /* while p != pend */
2861 /* Through the pattern now. */
2864 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2866 if (!COMPILE_STACK_EMPTY
)
2867 FREE_STACK_RETURN (REG_EPAREN
);
2869 /* If we don't want backtracking, force success
2870 the first time we reach the end of the compiled pattern. */
2871 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2874 free (compile_stack
.stack
);
2876 /* We have succeeded; set the length of the buffer. */
2877 bufp
->used
= b
- bufp
->buffer
;
2882 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2883 print_compiled_pattern (bufp
);
2887 #ifndef MATCH_MAY_ALLOCATE
2888 /* Initialize the failure stack to the largest possible stack. This
2889 isn't necessary unless we're trying to avoid calling alloca in
2890 the search and match routines. */
2892 int num_regs
= bufp
->re_nsub
+ 1;
2894 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2895 is strictly greater than re_max_failures, the largest possible stack
2896 is 2 * re_max_failures failure points. */
2897 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2899 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2902 if (! fail_stack
.stack
)
2904 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2905 * sizeof (fail_stack_elt_t
));
2908 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2910 * sizeof (fail_stack_elt_t
)));
2911 # else /* not emacs */
2912 if (! fail_stack
.stack
)
2914 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2915 * sizeof (fail_stack_elt_t
));
2918 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2920 * sizeof (fail_stack_elt_t
)));
2921 # endif /* not emacs */
2924 regex_grow_registers (num_regs
);
2926 #endif /* not MATCH_MAY_ALLOCATE */
2929 } /* regex_compile */
2931 /* Subroutines for `regex_compile'. */
2933 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2936 store_op1 (op
, loc
, arg
)
2941 *loc
= (unsigned char) op
;
2942 STORE_NUMBER (loc
+ 1, arg
);
2946 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2949 store_op2 (op
, loc
, arg1
, arg2
)
2954 *loc
= (unsigned char) op
;
2955 STORE_NUMBER (loc
+ 1, arg1
);
2956 STORE_NUMBER (loc
+ 3, arg2
);
2960 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2961 for OP followed by two-byte integer parameter ARG. */
2964 insert_op1 (op
, loc
, arg
, end
)
2970 register unsigned char *pfrom
= end
;
2971 register unsigned char *pto
= end
+ 3;
2973 while (pfrom
!= loc
)
2976 store_op1 (op
, loc
, arg
);
2980 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2983 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2989 register unsigned char *pfrom
= end
;
2990 register unsigned char *pto
= end
+ 5;
2992 while (pfrom
!= loc
)
2995 store_op2 (op
, loc
, arg1
, arg2
);
2999 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3000 after an alternative or a begin-subexpression. We assume there is at
3001 least one character before the ^. */
3004 at_begline_loc_p (pattern
, p
, syntax
)
3005 const char *pattern
, *p
;
3006 reg_syntax_t syntax
;
3008 const char *prev
= p
- 2;
3009 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3012 /* After a subexpression? */
3013 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3014 /* After an alternative? */
3015 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
3019 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3020 at least one character after the $, i.e., `P < PEND'. */
3023 at_endline_loc_p (p
, pend
, syntax
)
3024 const char *p
, *pend
;
3025 reg_syntax_t syntax
;
3027 const char *next
= p
;
3028 boolean next_backslash
= *next
== '\\';
3029 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3032 /* Before a subexpression? */
3033 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3034 : next_backslash
&& next_next
&& *next_next
== ')')
3035 /* Before an alternative? */
3036 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3037 : next_backslash
&& next_next
&& *next_next
== '|');
3041 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3042 false if it's not. */
3045 group_in_compile_stack (compile_stack
, regnum
)
3046 compile_stack_type compile_stack
;
3051 for (this_element
= compile_stack
.avail
- 1;
3054 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3061 /* Read the ending character of a range (in a bracket expression) from the
3062 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3063 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3064 Then we set the translation of all bits between the starting and
3065 ending characters (inclusive) in the compiled pattern B.
3067 Return an error code.
3069 We use these short variable names so we can use the same macros as
3070 `regex_compile' itself. */
3072 static reg_errcode_t
3073 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
3074 const char **p_ptr
, *pend
;
3075 RE_TRANSLATE_TYPE translate
;
3076 reg_syntax_t syntax
;
3081 const char *p
= *p_ptr
;
3082 unsigned int range_start
, range_end
;
3087 /* Even though the pattern is a signed `char *', we need to fetch
3088 with unsigned char *'s; if the high bit of the pattern character
3089 is set, the range endpoints will be negative if we fetch using a
3092 We also want to fetch the endpoints without translating them; the
3093 appropriate translation is done in the bit-setting loop below. */
3094 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3095 range_start
= ((const unsigned char *) p
)[-2];
3096 range_end
= ((const unsigned char *) p
)[0];
3098 /* Have to increment the pointer into the pattern string, so the
3099 caller isn't still at the ending character. */
3102 /* If the start is after the end, the range is empty. */
3103 if (range_start
> range_end
)
3104 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
3106 /* Here we see why `this_char' has to be larger than an `unsigned
3107 char' -- the range is inclusive, so if `range_end' == 0xff
3108 (assuming 8-bit characters), we would otherwise go into an infinite
3109 loop, since all characters <= 0xff. */
3110 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
3112 SET_LIST_BIT (TRANSLATE (this_char
));
3118 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3119 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3120 characters can start a string that matches the pattern. This fastmap
3121 is used by re_search to skip quickly over impossible starting points.
3123 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3124 area as BUFP->fastmap.
3126 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3129 Returns 0 if we succeed, -2 if an internal error. */
3132 re_compile_fastmap (bufp
)
3133 struct re_pattern_buffer
*bufp
;
3136 #ifdef MATCH_MAY_ALLOCATE
3137 fail_stack_type fail_stack
;
3139 #ifndef REGEX_MALLOC
3143 register char *fastmap
= bufp
->fastmap
;
3144 unsigned char *pattern
= bufp
->buffer
;
3145 unsigned char *p
= pattern
;
3146 register unsigned char *pend
= pattern
+ bufp
->used
;
3149 /* This holds the pointer to the failure stack, when
3150 it is allocated relocatably. */
3151 fail_stack_elt_t
*failure_stack_ptr
;
3154 /* Assume that each path through the pattern can be null until
3155 proven otherwise. We set this false at the bottom of switch
3156 statement, to which we get only if a particular path doesn't
3157 match the empty string. */
3158 boolean path_can_be_null
= true;
3160 /* We aren't doing a `succeed_n' to begin with. */
3161 boolean succeed_n_p
= false;
3163 assert (fastmap
!= NULL
&& p
!= NULL
);
3166 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3167 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3168 bufp
->can_be_null
= 0;
3172 if (p
== pend
|| *p
== succeed
)
3174 /* We have reached the (effective) end of pattern. */
3175 if (!FAIL_STACK_EMPTY ())
3177 bufp
->can_be_null
|= path_can_be_null
;
3179 /* Reset for next path. */
3180 path_can_be_null
= true;
3182 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
3190 /* We should never be about to go beyond the end of the pattern. */
3193 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3196 /* I guess the idea here is to simply not bother with a fastmap
3197 if a backreference is used, since it's too hard to figure out
3198 the fastmap for the corresponding group. Setting
3199 `can_be_null' stops `re_search_2' from using the fastmap, so
3200 that is all we do. */
3202 bufp
->can_be_null
= 1;
3206 /* Following are the cases which match a character. These end
3215 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3216 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3222 /* Chars beyond end of map must be allowed. */
3223 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3226 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3227 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3233 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3234 if (SYNTAX (j
) == Sword
)
3240 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3241 if (SYNTAX (j
) != Sword
)
3248 int fastmap_newline
= fastmap
['\n'];
3250 /* `.' matches anything ... */
3251 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3254 /* ... except perhaps newline. */
3255 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3256 fastmap
['\n'] = fastmap_newline
;
3258 /* Return if we have already set `can_be_null'; if we have,
3259 then the fastmap is irrelevant. Something's wrong here. */
3260 else if (bufp
->can_be_null
)
3263 /* Otherwise, have to check alternative paths. */
3270 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3271 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3278 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3279 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3284 /* All cases after this match the empty string. These end with
3304 case push_dummy_failure
:
3309 case pop_failure_jump
:
3310 case maybe_pop_jump
:
3313 case dummy_failure_jump
:
3314 EXTRACT_NUMBER_AND_INCR (j
, p
);
3319 /* Jump backward implies we just went through the body of a
3320 loop and matched nothing. Opcode jumped to should be
3321 `on_failure_jump' or `succeed_n'. Just treat it like an
3322 ordinary jump. For a * loop, it has pushed its failure
3323 point already; if so, discard that as redundant. */
3324 if ((re_opcode_t
) *p
!= on_failure_jump
3325 && (re_opcode_t
) *p
!= succeed_n
)
3329 EXTRACT_NUMBER_AND_INCR (j
, p
);
3332 /* If what's on the stack is where we are now, pop it. */
3333 if (!FAIL_STACK_EMPTY ()
3334 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3340 case on_failure_jump
:
3341 case on_failure_keep_string_jump
:
3342 handle_on_failure_jump
:
3343 EXTRACT_NUMBER_AND_INCR (j
, p
);
3345 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3346 end of the pattern. We don't want to push such a point,
3347 since when we restore it above, entering the switch will
3348 increment `p' past the end of the pattern. We don't need
3349 to push such a point since we obviously won't find any more
3350 fastmap entries beyond `pend'. Such a pattern can match
3351 the null string, though. */
3354 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3356 RESET_FAIL_STACK ();
3361 bufp
->can_be_null
= 1;
3365 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3366 succeed_n_p
= false;
3373 /* Get to the number of times to succeed. */
3376 /* Increment p past the n for when k != 0. */
3377 EXTRACT_NUMBER_AND_INCR (k
, p
);
3381 succeed_n_p
= true; /* Spaghetti code alert. */
3382 goto handle_on_failure_jump
;
3399 abort (); /* We have listed all the cases. */
3402 /* Getting here means we have found the possible starting
3403 characters for one path of the pattern -- and that the empty
3404 string does not match. We need not follow this path further.
3405 Instead, look at the next alternative (remembered on the
3406 stack), or quit if no more. The test at the top of the loop
3407 does these things. */
3408 path_can_be_null
= false;
3412 /* Set `can_be_null' for the last path (also the first path, if the
3413 pattern is empty). */
3414 bufp
->can_be_null
|= path_can_be_null
;
3417 RESET_FAIL_STACK ();
3419 } /* re_compile_fastmap */
3421 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
3424 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3425 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3426 this memory for recording register information. STARTS and ENDS
3427 must be allocated using the malloc library routine, and must each
3428 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3430 If NUM_REGS == 0, then subsequent matches should allocate their own
3433 Unless this function is called, the first search or match using
3434 PATTERN_BUFFER will allocate its own register data, without
3435 freeing the old data. */
3438 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3439 struct re_pattern_buffer
*bufp
;
3440 struct re_registers
*regs
;
3442 regoff_t
*starts
, *ends
;
3446 bufp
->regs_allocated
= REGS_REALLOCATE
;
3447 regs
->num_regs
= num_regs
;
3448 regs
->start
= starts
;
3453 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3455 regs
->start
= regs
->end
= (regoff_t
*) 0;
3459 weak_alias (__re_set_registers
, re_set_registers
)
3462 /* Searching routines. */
3464 /* Like re_search_2, below, but only one string is specified, and
3465 doesn't let you say where to stop matching. */
3468 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3469 struct re_pattern_buffer
*bufp
;
3471 int size
, startpos
, range
;
3472 struct re_registers
*regs
;
3474 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3478 weak_alias (__re_search
, re_search
)
3482 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3483 virtual concatenation of STRING1 and STRING2, starting first at index
3484 STARTPOS, then at STARTPOS + 1, and so on.
3486 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3488 RANGE is how far to scan while trying to match. RANGE = 0 means try
3489 only at STARTPOS; in general, the last start tried is STARTPOS +
3492 In REGS, return the indices of the virtual concatenation of STRING1
3493 and STRING2 that matched the entire BUFP->buffer and its contained
3496 Do not consider matching one past the index STOP in the virtual
3497 concatenation of STRING1 and STRING2.
3499 We return either the position in the strings at which the match was
3500 found, -1 if no match, or -2 if error (such as failure
3504 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3505 struct re_pattern_buffer
*bufp
;
3506 const char *string1
, *string2
;
3510 struct re_registers
*regs
;
3514 register char *fastmap
= bufp
->fastmap
;
3515 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3516 int total_size
= size1
+ size2
;
3517 int endpos
= startpos
+ range
;
3519 /* Check for out-of-range STARTPOS. */
3520 if (startpos
< 0 || startpos
> total_size
)
3523 /* Fix up RANGE if it might eventually take us outside
3524 the virtual concatenation of STRING1 and STRING2.
3525 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3527 range
= 0 - startpos
;
3528 else if (endpos
> total_size
)
3529 range
= total_size
- startpos
;
3531 /* If the search isn't to be a backwards one, don't waste time in a
3532 search for a pattern that must be anchored. */
3533 if (bufp
->used
> 0 && range
> 0
3534 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
3535 /* `begline' is like `begbuf' if it cannot match at newlines. */
3536 || ((re_opcode_t
) bufp
->buffer
[0] == begline
3537 && !bufp
->newline_anchor
)))
3546 /* In a forward search for something that starts with \=.
3547 don't keep searching past point. */
3548 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3550 range
= PT
- startpos
;
3556 /* Update the fastmap now if not correct already. */
3557 if (fastmap
&& !bufp
->fastmap_accurate
)
3558 if (re_compile_fastmap (bufp
) == -2)
3561 /* Loop through the string, looking for a place to start matching. */
3564 /* If a fastmap is supplied, skip quickly over characters that
3565 cannot be the start of a match. If the pattern can match the
3566 null string, however, we don't need to skip characters; we want
3567 the first null string. */
3568 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3570 if (range
> 0) /* Searching forwards. */
3572 register const char *d
;
3573 register int lim
= 0;
3576 if (startpos
< size1
&& startpos
+ range
>= size1
)
3577 lim
= range
- (size1
- startpos
);
3579 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3581 /* Written out as an if-else to avoid testing `translate'
3585 && !fastmap
[(unsigned char)
3586 translate
[(unsigned char) *d
++]])
3589 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3592 startpos
+= irange
- range
;
3594 else /* Searching backwards. */
3596 register char c
= (size1
== 0 || startpos
>= size1
3597 ? string2
[startpos
- size1
]
3598 : string1
[startpos
]);
3600 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3605 /* If can't match the null string, and that's all we have left, fail. */
3606 if (range
>= 0 && startpos
== total_size
&& fastmap
3607 && !bufp
->can_be_null
)
3610 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3611 startpos
, regs
, stop
);
3612 #ifndef REGEX_MALLOC
3641 weak_alias (__re_search_2
, re_search_2
)
3644 /* This converts PTR, a pointer into one of the search strings `string1'
3645 and `string2' into an offset from the beginning of that string. */
3646 #define POINTER_TO_OFFSET(ptr) \
3647 (FIRST_STRING_P (ptr) \
3648 ? ((regoff_t) ((ptr) - string1)) \
3649 : ((regoff_t) ((ptr) - string2 + size1)))
3651 /* Macros for dealing with the split strings in re_match_2. */
3653 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3655 /* Call before fetching a character with *d. This switches over to
3656 string2 if necessary. */
3657 #define PREFETCH() \
3660 /* End of string2 => fail. */ \
3661 if (dend == end_match_2) \
3663 /* End of string1 => advance to string2. */ \
3665 dend = end_match_2; \
3669 /* Test if at very beginning or at very end of the virtual concatenation
3670 of `string1' and `string2'. If only one string, it's `string2'. */
3671 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3672 #define AT_STRINGS_END(d) ((d) == end2)
3675 /* Test if D points to a character which is word-constituent. We have
3676 two special cases to check for: if past the end of string1, look at
3677 the first character in string2; and if before the beginning of
3678 string2, look at the last character in string1. */
3679 #define WORDCHAR_P(d) \
3680 (SYNTAX ((d) == end1 ? *string2 \
3681 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3684 /* Disabled due to a compiler bug -- see comment at case wordbound */
3686 /* Test if the character before D and the one at D differ with respect
3687 to being word-constituent. */
3688 #define AT_WORD_BOUNDARY(d) \
3689 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3690 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3693 /* Free everything we malloc. */
3694 #ifdef MATCH_MAY_ALLOCATE
3695 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3696 # define FREE_VARIABLES() \
3698 REGEX_FREE_STACK (fail_stack.stack); \
3699 FREE_VAR (regstart); \
3700 FREE_VAR (regend); \
3701 FREE_VAR (old_regstart); \
3702 FREE_VAR (old_regend); \
3703 FREE_VAR (best_regstart); \
3704 FREE_VAR (best_regend); \
3705 FREE_VAR (reg_info); \
3706 FREE_VAR (reg_dummy); \
3707 FREE_VAR (reg_info_dummy); \
3710 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3711 #endif /* not MATCH_MAY_ALLOCATE */
3713 /* These values must meet several constraints. They must not be valid
3714 register values; since we have a limit of 255 registers (because
3715 we use only one byte in the pattern for the register number), we can
3716 use numbers larger than 255. They must differ by 1, because of
3717 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3718 be larger than the value for the highest register, so we do not try
3719 to actually save any registers when none are active. */
3720 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3721 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3723 /* Matching routines. */
3725 #ifndef emacs /* Emacs never uses this. */
3726 /* re_match is like re_match_2 except it takes only a single string. */
3729 re_match (bufp
, string
, size
, pos
, regs
)
3730 struct re_pattern_buffer
*bufp
;
3733 struct re_registers
*regs
;
3735 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3737 # ifndef REGEX_MALLOC
3745 weak_alias (__re_match
, re_match
)
3747 #endif /* not emacs */
3749 static boolean group_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3751 register_info_type
*reg_info
));
3752 static boolean alt_match_null_string_p
_RE_ARGS ((unsigned char *p
,
3754 register_info_type
*reg_info
));
3755 static boolean common_op_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3757 register_info_type
*reg_info
));
3758 static int bcmp_translate
_RE_ARGS ((const char *s1
, const char *s2
,
3759 int len
, char *translate
));
3761 /* re_match_2 matches the compiled pattern in BUFP against the
3762 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3763 and SIZE2, respectively). We start matching at POS, and stop
3766 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3767 store offsets for the substring each group matched in REGS. See the
3768 documentation for exactly how many groups we fill.
3770 We return -1 if no match, -2 if an internal error (such as the
3771 failure stack overflowing). Otherwise, we return the length of the
3772 matched substring. */
3775 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3776 struct re_pattern_buffer
*bufp
;
3777 const char *string1
, *string2
;
3780 struct re_registers
*regs
;
3783 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3785 #ifndef REGEX_MALLOC
3793 weak_alias (__re_match_2
, re_match_2
)
3796 /* This is a separate function so that we can force an alloca cleanup
3799 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3800 struct re_pattern_buffer
*bufp
;
3801 const char *string1
, *string2
;
3804 struct re_registers
*regs
;
3807 /* General temporaries. */
3811 /* Just past the end of the corresponding string. */
3812 const char *end1
, *end2
;
3814 /* Pointers into string1 and string2, just past the last characters in
3815 each to consider matching. */
3816 const char *end_match_1
, *end_match_2
;
3818 /* Where we are in the data, and the end of the current string. */
3819 const char *d
, *dend
;
3821 /* Where we are in the pattern, and the end of the pattern. */
3822 unsigned char *p
= bufp
->buffer
;
3823 register unsigned char *pend
= p
+ bufp
->used
;
3825 /* Mark the opcode just after a start_memory, so we can test for an
3826 empty subpattern when we get to the stop_memory. */
3827 unsigned char *just_past_start_mem
= 0;
3829 /* We use this to map every character in the string. */
3830 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3832 /* Failure point stack. Each place that can handle a failure further
3833 down the line pushes a failure point on this stack. It consists of
3834 restart, regend, and reg_info for all registers corresponding to
3835 the subexpressions we're currently inside, plus the number of such
3836 registers, and, finally, two char *'s. The first char * is where
3837 to resume scanning the pattern; the second one is where to resume
3838 scanning the strings. If the latter is zero, the failure point is
3839 a ``dummy''; if a failure happens and the failure point is a dummy,
3840 it gets discarded and the next next one is tried. */
3841 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3842 fail_stack_type fail_stack
;
3845 static unsigned failure_id
= 0;
3846 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3850 /* This holds the pointer to the failure stack, when
3851 it is allocated relocatably. */
3852 fail_stack_elt_t
*failure_stack_ptr
;
3855 /* We fill all the registers internally, independent of what we
3856 return, for use in backreferences. The number here includes
3857 an element for register zero. */
3858 size_t num_regs
= bufp
->re_nsub
+ 1;
3860 /* The currently active registers. */
3861 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3862 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3864 /* Information on the contents of registers. These are pointers into
3865 the input strings; they record just what was matched (on this
3866 attempt) by a subexpression part of the pattern, that is, the
3867 regnum-th regstart pointer points to where in the pattern we began
3868 matching and the regnum-th regend points to right after where we
3869 stopped matching the regnum-th subexpression. (The zeroth register
3870 keeps track of what the whole pattern matches.) */
3871 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3872 const char **regstart
, **regend
;
3875 /* If a group that's operated upon by a repetition operator fails to
3876 match anything, then the register for its start will need to be
3877 restored because it will have been set to wherever in the string we
3878 are when we last see its open-group operator. Similarly for a
3880 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3881 const char **old_regstart
, **old_regend
;
3884 /* The is_active field of reg_info helps us keep track of which (possibly
3885 nested) subexpressions we are currently in. The matched_something
3886 field of reg_info[reg_num] helps us tell whether or not we have
3887 matched any of the pattern so far this time through the reg_num-th
3888 subexpression. These two fields get reset each time through any
3889 loop their register is in. */
3890 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3891 register_info_type
*reg_info
;
3894 /* The following record the register info as found in the above
3895 variables when we find a match better than any we've seen before.
3896 This happens as we backtrack through the failure points, which in
3897 turn happens only if we have not yet matched the entire string. */
3898 unsigned best_regs_set
= false;
3899 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3900 const char **best_regstart
, **best_regend
;
3903 /* Logically, this is `best_regend[0]'. But we don't want to have to
3904 allocate space for that if we're not allocating space for anything
3905 else (see below). Also, we never need info about register 0 for
3906 any of the other register vectors, and it seems rather a kludge to
3907 treat `best_regend' differently than the rest. So we keep track of
3908 the end of the best match so far in a separate variable. We
3909 initialize this to NULL so that when we backtrack the first time
3910 and need to test it, it's not garbage. */
3911 const char *match_end
= NULL
;
3913 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3914 int set_regs_matched_done
= 0;
3916 /* Used when we pop values we don't care about. */
3917 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3918 const char **reg_dummy
;
3919 register_info_type
*reg_info_dummy
;
3923 /* Counts the total number of registers pushed. */
3924 unsigned num_regs_pushed
= 0;
3927 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3931 #ifdef MATCH_MAY_ALLOCATE
3932 /* Do not bother to initialize all the register variables if there are
3933 no groups in the pattern, as it takes a fair amount of time. If
3934 there are groups, we include space for register 0 (the whole
3935 pattern), even though we never use it, since it simplifies the
3936 array indexing. We should fix this. */
3939 regstart
= REGEX_TALLOC (num_regs
, const char *);
3940 regend
= REGEX_TALLOC (num_regs
, const char *);
3941 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3942 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3943 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3944 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3945 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3946 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3947 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3949 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3950 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3958 /* We must initialize all our variables to NULL, so that
3959 `FREE_VARIABLES' doesn't try to free them. */
3960 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3961 = best_regend
= reg_dummy
= NULL
;
3962 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3964 #endif /* MATCH_MAY_ALLOCATE */
3966 /* The starting position is bogus. */
3967 if (pos
< 0 || pos
> size1
+ size2
)
3973 /* Initialize subexpression text positions to -1 to mark ones that no
3974 start_memory/stop_memory has been seen for. Also initialize the
3975 register information struct. */
3976 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
3978 regstart
[mcnt
] = regend
[mcnt
]
3979 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3981 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3982 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3983 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3984 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3987 /* We move `string1' into `string2' if the latter's empty -- but not if
3988 `string1' is null. */
3989 if (size2
== 0 && string1
!= NULL
)
3996 end1
= string1
+ size1
;
3997 end2
= string2
+ size2
;
3999 /* Compute where to stop matching, within the two strings. */
4002 end_match_1
= string1
+ stop
;
4003 end_match_2
= string2
;
4008 end_match_2
= string2
+ stop
- size1
;
4011 /* `p' scans through the pattern as `d' scans through the data.
4012 `dend' is the end of the input string that `d' points within. `d'
4013 is advanced into the following input string whenever necessary, but
4014 this happens before fetching; therefore, at the beginning of the
4015 loop, `d' can be pointing at the end of a string, but it cannot
4017 if (size1
> 0 && pos
<= size1
)
4024 d
= string2
+ pos
- size1
;
4028 DEBUG_PRINT1 ("The compiled pattern is:\n");
4029 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4030 DEBUG_PRINT1 ("The string to match is: `");
4031 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4032 DEBUG_PRINT1 ("'\n");
4034 /* This loops over pattern commands. It exits by returning from the
4035 function if the match is complete, or it drops through if the match
4036 fails at this starting point in the input data. */
4040 DEBUG_PRINT2 ("\n%p: ", p
);
4042 DEBUG_PRINT2 ("\n0x%x: ", p
);
4046 { /* End of pattern means we might have succeeded. */
4047 DEBUG_PRINT1 ("end of pattern ... ");
4049 /* If we haven't matched the entire string, and we want the
4050 longest match, try backtracking. */
4051 if (d
!= end_match_2
)
4053 /* 1 if this match ends in the same string (string1 or string2)
4054 as the best previous match. */
4055 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4056 == MATCHING_IN_FIRST_STRING
);
4057 /* 1 if this match is the best seen so far. */
4058 boolean best_match_p
;
4060 /* AIX compiler got confused when this was combined
4061 with the previous declaration. */
4063 best_match_p
= d
> match_end
;
4065 best_match_p
= !MATCHING_IN_FIRST_STRING
;
4067 DEBUG_PRINT1 ("backtracking.\n");
4069 if (!FAIL_STACK_EMPTY ())
4070 { /* More failure points to try. */
4072 /* If exceeds best match so far, save it. */
4073 if (!best_regs_set
|| best_match_p
)
4075 best_regs_set
= true;
4078 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4080 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4082 best_regstart
[mcnt
] = regstart
[mcnt
];
4083 best_regend
[mcnt
] = regend
[mcnt
];
4089 /* If no failure points, don't restore garbage. And if
4090 last match is real best match, don't restore second
4092 else if (best_regs_set
&& !best_match_p
)
4095 /* Restore best match. It may happen that `dend ==
4096 end_match_1' while the restored d is in string2.
4097 For example, the pattern `x.*y.*z' against the
4098 strings `x-' and `y-z-', if the two strings are
4099 not consecutive in memory. */
4100 DEBUG_PRINT1 ("Restoring best registers.\n");
4103 dend
= ((d
>= string1
&& d
<= end1
)
4104 ? end_match_1
: end_match_2
);
4106 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4108 regstart
[mcnt
] = best_regstart
[mcnt
];
4109 regend
[mcnt
] = best_regend
[mcnt
];
4112 } /* d != end_match_2 */
4115 DEBUG_PRINT1 ("Accepting match.\n");
4117 /* If caller wants register contents data back, do it. */
4118 if (regs
&& !bufp
->no_sub
)
4120 /* Have the register data arrays been allocated? */
4121 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4122 { /* No. So allocate them with malloc. We need one
4123 extra element beyond `num_regs' for the `-1' marker
4125 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4126 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4127 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4128 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4133 bufp
->regs_allocated
= REGS_REALLOCATE
;
4135 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4136 { /* Yes. If we need more elements than were already
4137 allocated, reallocate them. If we need fewer, just
4139 if (regs
->num_regs
< num_regs
+ 1)
4141 regs
->num_regs
= num_regs
+ 1;
4142 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4143 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4144 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4153 /* These braces fend off a "empty body in an else-statement"
4154 warning under GCC when assert expands to nothing. */
4155 assert (bufp
->regs_allocated
== REGS_FIXED
);
4158 /* Convert the pointer data in `regstart' and `regend' to
4159 indices. Register zero has to be set differently,
4160 since we haven't kept track of any info for it. */
4161 if (regs
->num_regs
> 0)
4163 regs
->start
[0] = pos
;
4164 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
4165 ? ((regoff_t
) (d
- string1
))
4166 : ((regoff_t
) (d
- string2
+ size1
)));
4169 /* Go through the first `min (num_regs, regs->num_regs)'
4170 registers, since that is all we initialized. */
4171 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
4174 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4175 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4179 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4181 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4185 /* If the regs structure we return has more elements than
4186 were in the pattern, set the extra elements to -1. If
4187 we (re)allocated the registers, this is the case,
4188 because we always allocate enough to have at least one
4190 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
4191 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4192 } /* regs && !bufp->no_sub */
4194 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4195 nfailure_points_pushed
, nfailure_points_popped
,
4196 nfailure_points_pushed
- nfailure_points_popped
);
4197 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4199 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
4203 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4209 /* Otherwise match next pattern command. */
4210 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4212 /* Ignore these. Used to ignore the n of succeed_n's which
4213 currently have n == 0. */
4215 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4219 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4222 /* Match the next n pattern characters exactly. The following
4223 byte in the pattern defines n, and the n bytes after that
4224 are the characters to match. */
4227 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4229 /* This is written out as an if-else so we don't waste time
4230 testing `translate' inside the loop. */
4236 if ((unsigned char) translate
[(unsigned char) *d
++]
4237 != (unsigned char) *p
++)
4247 if (*d
++ != (char) *p
++) goto fail
;
4251 SET_REGS_MATCHED ();
4255 /* Match any character except possibly a newline or a null. */
4257 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4261 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4262 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4265 SET_REGS_MATCHED ();
4266 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4274 register unsigned char c
;
4275 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4277 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4280 c
= TRANSLATE (*d
); /* The character to match. */
4282 /* Cast to `unsigned' instead of `unsigned char' in case the
4283 bit list is a full 32 bytes long. */
4284 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4285 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4290 if (!not) goto fail
;
4292 SET_REGS_MATCHED ();
4298 /* The beginning of a group is represented by start_memory.
4299 The arguments are the register number in the next byte, and the
4300 number of groups inner to this one in the next. The text
4301 matched within the group is recorded (in the internal
4302 registers data structure) under the register number. */
4304 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4306 /* Find out if this group can match the empty string. */
4307 p1
= p
; /* To send to group_match_null_string_p. */
4309 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4310 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4311 = group_match_null_string_p (&p1
, pend
, reg_info
);
4313 /* Save the position in the string where we were the last time
4314 we were at this open-group operator in case the group is
4315 operated upon by a repetition operator, e.g., with `(a*)*b'
4316 against `ab'; then we want to ignore where we are now in
4317 the string in case this attempt to match fails. */
4318 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4319 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4321 DEBUG_PRINT2 (" old_regstart: %d\n",
4322 POINTER_TO_OFFSET (old_regstart
[*p
]));
4325 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4327 IS_ACTIVE (reg_info
[*p
]) = 1;
4328 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4330 /* Clear this whenever we change the register activity status. */
4331 set_regs_matched_done
= 0;
4333 /* This is the new highest active register. */
4334 highest_active_reg
= *p
;
4336 /* If nothing was active before, this is the new lowest active
4338 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4339 lowest_active_reg
= *p
;
4341 /* Move past the register number and inner group count. */
4343 just_past_start_mem
= p
;
4348 /* The stop_memory opcode represents the end of a group. Its
4349 arguments are the same as start_memory's: the register
4350 number, and the number of inner groups. */
4352 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4354 /* We need to save the string position the last time we were at
4355 this close-group operator in case the group is operated
4356 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4357 against `aba'; then we want to ignore where we are now in
4358 the string in case this attempt to match fails. */
4359 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4360 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4362 DEBUG_PRINT2 (" old_regend: %d\n",
4363 POINTER_TO_OFFSET (old_regend
[*p
]));
4366 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4368 /* This register isn't active anymore. */
4369 IS_ACTIVE (reg_info
[*p
]) = 0;
4371 /* Clear this whenever we change the register activity status. */
4372 set_regs_matched_done
= 0;
4374 /* If this was the only register active, nothing is active
4376 if (lowest_active_reg
== highest_active_reg
)
4378 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4379 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4382 { /* We must scan for the new highest active register, since
4383 it isn't necessarily one less than now: consider
4384 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4385 new highest active register is 1. */
4386 unsigned char r
= *p
- 1;
4387 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4390 /* If we end up at register zero, that means that we saved
4391 the registers as the result of an `on_failure_jump', not
4392 a `start_memory', and we jumped to past the innermost
4393 `stop_memory'. For example, in ((.)*) we save
4394 registers 1 and 2 as a result of the *, but when we pop
4395 back to the second ), we are at the stop_memory 1.
4396 Thus, nothing is active. */
4399 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4400 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4403 highest_active_reg
= r
;
4406 /* If just failed to match something this time around with a
4407 group that's operated on by a repetition operator, try to
4408 force exit from the ``loop'', and restore the register
4409 information for this group that we had before trying this
4411 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4412 || just_past_start_mem
== p
- 1)
4415 boolean is_a_jump_n
= false;
4419 switch ((re_opcode_t
) *p1
++)
4423 case pop_failure_jump
:
4424 case maybe_pop_jump
:
4426 case dummy_failure_jump
:
4427 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4437 /* If the next operation is a jump backwards in the pattern
4438 to an on_failure_jump right before the start_memory
4439 corresponding to this stop_memory, exit from the loop
4440 by forcing a failure after pushing on the stack the
4441 on_failure_jump's jump in the pattern, and d. */
4442 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4443 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4445 /* If this group ever matched anything, then restore
4446 what its registers were before trying this last
4447 failed match, e.g., with `(a*)*b' against `ab' for
4448 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4449 against `aba' for regend[3].
4451 Also restore the registers for inner groups for,
4452 e.g., `((a*)(b*))*' against `aba' (register 3 would
4453 otherwise get trashed). */
4455 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4459 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4461 /* Restore this and inner groups' (if any) registers. */
4462 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
4465 regstart
[r
] = old_regstart
[r
];
4467 /* xx why this test? */
4468 if (old_regend
[r
] >= regstart
[r
])
4469 regend
[r
] = old_regend
[r
];
4473 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4474 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4480 /* Move past the register number and the inner group count. */
4485 /* \<digit> has been turned into a `duplicate' command which is
4486 followed by the numeric value of <digit> as the register number. */
4489 register const char *d2
, *dend2
;
4490 int regno
= *p
++; /* Get which register to match against. */
4491 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4493 /* Can't back reference a group which we've never matched. */
4494 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4497 /* Where in input to try to start matching. */
4498 d2
= regstart
[regno
];
4500 /* Where to stop matching; if both the place to start and
4501 the place to stop matching are in the same string, then
4502 set to the place to stop, otherwise, for now have to use
4503 the end of the first string. */
4505 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4506 == FIRST_STRING_P (regend
[regno
]))
4507 ? regend
[regno
] : end_match_1
);
4510 /* If necessary, advance to next segment in register
4514 if (dend2
== end_match_2
) break;
4515 if (dend2
== regend
[regno
]) break;
4517 /* End of string1 => advance to string2. */
4519 dend2
= regend
[regno
];
4521 /* At end of register contents => success */
4522 if (d2
== dend2
) break;
4524 /* If necessary, advance to next segment in data. */
4527 /* How many characters left in this segment to match. */
4530 /* Want how many consecutive characters we can match in
4531 one shot, so, if necessary, adjust the count. */
4532 if (mcnt
> dend2
- d2
)
4535 /* Compare that many; failure if mismatch, else move
4538 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4539 : memcmp (d
, d2
, mcnt
))
4541 d
+= mcnt
, d2
+= mcnt
;
4543 /* Do this because we've match some characters. */
4544 SET_REGS_MATCHED ();
4550 /* begline matches the empty string at the beginning of the string
4551 (unless `not_bol' is set in `bufp'), and, if
4552 `newline_anchor' is set, after newlines. */
4554 DEBUG_PRINT1 ("EXECUTING begline.\n");
4556 if (AT_STRINGS_BEG (d
))
4558 if (!bufp
->not_bol
) break;
4560 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4564 /* In all other cases, we fail. */
4568 /* endline is the dual of begline. */
4570 DEBUG_PRINT1 ("EXECUTING endline.\n");
4572 if (AT_STRINGS_END (d
))
4574 if (!bufp
->not_eol
) break;
4577 /* We have to ``prefetch'' the next character. */
4578 else if ((d
== end1
? *string2
: *d
) == '\n'
4579 && bufp
->newline_anchor
)
4586 /* Match at the very beginning of the data. */
4588 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4589 if (AT_STRINGS_BEG (d
))
4594 /* Match at the very end of the data. */
4596 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4597 if (AT_STRINGS_END (d
))
4602 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4603 pushes NULL as the value for the string on the stack. Then
4604 `pop_failure_point' will keep the current value for the
4605 string, instead of restoring it. To see why, consider
4606 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4607 then the . fails against the \n. But the next thing we want
4608 to do is match the \n against the \n; if we restored the
4609 string value, we would be back at the foo.
4611 Because this is used only in specific cases, we don't need to
4612 check all the things that `on_failure_jump' does, to make
4613 sure the right things get saved on the stack. Hence we don't
4614 share its code. The only reason to push anything on the
4615 stack at all is that otherwise we would have to change
4616 `anychar's code to do something besides goto fail in this
4617 case; that seems worse than this. */
4618 case on_failure_keep_string_jump
:
4619 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4621 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4623 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
4625 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4628 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4632 /* Uses of on_failure_jump:
4634 Each alternative starts with an on_failure_jump that points
4635 to the beginning of the next alternative. Each alternative
4636 except the last ends with a jump that in effect jumps past
4637 the rest of the alternatives. (They really jump to the
4638 ending jump of the following alternative, because tensioning
4639 these jumps is a hassle.)
4641 Repeats start with an on_failure_jump that points past both
4642 the repetition text and either the following jump or
4643 pop_failure_jump back to this on_failure_jump. */
4644 case on_failure_jump
:
4646 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4648 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4650 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
4652 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4655 /* If this on_failure_jump comes right before a group (i.e.,
4656 the original * applied to a group), save the information
4657 for that group and all inner ones, so that if we fail back
4658 to this point, the group's information will be correct.
4659 For example, in \(a*\)*\1, we need the preceding group,
4660 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4662 /* We can't use `p' to check ahead because we push
4663 a failure point to `p + mcnt' after we do this. */
4666 /* We need to skip no_op's before we look for the
4667 start_memory in case this on_failure_jump is happening as
4668 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4670 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4673 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4675 /* We have a new highest active register now. This will
4676 get reset at the start_memory we are about to get to,
4677 but we will have saved all the registers relevant to
4678 this repetition op, as described above. */
4679 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4680 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4681 lowest_active_reg
= *(p1
+ 1);
4684 DEBUG_PRINT1 (":\n");
4685 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4689 /* A smart repeat ends with `maybe_pop_jump'.
4690 We change it to either `pop_failure_jump' or `jump'. */
4691 case maybe_pop_jump
:
4692 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4693 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4695 register unsigned char *p2
= p
;
4697 /* Compare the beginning of the repeat with what in the
4698 pattern follows its end. If we can establish that there
4699 is nothing that they would both match, i.e., that we
4700 would have to backtrack because of (as in, e.g., `a*a')
4701 then we can change to pop_failure_jump, because we'll
4702 never have to backtrack.
4704 This is not true in the case of alternatives: in
4705 `(a|ab)*' we do need to backtrack to the `ab' alternative
4706 (e.g., if the string was `ab'). But instead of trying to
4707 detect that here, the alternative has put on a dummy
4708 failure point which is what we will end up popping. */
4710 /* Skip over open/close-group commands.
4711 If what follows this loop is a ...+ construct,
4712 look at what begins its body, since we will have to
4713 match at least one of that. */
4717 && ((re_opcode_t
) *p2
== stop_memory
4718 || (re_opcode_t
) *p2
== start_memory
))
4720 else if (p2
+ 6 < pend
4721 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4728 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4729 to the `maybe_finalize_jump' of this case. Examine what
4732 /* If we're at the end of the pattern, we can change. */
4735 /* Consider what happens when matching ":\(.*\)"
4736 against ":/". I don't really understand this code
4738 p
[-3] = (unsigned char) pop_failure_jump
;
4740 (" End of pattern: change to `pop_failure_jump'.\n");
4743 else if ((re_opcode_t
) *p2
== exactn
4744 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4746 register unsigned char c
4747 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4749 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4751 p
[-3] = (unsigned char) pop_failure_jump
;
4752 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4756 else if ((re_opcode_t
) p1
[3] == charset
4757 || (re_opcode_t
) p1
[3] == charset_not
)
4759 int not = (re_opcode_t
) p1
[3] == charset_not
;
4761 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4762 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4765 /* `not' is equal to 1 if c would match, which means
4766 that we can't change to pop_failure_jump. */
4769 p
[-3] = (unsigned char) pop_failure_jump
;
4770 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4774 else if ((re_opcode_t
) *p2
== charset
)
4777 register unsigned char c
4778 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4782 if ((re_opcode_t
) p1
[3] == exactn
4783 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4784 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4785 & (1 << (p1
[5] % BYTEWIDTH
)))))
4787 if ((re_opcode_t
) p1
[3] == exactn
4788 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[4]
4789 && (p2
[2 + p1
[4] / BYTEWIDTH
]
4790 & (1 << (p1
[4] % BYTEWIDTH
)))))
4793 p
[-3] = (unsigned char) pop_failure_jump
;
4794 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4798 else if ((re_opcode_t
) p1
[3] == charset_not
)
4801 /* We win if the charset_not inside the loop
4802 lists every character listed in the charset after. */
4803 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4804 if (! (p2
[2 + idx
] == 0
4805 || (idx
< (int) p1
[4]
4806 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4811 p
[-3] = (unsigned char) pop_failure_jump
;
4812 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4815 else if ((re_opcode_t
) p1
[3] == charset
)
4818 /* We win if the charset inside the loop
4819 has no overlap with the one after the loop. */
4821 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4823 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4826 if (idx
== p2
[1] || idx
== p1
[4])
4828 p
[-3] = (unsigned char) pop_failure_jump
;
4829 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4834 p
-= 2; /* Point at relative address again. */
4835 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4837 p
[-1] = (unsigned char) jump
;
4838 DEBUG_PRINT1 (" Match => jump.\n");
4839 goto unconditional_jump
;
4841 /* Note fall through. */
4844 /* The end of a simple repeat has a pop_failure_jump back to
4845 its matching on_failure_jump, where the latter will push a
4846 failure point. The pop_failure_jump takes off failure
4847 points put on by this pop_failure_jump's matching
4848 on_failure_jump; we got through the pattern to here from the
4849 matching on_failure_jump, so didn't fail. */
4850 case pop_failure_jump
:
4852 /* We need to pass separate storage for the lowest and
4853 highest registers, even though we don't care about the
4854 actual values. Otherwise, we will restore only one
4855 register from the stack, since lowest will == highest in
4856 `pop_failure_point'. */
4857 active_reg_t dummy_low_reg
, dummy_high_reg
;
4858 unsigned char *pdummy
;
4861 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4862 POP_FAILURE_POINT (sdummy
, pdummy
,
4863 dummy_low_reg
, dummy_high_reg
,
4864 reg_dummy
, reg_dummy
, reg_info_dummy
);
4866 /* Note fall through. */
4870 DEBUG_PRINT2 ("\n%p: ", p
);
4872 DEBUG_PRINT2 ("\n0x%x: ", p
);
4874 /* Note fall through. */
4876 /* Unconditionally jump (without popping any failure points). */
4878 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4879 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4880 p
+= mcnt
; /* Do the jump. */
4882 DEBUG_PRINT2 ("(to %p).\n", p
);
4884 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4889 /* We need this opcode so we can detect where alternatives end
4890 in `group_match_null_string_p' et al. */
4892 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4893 goto unconditional_jump
;
4896 /* Normally, the on_failure_jump pushes a failure point, which
4897 then gets popped at pop_failure_jump. We will end up at
4898 pop_failure_jump, also, and with a pattern of, say, `a+', we
4899 are skipping over the on_failure_jump, so we have to push
4900 something meaningless for pop_failure_jump to pop. */
4901 case dummy_failure_jump
:
4902 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4903 /* It doesn't matter what we push for the string here. What
4904 the code at `fail' tests is the value for the pattern. */
4905 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4906 goto unconditional_jump
;
4909 /* At the end of an alternative, we need to push a dummy failure
4910 point in case we are followed by a `pop_failure_jump', because
4911 we don't want the failure point for the alternative to be
4912 popped. For example, matching `(a|ab)*' against `aab'
4913 requires that we match the `ab' alternative. */
4914 case push_dummy_failure
:
4915 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4916 /* See comments just above at `dummy_failure_jump' about the
4918 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4921 /* Have to succeed matching what follows at least n times.
4922 After that, handle like `on_failure_jump'. */
4924 EXTRACT_NUMBER (mcnt
, p
+ 2);
4925 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4928 /* Originally, this is how many times we HAVE to succeed. */
4933 STORE_NUMBER_AND_INCR (p
, mcnt
);
4935 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- 2, mcnt
);
4937 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- 2, mcnt
);
4943 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
4945 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4947 p
[2] = (unsigned char) no_op
;
4948 p
[3] = (unsigned char) no_op
;
4954 EXTRACT_NUMBER (mcnt
, p
+ 2);
4955 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4957 /* Originally, this is how many times we CAN jump. */
4961 STORE_NUMBER (p
+ 2, mcnt
);
4963 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ 2, mcnt
);
4965 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ 2, mcnt
);
4967 goto unconditional_jump
;
4969 /* If don't have to jump any more, skip over the rest of command. */
4976 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4978 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4980 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4982 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
4984 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4986 STORE_NUMBER (p1
, mcnt
);
4991 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4992 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4993 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4994 macro and introducing temporary variables works around the bug. */
4997 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4998 if (AT_WORD_BOUNDARY (d
))
5003 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5004 if (AT_WORD_BOUNDARY (d
))
5010 boolean prevchar
, thischar
;
5012 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5013 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5016 prevchar
= WORDCHAR_P (d
- 1);
5017 thischar
= WORDCHAR_P (d
);
5018 if (prevchar
!= thischar
)
5025 boolean prevchar
, thischar
;
5027 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5028 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5031 prevchar
= WORDCHAR_P (d
- 1);
5032 thischar
= WORDCHAR_P (d
);
5033 if (prevchar
!= thischar
)
5040 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5041 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
5046 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5047 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
5048 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
5054 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5055 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
5060 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5061 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
5066 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5067 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
5072 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
5077 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5081 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5083 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
5085 SET_REGS_MATCHED ();
5089 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
5091 goto matchnotsyntax
;
5094 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5098 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5100 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
5102 SET_REGS_MATCHED ();
5105 #else /* not emacs */
5107 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5109 if (!WORDCHAR_P (d
))
5111 SET_REGS_MATCHED ();
5116 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5120 SET_REGS_MATCHED ();
5123 #endif /* not emacs */
5128 continue; /* Successfully executed one pattern command; keep going. */
5131 /* We goto here if a matching operation fails. */
5133 if (!FAIL_STACK_EMPTY ())
5134 { /* A restart point is known. Restore to that state. */
5135 DEBUG_PRINT1 ("\nFAIL:\n");
5136 POP_FAILURE_POINT (d
, p
,
5137 lowest_active_reg
, highest_active_reg
,
5138 regstart
, regend
, reg_info
);
5140 /* If this failure point is a dummy, try the next one. */
5144 /* If we failed to the end of the pattern, don't examine *p. */
5148 boolean is_a_jump_n
= false;
5150 /* If failed to a backwards jump that's part of a repetition
5151 loop, need to pop this failure point and use the next one. */
5152 switch ((re_opcode_t
) *p
)
5156 case maybe_pop_jump
:
5157 case pop_failure_jump
:
5160 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5163 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
5165 && (re_opcode_t
) *p1
== on_failure_jump
))
5173 if (d
>= string1
&& d
<= end1
)
5177 break; /* Matching at this starting point really fails. */
5181 goto restore_best_regs
;
5185 return -1; /* Failure to match. */
5188 /* Subroutine definitions for re_match_2. */
5191 /* We are passed P pointing to a register number after a start_memory.
5193 Return true if the pattern up to the corresponding stop_memory can
5194 match the empty string, and false otherwise.
5196 If we find the matching stop_memory, sets P to point to one past its number.
5197 Otherwise, sets P to an undefined byte less than or equal to END.
5199 We don't handle duplicates properly (yet). */
5202 group_match_null_string_p (p
, end
, reg_info
)
5203 unsigned char **p
, *end
;
5204 register_info_type
*reg_info
;
5207 /* Point to after the args to the start_memory. */
5208 unsigned char *p1
= *p
+ 2;
5212 /* Skip over opcodes that can match nothing, and return true or
5213 false, as appropriate, when we get to one that can't, or to the
5214 matching stop_memory. */
5216 switch ((re_opcode_t
) *p1
)
5218 /* Could be either a loop or a series of alternatives. */
5219 case on_failure_jump
:
5221 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5223 /* If the next operation is not a jump backwards in the
5228 /* Go through the on_failure_jumps of the alternatives,
5229 seeing if any of the alternatives cannot match nothing.
5230 The last alternative starts with only a jump,
5231 whereas the rest start with on_failure_jump and end
5232 with a jump, e.g., here is the pattern for `a|b|c':
5234 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5235 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5238 So, we have to first go through the first (n-1)
5239 alternatives and then deal with the last one separately. */
5242 /* Deal with the first (n-1) alternatives, which start
5243 with an on_failure_jump (see above) that jumps to right
5244 past a jump_past_alt. */
5246 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
5248 /* `mcnt' holds how many bytes long the alternative
5249 is, including the ending `jump_past_alt' and
5252 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
5256 /* Move to right after this alternative, including the
5260 /* Break if it's the beginning of an n-th alternative
5261 that doesn't begin with an on_failure_jump. */
5262 if ((re_opcode_t
) *p1
!= on_failure_jump
)
5265 /* Still have to check that it's not an n-th
5266 alternative that starts with an on_failure_jump. */
5268 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5269 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
5271 /* Get to the beginning of the n-th alternative. */
5277 /* Deal with the last alternative: go back and get number
5278 of the `jump_past_alt' just before it. `mcnt' contains
5279 the length of the alternative. */
5280 EXTRACT_NUMBER (mcnt
, p1
- 2);
5282 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5285 p1
+= mcnt
; /* Get past the n-th alternative. */
5291 assert (p1
[1] == **p
);
5297 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5300 } /* while p1 < end */
5303 } /* group_match_null_string_p */
5306 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5307 It expects P to be the first byte of a single alternative and END one
5308 byte past the last. The alternative can contain groups. */
5311 alt_match_null_string_p (p
, end
, reg_info
)
5312 unsigned char *p
, *end
;
5313 register_info_type
*reg_info
;
5316 unsigned char *p1
= p
;
5320 /* Skip over opcodes that can match nothing, and break when we get
5321 to one that can't. */
5323 switch ((re_opcode_t
) *p1
)
5326 case on_failure_jump
:
5328 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5333 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5336 } /* while p1 < end */
5339 } /* alt_match_null_string_p */
5342 /* Deals with the ops common to group_match_null_string_p and
5343 alt_match_null_string_p.
5345 Sets P to one after the op and its arguments, if any. */
5348 common_op_match_null_string_p (p
, end
, reg_info
)
5349 unsigned char **p
, *end
;
5350 register_info_type
*reg_info
;
5355 unsigned char *p1
= *p
;
5357 switch ((re_opcode_t
) *p1
++)
5377 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5378 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5380 /* Have to set this here in case we're checking a group which
5381 contains a group and a back reference to it. */
5383 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5384 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5390 /* If this is an optimized succeed_n for zero times, make the jump. */
5392 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5400 /* Get to the number of times to succeed. */
5402 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5407 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5415 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5423 /* All other opcodes mean we cannot match the empty string. */
5429 } /* common_op_match_null_string_p */
5432 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5433 bytes; nonzero otherwise. */
5436 bcmp_translate (s1
, s2
, len
, translate
)
5437 const char *s1
, *s2
;
5439 RE_TRANSLATE_TYPE translate
;
5441 register const unsigned char *p1
= (const unsigned char *) s1
;
5442 register const unsigned char *p2
= (const unsigned char *) s2
;
5445 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5451 /* Entry points for GNU code. */
5453 /* re_compile_pattern is the GNU regular expression compiler: it
5454 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5455 Returns 0 if the pattern was valid, otherwise an error string.
5457 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5458 are set in BUFP on entry.
5460 We call regex_compile to do the actual compilation. */
5463 re_compile_pattern (pattern
, length
, bufp
)
5464 const char *pattern
;
5466 struct re_pattern_buffer
*bufp
;
5470 /* GNU code is written to assume at least RE_NREGS registers will be set
5471 (and at least one extra will be -1). */
5472 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5474 /* And GNU code determines whether or not to get register information
5475 by passing null for the REGS argument to re_match, etc., not by
5479 /* Match anchors at newline. */
5480 bufp
->newline_anchor
= 1;
5482 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5486 return gettext (re_error_msgid
[(int) ret
]);
5489 weak_alias (__re_compile_pattern
, re_compile_pattern
)
5492 /* Entry points compatible with 4.2 BSD regex library. We don't define
5493 them unless specifically requested. */
5495 #if defined _REGEX_RE_COMP || defined _LIBC
5497 /* BSD has one and only one pattern buffer. */
5498 static struct re_pattern_buffer re_comp_buf
;
5502 /* Make these definitions weak in libc, so POSIX programs can redefine
5503 these names if they don't use our functions, and still use
5504 regcomp/regexec below without link errors. */
5514 if (!re_comp_buf
.buffer
)
5515 return gettext ("No previous regular expression");
5519 if (!re_comp_buf
.buffer
)
5521 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5522 if (re_comp_buf
.buffer
== NULL
)
5523 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5524 re_comp_buf
.allocated
= 200;
5526 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5527 if (re_comp_buf
.fastmap
== NULL
)
5528 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5531 /* Since `re_exec' always passes NULL for the `regs' argument, we
5532 don't need to initialize the pattern buffer fields which affect it. */
5534 /* Match anchors at newlines. */
5535 re_comp_buf
.newline_anchor
= 1;
5537 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5542 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5543 return (char *) gettext (re_error_msgid
[(int) ret
]);
5554 const int len
= strlen (s
);
5556 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5559 #endif /* _REGEX_RE_COMP */
5561 /* POSIX.2 functions. Don't define these for Emacs. */
5565 /* regcomp takes a regular expression as a string and compiles it.
5567 PREG is a regex_t *. We do not expect any fields to be initialized,
5568 since POSIX says we shouldn't. Thus, we set
5570 `buffer' to the compiled pattern;
5571 `used' to the length of the compiled pattern;
5572 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5573 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5574 RE_SYNTAX_POSIX_BASIC;
5575 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5576 `fastmap' to an allocated space for the fastmap;
5577 `fastmap_accurate' to zero;
5578 `re_nsub' to the number of subexpressions in PATTERN.
5580 PATTERN is the address of the pattern string.
5582 CFLAGS is a series of bits which affect compilation.
5584 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5585 use POSIX basic syntax.
5587 If REG_NEWLINE is set, then . and [^...] don't match newline.
5588 Also, regexec will try a match beginning after every newline.
5590 If REG_ICASE is set, then we considers upper- and lowercase
5591 versions of letters to be equivalent when matching.
5593 If REG_NOSUB is set, then when PREG is passed to regexec, that
5594 routine will report only success or failure, and nothing about the
5597 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5598 the return codes and their meanings.) */
5601 regcomp (preg
, pattern
, cflags
)
5603 const char *pattern
;
5608 = (cflags
& REG_EXTENDED
) ?
5609 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5611 /* regex_compile will allocate the space for the compiled pattern. */
5613 preg
->allocated
= 0;
5616 /* Try to allocate space for the fastmap. */
5617 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5619 if (cflags
& REG_ICASE
)
5624 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5625 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5626 if (preg
->translate
== NULL
)
5627 return (int) REG_ESPACE
;
5629 /* Map uppercase characters to corresponding lowercase ones. */
5630 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5631 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5634 preg
->translate
= NULL
;
5636 /* If REG_NEWLINE is set, newlines are treated differently. */
5637 if (cflags
& REG_NEWLINE
)
5638 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5639 syntax
&= ~RE_DOT_NEWLINE
;
5640 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5641 /* It also changes the matching behavior. */
5642 preg
->newline_anchor
= 1;
5645 preg
->newline_anchor
= 0;
5647 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5649 /* POSIX says a null character in the pattern terminates it, so we
5650 can use strlen here in compiling the pattern. */
5651 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5653 /* POSIX doesn't distinguish between an unmatched open-group and an
5654 unmatched close-group: both are REG_EPAREN. */
5655 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5657 if (ret
== REG_NOERROR
&& preg
->fastmap
)
5659 /* Compute the fastmap now, since regexec cannot modify the pattern
5661 if (re_compile_fastmap (preg
) == -2)
5663 /* Some error occured while computing the fastmap, just forget
5665 free (preg
->fastmap
);
5666 preg
->fastmap
= NULL
;
5673 weak_alias (__regcomp
, regcomp
)
5677 /* regexec searches for a given pattern, specified by PREG, in the
5680 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5681 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5682 least NMATCH elements, and we set them to the offsets of the
5683 corresponding matched substrings.
5685 EFLAGS specifies `execution flags' which affect matching: if
5686 REG_NOTBOL is set, then ^ does not match at the beginning of the
5687 string; if REG_NOTEOL is set, then $ does not match at the end.
5689 We return 0 if we find a match and REG_NOMATCH if not. */
5692 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5693 const regex_t
*preg
;
5696 regmatch_t pmatch
[];
5700 struct re_registers regs
;
5701 regex_t private_preg
;
5702 int len
= strlen (string
);
5703 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5705 private_preg
= *preg
;
5707 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5708 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5710 /* The user has told us exactly how many registers to return
5711 information about, via `nmatch'. We have to pass that on to the
5712 matching routines. */
5713 private_preg
.regs_allocated
= REGS_FIXED
;
5717 regs
.num_regs
= nmatch
;
5718 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
5719 if (regs
.start
== NULL
)
5720 return (int) REG_NOMATCH
;
5721 regs
.end
= regs
.start
+ nmatch
;
5724 /* Perform the searching operation. */
5725 ret
= re_search (&private_preg
, string
, len
,
5726 /* start: */ 0, /* range: */ len
,
5727 want_reg_info
? ®s
: (struct re_registers
*) 0);
5729 /* Copy the register information to the POSIX structure. */
5736 for (r
= 0; r
< nmatch
; r
++)
5738 pmatch
[r
].rm_so
= regs
.start
[r
];
5739 pmatch
[r
].rm_eo
= regs
.end
[r
];
5743 /* If we needed the temporary register info, free the space now. */
5747 /* We want zero return to mean success, unlike `re_search'. */
5748 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5751 weak_alias (__regexec
, regexec
)
5755 /* Returns a message corresponding to an error code, ERRCODE, returned
5756 from either regcomp or regexec. We don't use PREG here. */
5759 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5761 const regex_t
*preg
;
5769 || errcode
>= (int) (sizeof (re_error_msgid
)
5770 / sizeof (re_error_msgid
[0])))
5771 /* Only error codes returned by the rest of the code should be passed
5772 to this routine. If we are given anything else, or if other regex
5773 code generates an invalid error code, then the program has a bug.
5774 Dump core so we can fix it. */
5777 msg
= gettext (re_error_msgid
[errcode
]);
5779 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5781 if (errbuf_size
!= 0)
5783 if (msg_size
> errbuf_size
)
5785 #if defined HAVE_MEMPCPY || defined _LIBC
5786 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
5788 memcpy (errbuf
, msg
, errbuf_size
- 1);
5789 errbuf
[errbuf_size
- 1] = 0;
5793 memcpy (errbuf
, msg
, msg_size
);
5799 weak_alias (__regerror
, regerror
)
5803 /* Free dynamically allocated space used by PREG. */
5809 if (preg
->buffer
!= NULL
)
5810 free (preg
->buffer
);
5811 preg
->buffer
= NULL
;
5813 preg
->allocated
= 0;
5816 if (preg
->fastmap
!= NULL
)
5817 free (preg
->fastmap
);
5818 preg
->fastmap
= NULL
;
5819 preg
->fastmap_accurate
= 0;
5821 if (preg
->translate
!= NULL
)
5822 free (preg
->translate
);
5823 preg
->translate
= NULL
;
5826 weak_alias (__regfree
, regfree
)
5829 #endif /* not emacs */