1 @node Arithmetic, Date and Time, Mathematics, Top
2 @c %MENU% Low level arithmetic functions
3 @chapter Arithmetic Functions
5 This chapter contains information about functions for doing basic
6 arithmetic operations, such as splitting a float into its integer and
7 fractional parts or retrieving the imaginary part of a complex value.
8 These functions are declared in the header files @file{math.h} and
12 * Integers:: Basic integer types and concepts
13 * Integer Division:: Integer division with guaranteed rounding.
14 * Floating Point Numbers:: Basic concepts. IEEE 754.
15 * Floating Point Classes:: The five kinds of floating-point number.
16 * Floating Point Errors:: When something goes wrong in a calculation.
17 * Rounding:: Controlling how results are rounded.
18 * Control Functions:: Saving and restoring the FPU's state.
19 * Arithmetic Functions:: Fundamental operations provided by the library.
20 * Complex Numbers:: The types. Writing complex constants.
21 * Operations on Complex:: Projection, conjugation, decomposition.
22 * Parsing of Numbers:: Converting strings to numbers.
23 * Printing of Floats:: Converting floating-point numbers to strings.
24 * System V Number Conversion:: An archaic way to convert numbers to strings.
31 The C language defines several integer data types: integer, short integer,
32 long integer, and character, all in both signed and unsigned varieties.
33 The GNU C compiler extends the language to contain long long integers
37 The C integer types were intended to allow code to be portable among
38 machines with different inherent data sizes (word sizes), so each type
39 may have different ranges on different machines. The problem with
40 this is that a program often needs to be written for a particular range
41 of integers, and sometimes must be written for a particular size of
42 storage, regardless of what machine the program runs on.
44 To address this problem, @theglibc{} contains C type definitions
45 you can use to declare integers that meet your exact needs. Because the
46 @glibcadj{} header files are customized to a specific machine, your
47 program source code doesn't have to be.
49 These @code{typedef}s are in @file{stdint.h}.
52 If you require that an integer be represented in exactly N bits, use one
53 of the following types, with the obvious mapping to bit size and signedness:
66 If your C compiler and target machine do not allow integers of a certain
67 size, the corresponding above type does not exist.
69 If you don't need a specific storage size, but want the smallest data
70 structure with @emph{at least} N bits, use one of these:
83 If you don't need a specific storage size, but want the data structure
84 that allows the fastest access while having at least N bits (and
85 among data structures with the same access speed, the smallest one), use
99 If you want an integer with the widest range possible on the platform on
100 which it is being used, use one of the following. If you use these,
101 you should write code that takes into account the variable size and range
109 @Theglibc{} also provides macros that tell you the maximum and
110 minimum possible values for each integer data type. The macro names
111 follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
112 @code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
113 @code{INTMAX_MAX}, @code{INTMAX_MIN}. Note that there are no macros for
114 unsigned integer minima. These are always zero. Similiarly, there
115 are macros such as @code{INTMAX_WIDTH} for the width of these types.
116 Those macros for integer type widths come from TS 18661-1:2014.
117 @cindex maximum possible integer
118 @cindex minimum possible integer
120 There are similar macros for use with C's built in integer types which
121 should come with your C compiler. These are described in @ref{Data Type
124 Don't forget you can use the C @code{sizeof} function with any of these
125 data types to get the number of bytes of storage each uses.
128 @node Integer Division
129 @section Integer Division
130 @cindex integer division functions
132 This section describes functions for performing integer division. These
133 functions are redundant when GNU CC is used, because in GNU C the
134 @samp{/} operator always rounds towards zero. But in other C
135 implementations, @samp{/} may round differently with negative arguments.
136 @code{div} and @code{ldiv} are useful because they specify how to round
137 the quotient: towards zero. The remainder has the same sign as the
140 These functions are specified to return a result @var{r} such that the value
141 @code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
145 To use these facilities, you should include the header file
146 @file{stdlib.h} in your program.
148 @deftp {Data Type} div_t
149 @standards{ISO, stdlib.h}
150 This is a structure type used to hold the result returned by the @code{div}
151 function. It has the following members:
155 The quotient from the division.
158 The remainder from the division.
162 @deftypefun div_t div (int @var{numerator}, int @var{denominator})
163 @standards{ISO, stdlib.h}
164 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
165 @c Functions in this section are pure, and thus safe.
166 The function @code{div} computes the quotient and remainder from
167 the division of @var{numerator} by @var{denominator}, returning the
168 result in a structure of type @code{div_t}.
170 If the result cannot be represented (as in a division by zero), the
171 behavior is undefined.
173 Here is an example, albeit not a very useful one.
177 result = div (20, -6);
181 Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
184 @deftp {Data Type} ldiv_t
185 @standards{ISO, stdlib.h}
186 This is a structure type used to hold the result returned by the @code{ldiv}
187 function. It has the following members:
191 The quotient from the division.
194 The remainder from the division.
197 (This is identical to @code{div_t} except that the components are of
198 type @code{long int} rather than @code{int}.)
201 @deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
202 @standards{ISO, stdlib.h}
203 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
204 The @code{ldiv} function is similar to @code{div}, except that the
205 arguments are of type @code{long int} and the result is returned as a
206 structure of type @code{ldiv_t}.
209 @deftp {Data Type} lldiv_t
210 @standards{ISO, stdlib.h}
211 This is a structure type used to hold the result returned by the @code{lldiv}
212 function. It has the following members:
215 @item long long int quot
216 The quotient from the division.
218 @item long long int rem
219 The remainder from the division.
222 (This is identical to @code{div_t} except that the components are of
223 type @code{long long int} rather than @code{int}.)
226 @deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
227 @standards{ISO, stdlib.h}
228 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
229 The @code{lldiv} function is like the @code{div} function, but the
230 arguments are of type @code{long long int} and the result is returned as
231 a structure of type @code{lldiv_t}.
233 The @code{lldiv} function was added in @w{ISO C99}.
236 @deftp {Data Type} imaxdiv_t
237 @standards{ISO, inttypes.h}
238 This is a structure type used to hold the result returned by the @code{imaxdiv}
239 function. It has the following members:
243 The quotient from the division.
246 The remainder from the division.
249 (This is identical to @code{div_t} except that the components are of
250 type @code{intmax_t} rather than @code{int}.)
252 See @ref{Integers} for a description of the @code{intmax_t} type.
256 @deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
257 @standards{ISO, inttypes.h}
258 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
259 The @code{imaxdiv} function is like the @code{div} function, but the
260 arguments are of type @code{intmax_t} and the result is returned as
261 a structure of type @code{imaxdiv_t}.
263 See @ref{Integers} for a description of the @code{intmax_t} type.
265 The @code{imaxdiv} function was added in @w{ISO C99}.
269 @node Floating Point Numbers
270 @section Floating Point Numbers
271 @cindex floating point
273 @cindex IEEE floating point
275 Most computer hardware has support for two different kinds of numbers:
276 integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
277 floating-point numbers. Floating-point numbers have three parts: the
278 @dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}. The real
279 number represented by a floating-point value is given by
281 $(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
284 @math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
286 where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
287 the mantissa. @xref{Floating Point Concepts}, for details. (It is
288 possible to have a different @dfn{base} for the exponent, but all modern
289 hardware uses @math{2}.)
291 Floating-point numbers can represent a finite subset of the real
292 numbers. While this subset is large enough for most purposes, it is
293 important to remember that the only reals that can be represented
294 exactly are rational numbers that have a terminating binary expansion
295 shorter than the width of the mantissa. Even simple fractions such as
296 @math{1/5} can only be approximated by floating point.
298 Mathematical operations and functions frequently need to produce values
299 that are not representable. Often these values can be approximated
300 closely enough for practical purposes, but sometimes they can't.
301 Historically there was no way to tell when the results of a calculation
302 were inaccurate. Modern computers implement the @w{IEEE 754} standard
303 for numerical computations, which defines a framework for indicating to
304 the program when the results of calculation are not trustworthy. This
305 framework consists of a set of @dfn{exceptions} that indicate why a
306 result could not be represented, and the special values @dfn{infinity}
307 and @dfn{not a number} (NaN).
309 @node Floating Point Classes
310 @section Floating-Point Number Classification Functions
311 @cindex floating-point classes
312 @cindex classes, floating-point
315 @w{ISO C99} defines macros that let you determine what sort of
316 floating-point number a variable holds.
318 @deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
319 @standards{ISO, math.h}
320 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
321 This is a generic macro which works on all floating-point types and
322 which returns a value of type @code{int}. The possible values are:
326 @standards{C99, math.h}
327 The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
330 @standards{C99, math.h}
331 The value of @var{x} is either plus or minus infinity (@pxref{Infinity
334 @standards{C99, math.h}
335 The value of @var{x} is zero. In floating-point formats like @w{IEEE
336 754}, where zero can be signed, this value is also returned if
337 @var{x} is negative zero.
339 @standards{C99, math.h}
340 Numbers whose absolute value is too small to be represented in the
341 normal format are represented in an alternate, @dfn{denormalized} format
342 (@pxref{Floating Point Concepts}). This format is less precise but can
343 represent values closer to zero. @code{fpclassify} returns this value
344 for values of @var{x} in this alternate format.
346 @standards{C99, math.h}
347 This value is returned for all other values of @var{x}. It indicates
348 that there is nothing special about the number.
353 @code{fpclassify} is most useful if more than one property of a number
354 must be tested. There are more specific macros which only test one
355 property at a time. Generally these macros execute faster than
356 @code{fpclassify}, since there is special hardware support for them.
357 You should therefore use the specific macros whenever possible.
359 @deftypefn {Macro} int iscanonical (@emph{float-type} @var{x})
360 @standards{ISO, math.h}
361 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
362 In some floating-point formats, some values have canonical (preferred)
363 and noncanonical encodings (for IEEE interchange binary formats, all
364 encodings are canonical). This macro returns a nonzero value if
365 @var{x} has a canonical encoding. It is from TS 18661-1:2014.
367 Note that some formats have multiple encodings of a value which are
368 all equally canonical; @code{iscanonical} returns a nonzero value for
369 all such encodings. Also, formats may have encodings that do not
370 correspond to any valid value of the type. In ISO C terms these are
371 @dfn{trap representations}; in @theglibc{}, @code{iscanonical} returns
372 zero for such encodings.
375 @deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
376 @standards{ISO, math.h}
377 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
378 This macro returns a nonzero value if @var{x} is finite: not plus or
379 minus infinity, and not NaN. It is equivalent to
382 (fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
385 @code{isfinite} is implemented as a macro which accepts any
389 @deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
390 @standards{ISO, math.h}
391 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
392 This macro returns a nonzero value if @var{x} is finite and normalized.
396 (fpclassify (x) == FP_NORMAL)
400 @deftypefn {Macro} int isnan (@emph{float-type} @var{x})
401 @standards{ISO, math.h}
402 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
403 This macro returns a nonzero value if @var{x} is NaN. It is equivalent
407 (fpclassify (x) == FP_NAN)
411 @deftypefn {Macro} int issignaling (@emph{float-type} @var{x})
412 @standards{ISO, math.h}
413 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
414 This macro returns a nonzero value if @var{x} is a signaling NaN
415 (sNaN). It is from TS 18661-1:2014.
418 @deftypefn {Macro} int issubnormal (@emph{float-type} @var{x})
419 @standards{ISO, math.h}
420 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
421 This macro returns a nonzero value if @var{x} is subnormal. It is
422 from TS 18661-1:2014.
425 @deftypefn {Macro} int iszero (@emph{float-type} @var{x})
426 @standards{ISO, math.h}
427 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
428 This macro returns a nonzero value if @var{x} is zero. It is from TS
432 Another set of floating-point classification functions was provided by
433 BSD. @Theglibc{} also supports these functions; however, we
434 recommend that you use the ISO C99 macros in new code. Those are standard
435 and will be available more widely. Also, since they are macros, you do
436 not have to worry about the type of their argument.
438 @deftypefun int isinf (double @var{x})
439 @deftypefunx int isinff (float @var{x})
440 @deftypefunx int isinfl (long double @var{x})
441 @standards{BSD, math.h}
442 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
443 This function returns @code{-1} if @var{x} represents negative infinity,
444 @code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
447 @deftypefun int isnan (double @var{x})
448 @deftypefunx int isnanf (float @var{x})
449 @deftypefunx int isnanl (long double @var{x})
450 @standards{BSD, math.h}
451 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
452 This function returns a nonzero value if @var{x} is a ``not a number''
453 value, and zero otherwise.
455 @strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
456 the BSD function. This is normally not a problem, because the two
457 routines behave identically. However, if you really need to get the BSD
458 function for some reason, you can write
465 @deftypefun int finite (double @var{x})
466 @deftypefunx int finitef (float @var{x})
467 @deftypefunx int finitel (long double @var{x})
468 @standards{BSD, math.h}
469 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
470 This function returns a nonzero value if @var{x} is neither infinite nor
471 a ``not a number'' value, and zero otherwise.
474 @strong{Portability Note:} The functions listed in this section are BSD
478 @node Floating Point Errors
479 @section Errors in Floating-Point Calculations
482 * FP Exceptions:: IEEE 754 math exceptions and how to detect them.
483 * Infinity and NaN:: Special values returned by calculations.
484 * Status bit operations:: Checking for exceptions after the fact.
485 * Math Error Reporting:: How the math functions report errors.
489 @subsection FP Exceptions
493 @cindex division by zero
494 @cindex inexact exception
495 @cindex invalid exception
496 @cindex overflow exception
497 @cindex underflow exception
499 The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
500 during a calculation. Each corresponds to a particular sort of error,
503 When exceptions occur (when exceptions are @dfn{raised}, in the language
504 of the standard), one of two things can happen. By default the
505 exception is simply noted in the floating-point @dfn{status word}, and
506 the program continues as if nothing had happened. The operation
507 produces a default value, which depends on the exception (see the table
508 below). Your program can check the status word to find out which
511 Alternatively, you can enable @dfn{traps} for exceptions. In that case,
512 when an exception is raised, your program will receive the @code{SIGFPE}
513 signal. The default action for this signal is to terminate the
514 program. @xref{Signal Handling}, for how you can change the effect of
518 The exceptions defined in @w{IEEE 754} are:
521 @item Invalid Operation
522 This exception is raised if the given operands are invalid for the
523 operation to be performed. Examples are
524 (see @w{IEEE 754}, @w{section 7}):
527 Addition or subtraction: @math{@infinity{} - @infinity{}}. (But
528 @math{@infinity{} + @infinity{} = @infinity{}}).
530 Multiplication: @math{0 @mul{} @infinity{}}.
532 Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
534 Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
537 Square root if the operand is less than zero. More generally, any
538 mathematical function evaluated outside its domain produces this
541 Conversion of a floating-point number to an integer or decimal
542 string, when the number cannot be represented in the target format (due
543 to overflow, infinity, or NaN).
545 Conversion of an unrecognizable input string.
547 Comparison via predicates involving @math{<} or @math{>}, when one or
548 other of the operands is NaN. You can prevent this exception by using
549 the unordered comparison functions instead; see @ref{FP Comparison Functions}.
552 If the exception does not trap, the result of the operation is NaN.
554 @item Division by Zero
555 This exception is raised when a finite nonzero number is divided
556 by zero. If no trap occurs the result is either @math{+@infinity{}} or
557 @math{-@infinity{}}, depending on the signs of the operands.
560 This exception is raised whenever the result cannot be represented
561 as a finite value in the precision format of the destination. If no trap
562 occurs the result depends on the sign of the intermediate result and the
563 current rounding mode (@w{IEEE 754}, @w{section 7.3}):
566 Round to nearest carries all overflows to @math{@infinity{}}
567 with the sign of the intermediate result.
569 Round toward @math{0} carries all overflows to the largest representable
570 finite number with the sign of the intermediate result.
572 Round toward @math{-@infinity{}} carries positive overflows to the
573 largest representable finite number and negative overflows to
577 Round toward @math{@infinity{}} carries negative overflows to the
578 most negative representable finite number and positive overflows
579 to @math{@infinity{}}.
582 Whenever the overflow exception is raised, the inexact exception is also
586 The underflow exception is raised when an intermediate result is too
587 small to be calculated accurately, or if the operation's result rounded
588 to the destination precision is too small to be normalized.
590 When no trap is installed for the underflow exception, underflow is
591 signaled (via the underflow flag) only when both tininess and loss of
592 accuracy have been detected. If no trap handler is installed the
593 operation continues with an imprecise small value, or zero if the
594 destination precision cannot hold the small exact result.
597 This exception is signalled if a rounded result is not exact (such as
598 when calculating the square root of two) or a result overflows without
602 @node Infinity and NaN
603 @subsection Infinity and NaN
608 @w{IEEE 754} floating point numbers can represent positive or negative
609 infinity, and @dfn{NaN} (not a number). These three values arise from
610 calculations whose result is undefined or cannot be represented
611 accurately. You can also deliberately set a floating-point variable to
612 any of them, which is sometimes useful. Some examples of calculations
613 that produce infinity or NaN:
617 @math{1/0 = @infinity{}}
618 @math{log (0) = -@infinity{}}
619 @math{sqrt (-1) = NaN}
623 $${1\over0} = \infty$$
625 $$\sqrt{-1} = \hbox{NaN}$$
628 When a calculation produces any of these values, an exception also
629 occurs; see @ref{FP Exceptions}.
631 The basic operations and math functions all accept infinity and NaN and
632 produce sensible output. Infinities propagate through calculations as
633 one would expect: for example, @math{2 + @infinity{} = @infinity{}},
634 @math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}. NaN, on
635 the other hand, infects any calculation that involves it. Unless the
636 calculation would produce the same result no matter what real value
637 replaced NaN, the result is NaN.
639 In comparison operations, positive infinity is larger than all values
640 except itself and NaN, and negative infinity is smaller than all values
641 except itself and NaN. NaN is @dfn{unordered}: it is not equal to,
642 greater than, or less than anything, @emph{including itself}. @code{x ==
643 x} is false if the value of @code{x} is NaN. You can use this to test
644 whether a value is NaN or not, but the recommended way to test for NaN
645 is with the @code{isnan} function (@pxref{Floating Point Classes}). In
646 addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
647 exception when applied to NaNs.
649 @file{math.h} defines macros that allow you to explicitly set a variable
652 @deftypevr Macro float INFINITY
653 @standards{ISO, math.h}
654 An expression representing positive infinity. It is equal to the value
655 produced by mathematical operations like @code{1.0 / 0.0}.
656 @code{-INFINITY} represents negative infinity.
658 You can test whether a floating-point value is infinite by comparing it
659 to this macro. However, this is not recommended; you should use the
660 @code{isfinite} macro instead. @xref{Floating Point Classes}.
662 This macro was introduced in the @w{ISO C99} standard.
665 @deftypevr Macro float NAN
666 @standards{GNU, math.h}
667 An expression representing a value which is ``not a number''. This
668 macro is a GNU extension, available only on machines that support the
669 ``not a number'' value---that is to say, on all machines that support
672 You can use @samp{#ifdef NAN} to test whether the machine supports
673 NaN. (Of course, you must arrange for GNU extensions to be visible,
674 such as by defining @code{_GNU_SOURCE}, and then you must include
678 @deftypevr Macro float SNANF
679 @deftypevrx Macro double SNAN
680 @deftypevrx Macro {long double} SNANL
681 @deftypevrx Macro _FloatN SNANFN
682 @deftypevrx Macro _FloatNx SNANFNx
683 @standards{TS 18661-1:2014, math.h}
684 @standardsx{SNANFN, TS 18661-3:2015, math.h}
685 @standardsx{SNANFNx, TS 18661-3:2015, math.h}
686 These macros, defined by TS 18661-1:2014 and TS 18661-3:2015, are
687 constant expressions for signaling NaNs.
690 @deftypevr Macro int FE_SNANS_ALWAYS_SIGNAL
691 @standards{ISO, fenv.h}
692 This macro, defined by TS 18661-1:2014, is defined to @code{1} in
693 @file{fenv.h} to indicate that functions and operations with signaling
694 NaN inputs and floating-point results always raise the invalid
695 exception and return a quiet NaN, even in cases (such as @code{fmax},
696 @code{hypot} and @code{pow}) where a quiet NaN input can produce a
697 non-NaN result. Because some compiler optimizations may not handle
698 signaling NaNs correctly, this macro is only defined if compiler
699 support for signaling NaNs is enabled. That support can be enabled
700 with the GCC option @option{-fsignaling-nans}.
703 @w{IEEE 754} also allows for another unusual value: negative zero. This
704 value is produced when you divide a positive number by negative
705 infinity, or when a negative result is smaller than the limits of
708 @node Status bit operations
709 @subsection Examining the FPU status word
711 @w{ISO C99} defines functions to query and manipulate the
712 floating-point status word. You can use these functions to check for
713 untrapped exceptions when it's convenient, rather than worrying about
714 them in the middle of a calculation.
716 These constants represent the various @w{IEEE 754} exceptions. Not all
717 FPUs report all the different exceptions. Each constant is defined if
718 and only if the FPU you are compiling for supports that exception, so
719 you can test for FPU support with @samp{#ifdef}. They are defined in
724 @standards{ISO, fenv.h}
725 The inexact exception.
727 @standards{ISO, fenv.h}
728 The divide by zero exception.
730 @standards{ISO, fenv.h}
731 The underflow exception.
733 @standards{ISO, fenv.h}
734 The overflow exception.
736 @standards{ISO, fenv.h}
737 The invalid exception.
740 The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
741 which are supported by the FP implementation.
743 These functions allow you to clear exception flags, test for exceptions,
744 and save and restore the set of exceptions flagged.
746 @deftypefun int feclearexcept (int @var{excepts})
747 @standards{ISO, fenv.h}
748 @safety{@prelim{}@mtsafe{}@assafe{@assposix{}}@acsafe{@acsposix{}}}
749 @c The other functions in this section that modify FP status register
750 @c mostly do so with non-atomic load-modify-store sequences, but since
751 @c the register is thread-specific, this should be fine, and safe for
752 @c cancellation. As long as the FP environment is restored before the
753 @c signal handler returns control to the interrupted thread (like any
754 @c kernel should do), the functions are also safe for use in signal
756 This function clears all of the supported exception flags indicated by
759 The function returns zero in case the operation was successful, a
760 non-zero value otherwise.
763 @deftypefun int feraiseexcept (int @var{excepts})
764 @standards{ISO, fenv.h}
765 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
766 This function raises the supported exceptions indicated by
767 @var{excepts}. If more than one exception bit in @var{excepts} is set
768 the order in which the exceptions are raised is undefined except that
769 overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
770 raised before inexact (@code{FE_INEXACT}). Whether for overflow or
771 underflow the inexact exception is also raised is also implementation
774 The function returns zero in case the operation was successful, a
775 non-zero value otherwise.
778 @deftypefun int fesetexcept (int @var{excepts})
779 @standards{ISO, fenv.h}
780 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
781 This function sets the supported exception flags indicated by
782 @var{excepts}, like @code{feraiseexcept}, but without causing enabled
783 traps to be taken. @code{fesetexcept} is from TS 18661-1:2014.
785 The function returns zero in case the operation was successful, a
786 non-zero value otherwise.
789 @deftypefun int fetestexcept (int @var{excepts})
790 @standards{ISO, fenv.h}
791 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
792 Test whether the exception flags indicated by the parameter @var{except}
793 are currently set. If any of them are, a nonzero value is returned
794 which specifies which exceptions are set. Otherwise the result is zero.
797 To understand these functions, imagine that the status word is an
798 integer variable named @var{status}. @code{feclearexcept} is then
799 equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
800 equivalent to @samp{(status & excepts)}. The actual implementation may
801 be very different, of course.
803 Exception flags are only cleared when the program explicitly requests it,
804 by calling @code{feclearexcept}. If you want to check for exceptions
805 from a set of calculations, you should clear all the flags first. Here
806 is a simple example of the way to use @code{fetestexcept}:
812 feclearexcept (FE_ALL_EXCEPT);
814 raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
815 if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
816 if (raised & FE_INVALID) @{ /* @dots{} */ @}
821 You cannot explicitly set bits in the status word. You can, however,
822 save the entire status word and restore it later. This is done with the
825 @deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
826 @standards{ISO, fenv.h}
827 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
828 This function stores in the variable pointed to by @var{flagp} an
829 implementation-defined value representing the current setting of the
830 exception flags indicated by @var{excepts}.
832 The function returns zero in case the operation was successful, a
833 non-zero value otherwise.
836 @deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
837 @standards{ISO, fenv.h}
838 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
839 This function restores the flags for the exceptions indicated by
840 @var{excepts} to the values stored in the variable pointed to by
843 The function returns zero in case the operation was successful, a
844 non-zero value otherwise.
847 Note that the value stored in @code{fexcept_t} bears no resemblance to
848 the bit mask returned by @code{fetestexcept}. The type may not even be
849 an integer. Do not attempt to modify an @code{fexcept_t} variable.
851 @deftypefun int fetestexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
852 @standards{ISO, fenv.h}
853 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
854 Test whether the exception flags indicated by the parameter
855 @var{excepts} are set in the variable pointed to by @var{flagp}. If
856 any of them are, a nonzero value is returned which specifies which
857 exceptions are set. Otherwise the result is zero.
858 @code{fetestexceptflag} is from TS 18661-1:2014.
861 @node Math Error Reporting
862 @subsection Error Reporting by Mathematical Functions
863 @cindex errors, mathematical
867 Many of the math functions are defined only over a subset of the real or
868 complex numbers. Even if they are mathematically defined, their result
869 may be larger or smaller than the range representable by their return
870 type without loss of accuracy. These are known as @dfn{domain errors},
872 @dfn{underflows}, respectively. Math functions do several things when
873 one of these errors occurs. In this manual we will refer to the
874 complete response as @dfn{signalling} a domain error, overflow, or
877 When a math function suffers a domain error, it raises the invalid
878 exception and returns NaN. It also sets @code{errno} to @code{EDOM};
879 this is for compatibility with old systems that do not support @w{IEEE
880 754} exception handling. Likewise, when overflow occurs, math
881 functions raise the overflow exception and, in the default rounding
882 mode, return @math{@infinity{}} or @math{-@infinity{}} as appropriate
883 (in other rounding modes, the largest finite value of the appropriate
884 sign is returned when appropriate for that rounding mode). They also
885 set @code{errno} to @code{ERANGE} if returning @math{@infinity{}} or
886 @math{-@infinity{}}; @code{errno} may or may not be set to
887 @code{ERANGE} when a finite value is returned on overflow. When
888 underflow occurs, the underflow exception is raised, and zero
889 (appropriately signed) or a subnormal value, as appropriate for the
890 mathematical result of the function and the rounding mode, is
891 returned. @code{errno} may be set to @code{ERANGE}, but this is not
892 guaranteed; it is intended that @theglibc{} should set it when the
893 underflow is to an appropriately signed zero, but not necessarily for
896 When a math function has an argument that is a signaling NaN,
897 @theglibc{} does not consider this a domain error, so @code{errno} is
898 unchanged, but the invalid exception is still raised (except for a few
899 functions that are specified to handle signaling NaNs differently).
901 Some of the math functions are defined mathematically to result in a
902 complex value over parts of their domains. The most familiar example of
903 this is taking the square root of a negative number. The complex math
904 functions, such as @code{csqrt}, will return the appropriate complex value
905 in this case. The real-valued functions, such as @code{sqrt}, will
906 signal a domain error.
908 Some older hardware does not support infinities. On that hardware,
909 overflows instead return a particular very large number (usually the
910 largest representable number). @file{math.h} defines macros you can use
911 to test for overflow on both old and new hardware.
913 @deftypevr Macro double HUGE_VAL
914 @deftypevrx Macro float HUGE_VALF
915 @deftypevrx Macro {long double} HUGE_VALL
916 @deftypevrx Macro _FloatN HUGE_VAL_FN
917 @deftypevrx Macro _FloatNx HUGE_VAL_FNx
918 @standards{ISO, math.h}
919 @standardsx{HUGE_VAL_FN, TS 18661-3:2015, math.h}
920 @standardsx{HUGE_VAL_FNx, TS 18661-3:2015, math.h}
921 An expression representing a particular very large number. On machines
922 that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
923 On other machines, it's typically the largest positive number that can
926 Mathematical functions return the appropriately typed version of
927 @code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
932 @section Rounding Modes
934 Floating-point calculations are carried out internally with extra
935 precision, and then rounded to fit into the destination type. This
936 ensures that results are as precise as the input data. @w{IEEE 754}
937 defines four possible rounding modes:
940 @item Round to nearest.
941 This is the default mode. It should be used unless there is a specific
942 need for one of the others. In this mode results are rounded to the
943 nearest representable value. If the result is midway between two
944 representable values, the even representable is chosen. @dfn{Even} here
945 means the lowest-order bit is zero. This rounding mode prevents
946 statistical bias and guarantees numeric stability: round-off errors in a
947 lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
949 @c @item Round toward @math{+@infinity{}}
950 @item Round toward plus Infinity.
951 All results are rounded to the smallest representable value
952 which is greater than the result.
954 @c @item Round toward @math{-@infinity{}}
955 @item Round toward minus Infinity.
956 All results are rounded to the largest representable value which is less
959 @item Round toward zero.
960 All results are rounded to the largest representable value whose
961 magnitude is less than that of the result. In other words, if the
962 result is negative it is rounded up; if it is positive, it is rounded
967 @file{fenv.h} defines constants which you can use to refer to the
968 various rounding modes. Each one will be defined if and only if the FPU
969 supports the corresponding rounding mode.
973 @standards{ISO, fenv.h}
977 @standards{ISO, fenv.h}
978 Round toward @math{+@infinity{}}.
981 @standards{ISO, fenv.h}
982 Round toward @math{-@infinity{}}.
985 @standards{ISO, fenv.h}
989 Underflow is an unusual case. Normally, @w{IEEE 754} floating point
990 numbers are always normalized (@pxref{Floating Point Concepts}).
991 Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
992 @code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
993 normalized numbers. Rounding all such numbers to zero or @math{2^r}
994 would cause some algorithms to fail at 0. Therefore, they are left in
995 denormalized form. That produces loss of precision, since some bits of
996 the mantissa are stolen to indicate the decimal point.
998 If a result is too small to be represented as a denormalized number, it
999 is rounded to zero. However, the sign of the result is preserved; if
1000 the calculation was negative, the result is @dfn{negative zero}.
1001 Negative zero can also result from some operations on infinity, such as
1002 @math{4/-@infinity{}}.
1004 At any time, one of the above four rounding modes is selected. You can
1005 find out which one with this function:
1007 @deftypefun int fegetround (void)
1008 @standards{ISO, fenv.h}
1009 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1010 Returns the currently selected rounding mode, represented by one of the
1011 values of the defined rounding mode macros.
1015 To change the rounding mode, use this function:
1017 @deftypefun int fesetround (int @var{round})
1018 @standards{ISO, fenv.h}
1019 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1020 Changes the currently selected rounding mode to @var{round}. If
1021 @var{round} does not correspond to one of the supported rounding modes
1022 nothing is changed. @code{fesetround} returns zero if it changed the
1023 rounding mode, or a nonzero value if the mode is not supported.
1026 You should avoid changing the rounding mode if possible. It can be an
1027 expensive operation; also, some hardware requires you to compile your
1028 program differently for it to work. The resulting code may run slower.
1029 See your compiler documentation for details.
1030 @c This section used to claim that functions existed to round one number
1031 @c in a specific fashion. I can't find any functions in the library
1032 @c that do that. -zw
1034 @node Control Functions
1035 @section Floating-Point Control Functions
1037 @w{IEEE 754} floating-point implementations allow the programmer to
1038 decide whether traps will occur for each of the exceptions, by setting
1039 bits in the @dfn{control word}. In C, traps result in the program
1040 receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
1042 @strong{NB:} @w{IEEE 754} says that trap handlers are given details of
1043 the exceptional situation, and can set the result value. C signals do
1044 not provide any mechanism to pass this information back and forth.
1045 Trapping exceptions in C is therefore not very useful.
1047 It is sometimes necessary to save the state of the floating-point unit
1048 while you perform some calculation. The library provides functions
1049 which save and restore the exception flags, the set of exceptions that
1050 generate traps, and the rounding mode. This information is known as the
1051 @dfn{floating-point environment}.
1053 The functions to save and restore the floating-point environment all use
1054 a variable of type @code{fenv_t} to store information. This type is
1055 defined in @file{fenv.h}. Its size and contents are
1056 implementation-defined. You should not attempt to manipulate a variable
1057 of this type directly.
1059 To save the state of the FPU, use one of these functions:
1061 @deftypefun int fegetenv (fenv_t *@var{envp})
1062 @standards{ISO, fenv.h}
1063 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1064 Store the floating-point environment in the variable pointed to by
1067 The function returns zero in case the operation was successful, a
1068 non-zero value otherwise.
1071 @deftypefun int feholdexcept (fenv_t *@var{envp})
1072 @standards{ISO, fenv.h}
1073 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1074 Store the current floating-point environment in the object pointed to by
1075 @var{envp}. Then clear all exception flags, and set the FPU to trap no
1076 exceptions. Not all FPUs support trapping no exceptions; if
1077 @code{feholdexcept} cannot set this mode, it returns nonzero value. If it
1078 succeeds, it returns zero.
1081 The functions which restore the floating-point environment can take these
1086 Pointers to @code{fenv_t} objects, which were initialized previously by a
1087 call to @code{fegetenv} or @code{feholdexcept}.
1090 The special macro @code{FE_DFL_ENV} which represents the floating-point
1091 environment as it was available at program start.
1093 Implementation defined macros with names starting with @code{FE_} and
1094 having type @code{fenv_t *}.
1096 @vindex FE_NOMASK_ENV
1097 If possible, @theglibc{} defines a macro @code{FE_NOMASK_ENV}
1098 which represents an environment where every exception raised causes a
1099 trap to occur. You can test for this macro using @code{#ifdef}. It is
1100 only defined if @code{_GNU_SOURCE} is defined.
1102 Some platforms might define other predefined environments.
1106 To set the floating-point environment, you can use either of these
1109 @deftypefun int fesetenv (const fenv_t *@var{envp})
1110 @standards{ISO, fenv.h}
1111 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1112 Set the floating-point environment to that described by @var{envp}.
1114 The function returns zero in case the operation was successful, a
1115 non-zero value otherwise.
1118 @deftypefun int feupdateenv (const fenv_t *@var{envp})
1119 @standards{ISO, fenv.h}
1120 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1121 Like @code{fesetenv}, this function sets the floating-point environment
1122 to that described by @var{envp}. However, if any exceptions were
1123 flagged in the status word before @code{feupdateenv} was called, they
1124 remain flagged after the call. In other words, after @code{feupdateenv}
1125 is called, the status word is the bitwise OR of the previous status word
1126 and the one saved in @var{envp}.
1128 The function returns zero in case the operation was successful, a
1129 non-zero value otherwise.
1133 TS 18661-1:2014 defines additional functions to save and restore
1134 floating-point control modes (such as the rounding mode and whether
1135 traps are enabled) while leaving other status (such as raised flags)
1139 The special macro @code{FE_DFL_MODE} may be passed to
1140 @code{fesetmode}. It represents the floating-point control modes at
1143 @deftypefun int fegetmode (femode_t *@var{modep})
1144 @standards{ISO, fenv.h}
1145 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1146 Store the floating-point control modes in the variable pointed to by
1149 The function returns zero in case the operation was successful, a
1150 non-zero value otherwise.
1153 @deftypefun int fesetmode (const femode_t *@var{modep})
1154 @standards{ISO, fenv.h}
1155 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1156 Set the floating-point control modes to those described by
1159 The function returns zero in case the operation was successful, a
1160 non-zero value otherwise.
1164 To control for individual exceptions if raising them causes a trap to
1165 occur, you can use the following two functions.
1167 @strong{Portability Note:} These functions are all GNU extensions.
1169 @deftypefun int feenableexcept (int @var{excepts})
1170 @standards{GNU, fenv.h}
1171 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1172 This function enables traps for each of the exceptions as indicated by
1173 the parameter @var{excepts}. The individual exceptions are described in
1174 @ref{Status bit operations}. Only the specified exceptions are
1175 enabled, the status of the other exceptions is not changed.
1177 The function returns the previous enabled exceptions in case the
1178 operation was successful, @code{-1} otherwise.
1181 @deftypefun int fedisableexcept (int @var{excepts})
1182 @standards{GNU, fenv.h}
1183 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1184 This function disables traps for each of the exceptions as indicated by
1185 the parameter @var{excepts}. The individual exceptions are described in
1186 @ref{Status bit operations}. Only the specified exceptions are
1187 disabled, the status of the other exceptions is not changed.
1189 The function returns the previous enabled exceptions in case the
1190 operation was successful, @code{-1} otherwise.
1193 @deftypefun int fegetexcept (void)
1194 @standards{GNU, fenv.h}
1195 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1196 The function returns a bitmask of all currently enabled exceptions. It
1197 returns @code{-1} in case of failure.
1200 @node Arithmetic Functions
1201 @section Arithmetic Functions
1203 The C library provides functions to do basic operations on
1204 floating-point numbers. These include absolute value, maximum and minimum,
1205 normalization, bit twiddling, rounding, and a few others.
1208 * Absolute Value:: Absolute values of integers and floats.
1209 * Normalization Functions:: Extracting exponents and putting them back.
1210 * Rounding Functions:: Rounding floats to integers.
1211 * Remainder Functions:: Remainders on division, precisely defined.
1212 * FP Bit Twiddling:: Sign bit adjustment. Adding epsilon.
1213 * FP Comparison Functions:: Comparisons without risk of exceptions.
1214 * Misc FP Arithmetic:: Max, min, positive difference, multiply-add.
1217 @node Absolute Value
1218 @subsection Absolute Value
1219 @cindex absolute value functions
1221 These functions are provided for obtaining the @dfn{absolute value} (or
1222 @dfn{magnitude}) of a number. The absolute value of a real number
1223 @var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
1224 negative. For a complex number @var{z}, whose real part is @var{x} and
1225 whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1226 (@var{x}*@var{x} + @var{y}*@var{y})}}.
1230 Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
1231 @code{imaxabs} is declared in @file{inttypes.h};
1232 the @code{fabs} functions are declared in @file{math.h};
1233 the @code{cabs} functions are declared in @file{complex.h}.
1235 @deftypefun int abs (int @var{number})
1236 @deftypefunx {long int} labs (long int @var{number})
1237 @deftypefunx {long long int} llabs (long long int @var{number})
1238 @deftypefunx intmax_t imaxabs (intmax_t @var{number})
1239 @standards{ISO, stdlib.h}
1240 @standardsx{imaxabs, ISO, inttypes.h}
1241 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1242 These functions return the absolute value of @var{number}.
1244 Most computers use a two's complement integer representation, in which
1245 the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1246 cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
1248 @code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
1250 See @ref{Integers} for a description of the @code{intmax_t} type.
1254 @deftypefun double fabs (double @var{number})
1255 @deftypefunx float fabsf (float @var{number})
1256 @deftypefunx {long double} fabsl (long double @var{number})
1257 @deftypefunx _FloatN fabsfN (_Float@var{N} @var{number})
1258 @deftypefunx _FloatNx fabsfNx (_Float@var{N}x @var{number})
1259 @standards{ISO, math.h}
1260 @standardsx{fabsfN, TS 18661-3:2015, math.h}
1261 @standardsx{fabsfNx, TS 18661-3:2015, math.h}
1262 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1263 This function returns the absolute value of the floating-point number
1267 @deftypefun double cabs (complex double @var{z})
1268 @deftypefunx float cabsf (complex float @var{z})
1269 @deftypefunx {long double} cabsl (complex long double @var{z})
1270 @deftypefunx _FloatN cabsfN (complex _Float@var{N} @var{z})
1271 @deftypefunx _FloatNx cabsfNx (complex _Float@var{N}x @var{z})
1272 @standards{ISO, complex.h}
1273 @standardsx{cabsfN, TS 18661-3:2015, complex.h}
1274 @standardsx{cabsfNx, TS 18661-3:2015, complex.h}
1275 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1276 These functions return the absolute value of the complex number @var{z}
1277 (@pxref{Complex Numbers}). The absolute value of a complex number is:
1280 sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
1283 This function should always be used instead of the direct formula
1284 because it takes special care to avoid losing precision. It may also
1285 take advantage of hardware support for this operation. See @code{hypot}
1286 in @ref{Exponents and Logarithms}.
1289 @node Normalization Functions
1290 @subsection Normalization Functions
1291 @cindex normalization functions (floating-point)
1293 The functions described in this section are primarily provided as a way
1294 to efficiently perform certain low-level manipulations on floating point
1295 numbers that are represented internally using a binary radix;
1296 see @ref{Floating Point Concepts}. These functions are required to
1297 have equivalent behavior even if the representation does not use a radix
1298 of 2, but of course they are unlikely to be particularly efficient in
1302 All these functions are declared in @file{math.h}.
1304 @deftypefun double frexp (double @var{value}, int *@var{exponent})
1305 @deftypefunx float frexpf (float @var{value}, int *@var{exponent})
1306 @deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
1307 @deftypefunx _FloatN frexpfN (_Float@var{N} @var{value}, int *@var{exponent})
1308 @deftypefunx _FloatNx frexpfNx (_Float@var{N}x @var{value}, int *@var{exponent})
1309 @standards{ISO, math.h}
1310 @standardsx{frexpfN, TS 18661-3:2015, math.h}
1311 @standardsx{frexpfNx, TS 18661-3:2015, math.h}
1312 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1313 These functions are used to split the number @var{value}
1314 into a normalized fraction and an exponent.
1316 If the argument @var{value} is not zero, the return value is @var{value}
1317 times a power of two, and its magnitude is always in the range 1/2
1318 (inclusive) to 1 (exclusive). The corresponding exponent is stored in
1319 @code{*@var{exponent}}; the return value multiplied by 2 raised to this
1320 exponent equals the original number @var{value}.
1322 For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1323 stores @code{4} in @code{exponent}.
1325 If @var{value} is zero, then the return value is zero and
1326 zero is stored in @code{*@var{exponent}}.
1329 @deftypefun double ldexp (double @var{value}, int @var{exponent})
1330 @deftypefunx float ldexpf (float @var{value}, int @var{exponent})
1331 @deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
1332 @deftypefunx _FloatN ldexpfN (_Float@var{N} @var{value}, int @var{exponent})
1333 @deftypefunx _FloatNx ldexpfNx (_Float@var{N}x @var{value}, int @var{exponent})
1334 @standards{ISO, math.h}
1335 @standardsx{ldexpfN, TS 18661-3:2015, math.h}
1336 @standardsx{ldexpfNx, TS 18661-3:2015, math.h}
1337 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1338 These functions return the result of multiplying the floating-point
1339 number @var{value} by 2 raised to the power @var{exponent}. (It can
1340 be used to reassemble floating-point numbers that were taken apart
1343 For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1346 The following functions, which come from BSD, provide facilities
1347 equivalent to those of @code{ldexp} and @code{frexp}. See also the
1348 @w{ISO C} function @code{logb} which originally also appeared in BSD.
1349 The @code{_Float@var{N}} and @code{_Float@var{N}} variants of the
1350 following functions come from TS 18661-3:2015.
1352 @deftypefun double scalb (double @var{value}, double @var{exponent})
1353 @deftypefunx float scalbf (float @var{value}, float @var{exponent})
1354 @deftypefunx {long double} scalbl (long double @var{value}, long double @var{exponent})
1355 @standards{BSD, math.h}
1356 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1357 The @code{scalb} function is the BSD name for @code{ldexp}.
1360 @deftypefun double scalbn (double @var{x}, int @var{n})
1361 @deftypefunx float scalbnf (float @var{x}, int @var{n})
1362 @deftypefunx {long double} scalbnl (long double @var{x}, int @var{n})
1363 @deftypefunx _FloatN scalbnfN (_Float@var{N} @var{x}, int @var{n})
1364 @deftypefunx _FloatNx scalbnfNx (_Float@var{N}x @var{x}, int @var{n})
1365 @standards{BSD, math.h}
1366 @standardsx{scalbnfN, TS 18661-3:2015, math.h}
1367 @standardsx{scalbnfNx, TS 18661-3:2015, math.h}
1368 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1369 @code{scalbn} is identical to @code{scalb}, except that the exponent
1370 @var{n} is an @code{int} instead of a floating-point number.
1373 @deftypefun double scalbln (double @var{x}, long int @var{n})
1374 @deftypefunx float scalblnf (float @var{x}, long int @var{n})
1375 @deftypefunx {long double} scalblnl (long double @var{x}, long int @var{n})
1376 @deftypefunx _FloatN scalblnfN (_Float@var{N} @var{x}, long int @var{n})
1377 @deftypefunx _FloatNx scalblnfNx (_Float@var{N}x @var{x}, long int @var{n})
1378 @standards{BSD, math.h}
1379 @standardsx{scalblnfN, TS 18661-3:2015, math.h}
1380 @standardsx{scalblnfNx, TS 18661-3:2015, math.h}
1381 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1382 @code{scalbln} is identical to @code{scalb}, except that the exponent
1383 @var{n} is a @code{long int} instead of a floating-point number.
1386 @deftypefun double significand (double @var{x})
1387 @deftypefunx float significandf (float @var{x})
1388 @deftypefunx {long double} significandl (long double @var{x})
1389 @standards{BSD, math.h}
1390 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1391 @code{significand} returns the mantissa of @var{x} scaled to the range
1393 It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1395 This function exists mainly for use in certain standardized tests
1396 of @w{IEEE 754} conformance.
1399 @node Rounding Functions
1400 @subsection Rounding Functions
1401 @cindex converting floats to integers
1404 The functions listed here perform operations such as rounding and
1405 truncation of floating-point values. Some of these functions convert
1406 floating point numbers to integer values. They are all declared in
1409 You can also convert floating-point numbers to integers simply by
1410 casting them to @code{int}. This discards the fractional part,
1411 effectively rounding towards zero. However, this only works if the
1412 result can actually be represented as an @code{int}---for very large
1413 numbers, this is impossible. The functions listed here return the
1414 result as a @code{double} instead to get around this problem.
1416 The @code{fromfp} functions use the following macros, from TS
1417 18661-1:2014, to specify the direction of rounding. These correspond
1418 to the rounding directions defined in IEEE 754-2008.
1422 @standards{ISO, math.h}
1423 Round toward @math{+@infinity{}}.
1425 @item FP_INT_DOWNWARD
1426 @standards{ISO, math.h}
1427 Round toward @math{-@infinity{}}.
1429 @item FP_INT_TOWARDZERO
1430 @standards{ISO, math.h}
1433 @item FP_INT_TONEARESTFROMZERO
1434 @standards{ISO, math.h}
1435 Round to nearest, ties round away from zero.
1437 @item FP_INT_TONEAREST
1438 @standards{ISO, math.h}
1439 Round to nearest, ties round to even.
1442 @deftypefun double ceil (double @var{x})
1443 @deftypefunx float ceilf (float @var{x})
1444 @deftypefunx {long double} ceill (long double @var{x})
1445 @deftypefunx _FloatN ceilfN (_Float@var{N} @var{x})
1446 @deftypefunx _FloatNx ceilfNx (_Float@var{N}x @var{x})
1447 @standards{ISO, math.h}
1448 @standardsx{ceilfN, TS 18661-3:2015, math.h}
1449 @standardsx{ceilfNx, TS 18661-3:2015, math.h}
1450 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1451 These functions round @var{x} upwards to the nearest integer,
1452 returning that value as a @code{double}. Thus, @code{ceil (1.5)}
1456 @deftypefun double floor (double @var{x})
1457 @deftypefunx float floorf (float @var{x})
1458 @deftypefunx {long double} floorl (long double @var{x})
1459 @deftypefunx _FloatN floorfN (_Float@var{N} @var{x})
1460 @deftypefunx _FloatNx floorfNx (_Float@var{N}x @var{x})
1461 @standards{ISO, math.h}
1462 @standardsx{floorfN, TS 18661-3:2015, math.h}
1463 @standardsx{floorfNx, TS 18661-3:2015, math.h}
1464 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1465 These functions round @var{x} downwards to the nearest
1466 integer, returning that value as a @code{double}. Thus, @code{floor
1467 (1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1470 @deftypefun double trunc (double @var{x})
1471 @deftypefunx float truncf (float @var{x})
1472 @deftypefunx {long double} truncl (long double @var{x})
1473 @deftypefunx _FloatN truncfN (_Float@var{N} @var{x})
1474 @deftypefunx _FloatNx truncfNx (_Float@var{N}x @var{x})
1475 @standards{ISO, math.h}
1476 @standardsx{truncfN, TS 18661-3:2015, math.h}
1477 @standardsx{truncfNx, TS 18661-3:2015, math.h}
1478 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1479 The @code{trunc} functions round @var{x} towards zero to the nearest
1480 integer (returned in floating-point format). Thus, @code{trunc (1.5)}
1481 is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
1484 @deftypefun double rint (double @var{x})
1485 @deftypefunx float rintf (float @var{x})
1486 @deftypefunx {long double} rintl (long double @var{x})
1487 @deftypefunx _FloatN rintfN (_Float@var{N} @var{x})
1488 @deftypefunx _FloatNx rintfNx (_Float@var{N}x @var{x})
1489 @standards{ISO, math.h}
1490 @standardsx{rintfN, TS 18661-3:2015, math.h}
1491 @standardsx{rintfNx, TS 18661-3:2015, math.h}
1492 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1493 These functions round @var{x} to an integer value according to the
1494 current rounding mode. @xref{Floating Point Parameters}, for
1495 information about the various rounding modes. The default
1496 rounding mode is to round to the nearest integer; some machines
1497 support other modes, but round-to-nearest is always used unless
1498 you explicitly select another.
1500 If @var{x} was not initially an integer, these functions raise the
1504 @deftypefun double nearbyint (double @var{x})
1505 @deftypefunx float nearbyintf (float @var{x})
1506 @deftypefunx {long double} nearbyintl (long double @var{x})
1507 @deftypefunx _FloatN nearbyintfN (_Float@var{N} @var{x})
1508 @deftypefunx _FloatNx nearbyintfNx (_Float@var{N}x @var{x})
1509 @standards{ISO, math.h}
1510 @standardsx{nearbyintfN, TS 18661-3:2015, math.h}
1511 @standardsx{nearbyintfNx, TS 18661-3:2015, math.h}
1512 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1513 These functions return the same value as the @code{rint} functions, but
1514 do not raise the inexact exception if @var{x} is not an integer.
1517 @deftypefun double round (double @var{x})
1518 @deftypefunx float roundf (float @var{x})
1519 @deftypefunx {long double} roundl (long double @var{x})
1520 @deftypefunx _FloatN roundfN (_Float@var{N} @var{x})
1521 @deftypefunx _FloatNx roundfNx (_Float@var{N}x @var{x})
1522 @standards{ISO, math.h}
1523 @standardsx{roundfN, TS 18661-3:2015, math.h}
1524 @standardsx{roundfNx, TS 18661-3:2015, math.h}
1525 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1526 These functions are similar to @code{rint}, but they round halfway
1527 cases away from zero instead of to the nearest integer (or other
1528 current rounding mode).
1531 @deftypefun double roundeven (double @var{x})
1532 @deftypefunx float roundevenf (float @var{x})
1533 @deftypefunx {long double} roundevenl (long double @var{x})
1534 @deftypefunx _FloatN roundevenfN (_Float@var{N} @var{x})
1535 @deftypefunx _FloatNx roundevenfNx (_Float@var{N}x @var{x})
1536 @standards{ISO, math.h}
1537 @standardsx{roundevenfN, TS 18661-3:2015, math.h}
1538 @standardsx{roundevenfNx, TS 18661-3:2015, math.h}
1539 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1540 These functions, from TS 18661-1:2014 and TS 18661-3:2015, are similar
1541 to @code{round}, but they round halfway cases to even instead of away
1545 @deftypefun {long int} lrint (double @var{x})
1546 @deftypefunx {long int} lrintf (float @var{x})
1547 @deftypefunx {long int} lrintl (long double @var{x})
1548 @deftypefunx {long int} lrintfN (_Float@var{N} @var{x})
1549 @deftypefunx {long int} lrintfNx (_Float@var{N}x @var{x})
1550 @standards{ISO, math.h}
1551 @standardsx{lrintfN, TS 18661-3:2015, math.h}
1552 @standardsx{lrintfNx, TS 18661-3:2015, math.h}
1553 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1554 These functions are just like @code{rint}, but they return a
1555 @code{long int} instead of a floating-point number.
1558 @deftypefun {long long int} llrint (double @var{x})
1559 @deftypefunx {long long int} llrintf (float @var{x})
1560 @deftypefunx {long long int} llrintl (long double @var{x})
1561 @deftypefunx {long long int} llrintfN (_Float@var{N} @var{x})
1562 @deftypefunx {long long int} llrintfNx (_Float@var{N}x @var{x})
1563 @standards{ISO, math.h}
1564 @standardsx{llrintfN, TS 18661-3:2015, math.h}
1565 @standardsx{llrintfNx, TS 18661-3:2015, math.h}
1566 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1567 These functions are just like @code{rint}, but they return a
1568 @code{long long int} instead of a floating-point number.
1571 @deftypefun {long int} lround (double @var{x})
1572 @deftypefunx {long int} lroundf (float @var{x})
1573 @deftypefunx {long int} lroundl (long double @var{x})
1574 @deftypefunx {long int} lroundfN (_Float@var{N} @var{x})
1575 @deftypefunx {long int} lroundfNx (_Float@var{N}x @var{x})
1576 @standards{ISO, math.h}
1577 @standardsx{lroundfN, TS 18661-3:2015, math.h}
1578 @standardsx{lroundfNx, TS 18661-3:2015, math.h}
1579 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1580 These functions are just like @code{round}, but they return a
1581 @code{long int} instead of a floating-point number.
1584 @deftypefun {long long int} llround (double @var{x})
1585 @deftypefunx {long long int} llroundf (float @var{x})
1586 @deftypefunx {long long int} llroundl (long double @var{x})
1587 @deftypefunx {long long int} llroundfN (_Float@var{N} @var{x})
1588 @deftypefunx {long long int} llroundfNx (_Float@var{N}x @var{x})
1589 @standards{ISO, math.h}
1590 @standardsx{llroundfN, TS 18661-3:2015, math.h}
1591 @standardsx{llroundfNx, TS 18661-3:2015, math.h}
1592 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1593 These functions are just like @code{round}, but they return a
1594 @code{long long int} instead of a floating-point number.
1597 @deftypefun intmax_t fromfp (double @var{x}, int @var{round}, unsigned int @var{width})
1598 @deftypefunx intmax_t fromfpf (float @var{x}, int @var{round}, unsigned int @var{width})
1599 @deftypefunx intmax_t fromfpl (long double @var{x}, int @var{round}, unsigned int @var{width})
1600 @deftypefunx intmax_t fromfpfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
1601 @deftypefunx intmax_t fromfpfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
1602 @deftypefunx uintmax_t ufromfp (double @var{x}, int @var{round}, unsigned int @var{width})
1603 @deftypefunx uintmax_t ufromfpf (float @var{x}, int @var{round}, unsigned int @var{width})
1604 @deftypefunx uintmax_t ufromfpl (long double @var{x}, int @var{round}, unsigned int @var{width})
1605 @deftypefunx uintmax_t ufromfpfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
1606 @deftypefunx uintmax_t ufromfpfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
1607 @deftypefunx intmax_t fromfpx (double @var{x}, int @var{round}, unsigned int @var{width})
1608 @deftypefunx intmax_t fromfpxf (float @var{x}, int @var{round}, unsigned int @var{width})
1609 @deftypefunx intmax_t fromfpxl (long double @var{x}, int @var{round}, unsigned int @var{width})
1610 @deftypefunx intmax_t fromfpxfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
1611 @deftypefunx intmax_t fromfpxfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
1612 @deftypefunx uintmax_t ufromfpx (double @var{x}, int @var{round}, unsigned int @var{width})
1613 @deftypefunx uintmax_t ufromfpxf (float @var{x}, int @var{round}, unsigned int @var{width})
1614 @deftypefunx uintmax_t ufromfpxl (long double @var{x}, int @var{round}, unsigned int @var{width})
1615 @deftypefunx uintmax_t ufromfpxfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
1616 @deftypefunx uintmax_t ufromfpxfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
1617 @standards{ISO, math.h}
1618 @standardsx{fromfpfN, TS 18661-3:2015, math.h}
1619 @standardsx{fromfpfNx, TS 18661-3:2015, math.h}
1620 @standardsx{ufromfpfN, TS 18661-3:2015, math.h}
1621 @standardsx{ufromfpfNx, TS 18661-3:2015, math.h}
1622 @standardsx{fromfpxfN, TS 18661-3:2015, math.h}
1623 @standardsx{fromfpxfNx, TS 18661-3:2015, math.h}
1624 @standardsx{ufromfpxfN, TS 18661-3:2015, math.h}
1625 @standardsx{ufromfpxfNx, TS 18661-3:2015, math.h}
1626 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1627 These functions, from TS 18661-1:2014 and TS 18661-3:2015, convert a
1628 floating-point number to an integer according to the rounding direction
1629 @var{round} (one of the @code{FP_INT_*} macros). If the integer is
1630 outside the range of a signed or unsigned (depending on the return type
1631 of the function) type of width @var{width} bits (or outside the range of
1632 the return type, if @var{width} is larger), or if @var{x} is infinite or
1633 NaN, or if @var{width} is zero, a domain error occurs and an unspecified
1634 value is returned. The functions with an @samp{x} in their names raise
1635 the inexact exception when a domain error does not occur and the
1636 argument is not an integer; the other functions do not raise the inexact
1641 @deftypefun double modf (double @var{value}, double *@var{integer-part})
1642 @deftypefunx float modff (float @var{value}, float *@var{integer-part})
1643 @deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
1644 @deftypefunx _FloatN modffN (_Float@var{N} @var{value}, _Float@var{N} *@var{integer-part})
1645 @deftypefunx _FloatNx modffNx (_Float@var{N}x @var{value}, _Float@var{N}x *@var{integer-part})
1646 @standards{ISO, math.h}
1647 @standardsx{modffN, TS 18661-3:2015, math.h}
1648 @standardsx{modffNx, TS 18661-3:2015, math.h}
1649 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1650 These functions break the argument @var{value} into an integer part and a
1651 fractional part (between @code{-1} and @code{1}, exclusive). Their sum
1652 equals @var{value}. Each of the parts has the same sign as @var{value},
1653 and the integer part is always rounded toward zero.
1655 @code{modf} stores the integer part in @code{*@var{integer-part}}, and
1656 returns the fractional part. For example, @code{modf (2.5, &intpart)}
1657 returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1660 @node Remainder Functions
1661 @subsection Remainder Functions
1663 The functions in this section compute the remainder on division of two
1664 floating-point numbers. Each is a little different; pick the one that
1667 @deftypefun double fmod (double @var{numerator}, double @var{denominator})
1668 @deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
1669 @deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
1670 @deftypefunx _FloatN fmodfN (_Float@var{N} @var{numerator}, _Float@var{N} @var{denominator})
1671 @deftypefunx _FloatNx fmodfNx (_Float@var{N}x @var{numerator}, _Float@var{N}x @var{denominator})
1672 @standards{ISO, math.h}
1673 @standardsx{fmodfN, TS 18661-3:2015, math.h}
1674 @standardsx{fmodfNx, TS 18661-3:2015, math.h}
1675 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1676 These functions compute the remainder from the division of
1677 @var{numerator} by @var{denominator}. Specifically, the return value is
1678 @code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1679 is the quotient of @var{numerator} divided by @var{denominator}, rounded
1680 towards zero to an integer. Thus, @w{@code{fmod (6.5, 2.3)}} returns
1681 @code{1.9}, which is @code{6.5} minus @code{4.6}.
1683 The result has the same sign as the @var{numerator} and has magnitude
1684 less than the magnitude of the @var{denominator}.
1686 If @var{denominator} is zero, @code{fmod} signals a domain error.
1689 @deftypefun double remainder (double @var{numerator}, double @var{denominator})
1690 @deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
1691 @deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1692 @deftypefunx _FloatN remainderfN (_Float@var{N} @var{numerator}, _Float@var{N} @var{denominator})
1693 @deftypefunx _FloatNx remainderfNx (_Float@var{N}x @var{numerator}, _Float@var{N}x @var{denominator})
1694 @standards{ISO, math.h}
1695 @standardsx{remainderfN, TS 18661-3:2015, math.h}
1696 @standardsx{remainderfNx, TS 18661-3:2015, math.h}
1697 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1698 These functions are like @code{fmod} except that they round the
1699 internal quotient @var{n} to the nearest integer instead of towards zero
1700 to an integer. For example, @code{remainder (6.5, 2.3)} returns
1701 @code{-0.4}, which is @code{6.5} minus @code{6.9}.
1703 The absolute value of the result is less than or equal to half the
1704 absolute value of the @var{denominator}. The difference between
1705 @code{fmod (@var{numerator}, @var{denominator})} and @code{remainder
1706 (@var{numerator}, @var{denominator})} is always either
1707 @var{denominator}, minus @var{denominator}, or zero.
1709 If @var{denominator} is zero, @code{remainder} signals a domain error.
1712 @deftypefun double drem (double @var{numerator}, double @var{denominator})
1713 @deftypefunx float dremf (float @var{numerator}, float @var{denominator})
1714 @deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
1715 @standards{BSD, math.h}
1716 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1717 This function is another name for @code{remainder}.
1720 @node FP Bit Twiddling
1721 @subsection Setting and modifying single bits of FP values
1722 @cindex FP arithmetic
1724 There are some operations that are too complicated or expensive to
1725 perform by hand on floating-point numbers. @w{ISO C99} defines
1726 functions to do these operations, which mostly involve changing single
1729 @deftypefun double copysign (double @var{x}, double @var{y})
1730 @deftypefunx float copysignf (float @var{x}, float @var{y})
1731 @deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
1732 @deftypefunx _FloatN copysignfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
1733 @deftypefunx _FloatNx copysignfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
1734 @standards{ISO, math.h}
1735 @standardsx{copysignfN, TS 18661-3:2015, math.h}
1736 @standardsx{copysignfNx, TS 18661-3:2015, math.h}
1737 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1738 These functions return @var{x} but with the sign of @var{y}. They work
1739 even if @var{x} or @var{y} are NaN or zero. Both of these can carry a
1740 sign (although not all implementations support it) and this is one of
1741 the few operations that can tell the difference.
1743 @code{copysign} never raises an exception.
1744 @c except signalling NaNs
1746 This function is defined in @w{IEC 559} (and the appendix with
1747 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1750 @deftypefun int signbit (@emph{float-type} @var{x})
1751 @standards{ISO, math.h}
1752 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1753 @code{signbit} is a generic macro which can work on all floating-point
1754 types. It returns a nonzero value if the value of @var{x} has its sign
1757 This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1758 point allows zero to be signed. The comparison @code{-0.0 < 0.0} is
1759 false, but @code{signbit (-0.0)} will return a nonzero value.
1762 @deftypefun double nextafter (double @var{x}, double @var{y})
1763 @deftypefunx float nextafterf (float @var{x}, float @var{y})
1764 @deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1765 @deftypefunx _FloatN nextafterfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
1766 @deftypefunx _FloatNx nextafterfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
1767 @standards{ISO, math.h}
1768 @standardsx{nextafterfN, TS 18661-3:2015, math.h}
1769 @standardsx{nextafterfNx, TS 18661-3:2015, math.h}
1770 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1771 The @code{nextafter} function returns the next representable neighbor of
1772 @var{x} in the direction towards @var{y}. The size of the step between
1773 @var{x} and the result depends on the type of the result. If
1774 @math{@var{x} = @var{y}} the function simply returns @var{y}. If either
1775 value is @code{NaN}, @code{NaN} is returned. Otherwise
1776 a value corresponding to the value of the least significant bit in the
1777 mantissa is added or subtracted, depending on the direction.
1778 @code{nextafter} will signal overflow or underflow if the result goes
1779 outside of the range of normalized numbers.
1781 This function is defined in @w{IEC 559} (and the appendix with
1782 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1785 @deftypefun double nexttoward (double @var{x}, long double @var{y})
1786 @deftypefunx float nexttowardf (float @var{x}, long double @var{y})
1787 @deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
1788 @standards{ISO, math.h}
1789 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1790 These functions are identical to the corresponding versions of
1791 @code{nextafter} except that their second argument is a @code{long
1795 @deftypefun double nextup (double @var{x})
1796 @deftypefunx float nextupf (float @var{x})
1797 @deftypefunx {long double} nextupl (long double @var{x})
1798 @deftypefunx _FloatN nextupfN (_Float@var{N} @var{x})
1799 @deftypefunx _FloatNx nextupfNx (_Float@var{N}x @var{x})
1800 @standards{ISO, math.h}
1801 @standardsx{nextupfN, TS 18661-3:2015, math.h}
1802 @standardsx{nextupfNx, TS 18661-3:2015, math.h}
1803 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1804 The @code{nextup} function returns the next representable neighbor of @var{x}
1805 in the direction of positive infinity. If @var{x} is the smallest negative
1806 subnormal number in the type of @var{x} the function returns @code{-0}. If
1807 @math{@var{x} = @code{0}} the function returns the smallest positive subnormal
1808 number in the type of @var{x}. If @var{x} is NaN, NaN is returned.
1809 If @var{x} is @math{+@infinity{}}, @math{+@infinity{}} is returned.
1810 @code{nextup} is from TS 18661-1:2014 and TS 18661-3:2015.
1811 @code{nextup} never raises an exception except for signaling NaNs.
1814 @deftypefun double nextdown (double @var{x})
1815 @deftypefunx float nextdownf (float @var{x})
1816 @deftypefunx {long double} nextdownl (long double @var{x})
1817 @deftypefunx _FloatN nextdownfN (_Float@var{N} @var{x})
1818 @deftypefunx _FloatNx nextdownfNx (_Float@var{N}x @var{x})
1819 @standards{ISO, math.h}
1820 @standardsx{nextdownfN, TS 18661-3:2015, math.h}
1821 @standardsx{nextdownfNx, TS 18661-3:2015, math.h}
1822 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1823 The @code{nextdown} function returns the next representable neighbor of @var{x}
1824 in the direction of negative infinity. If @var{x} is the smallest positive
1825 subnormal number in the type of @var{x} the function returns @code{+0}. If
1826 @math{@var{x} = @code{0}} the function returns the smallest negative subnormal
1827 number in the type of @var{x}. If @var{x} is NaN, NaN is returned.
1828 If @var{x} is @math{-@infinity{}}, @math{-@infinity{}} is returned.
1829 @code{nextdown} is from TS 18661-1:2014 and TS 18661-3:2015.
1830 @code{nextdown} never raises an exception except for signaling NaNs.
1834 @deftypefun double nan (const char *@var{tagp})
1835 @deftypefunx float nanf (const char *@var{tagp})
1836 @deftypefunx {long double} nanl (const char *@var{tagp})
1837 @deftypefunx _FloatN nanfN (const char *@var{tagp})
1838 @deftypefunx _FloatNx nanfNx (const char *@var{tagp})
1839 @standards{ISO, math.h}
1840 @standardsx{nanfN, TS 18661-3:2015, math.h}
1841 @standardsx{nanfNx, TS 18661-3:2015, math.h}
1842 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1843 @c The unsafe-but-ruled-safe locale use comes from strtod.
1844 The @code{nan} function returns a representation of NaN, provided that
1845 NaN is supported by the target platform.
1846 @code{nan ("@var{n-char-sequence}")} is equivalent to
1847 @code{strtod ("NAN(@var{n-char-sequence})")}.
1849 The argument @var{tagp} is used in an unspecified manner. On @w{IEEE
1850 754} systems, there are many representations of NaN, and @var{tagp}
1851 selects one. On other systems it may do nothing.
1854 @deftypefun int canonicalize (double *@var{cx}, const double *@var{x})
1855 @deftypefunx int canonicalizef (float *@var{cx}, const float *@var{x})
1856 @deftypefunx int canonicalizel (long double *@var{cx}, const long double *@var{x})
1857 @deftypefunx int canonicalizefN (_Float@var{N} *@var{cx}, const _Float@var{N} *@var{x})
1858 @deftypefunx int canonicalizefNx (_Float@var{N}x *@var{cx}, const _Float@var{N}x *@var{x})
1859 @standards{ISO, math.h}
1860 @standardsx{canonicalizefN, TS 18661-3:2015, math.h}
1861 @standardsx{canonicalizefNx, TS 18661-3:2015, math.h}
1862 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1863 In some floating-point formats, some values have canonical (preferred)
1864 and noncanonical encodings (for IEEE interchange binary formats, all
1865 encodings are canonical). These functions, defined by TS
1866 18661-1:2014 and TS 18661-3:2015, attempt to produce a canonical version
1867 of the floating-point value pointed to by @var{x}; if that value is a
1868 signaling NaN, they raise the invalid exception and produce a quiet
1869 NaN. If a canonical value is produced, it is stored in the object
1870 pointed to by @var{cx}, and these functions return zero. Otherwise
1871 (if a canonical value could not be produced because the object pointed
1872 to by @var{x} is not a valid representation of any floating-point
1873 value), the object pointed to by @var{cx} is unchanged and a nonzero
1876 Note that some formats have multiple encodings of a value which are
1877 all equally canonical; when such an encoding is used as an input to
1878 this function, any such encoding of the same value (or of the
1879 corresponding quiet NaN, if that value is a signaling NaN) may be
1883 @deftypefun double getpayload (const double *@var{x})
1884 @deftypefunx float getpayloadf (const float *@var{x})
1885 @deftypefunx {long double} getpayloadl (const long double *@var{x})
1886 @deftypefunx _FloatN getpayloadfN (const _Float@var{N} *@var{x})
1887 @deftypefunx _FloatNx getpayloadfNx (const _Float@var{N}x *@var{x})
1888 @standards{ISO, math.h}
1889 @standardsx{getpayloadfN, TS 18661-3:2015, math.h}
1890 @standardsx{getpayloadfNx, TS 18661-3:2015, math.h}
1891 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1892 IEEE 754 defines the @dfn{payload} of a NaN to be an integer value
1893 encoded in the representation of the NaN. Payloads are typically
1894 propagated from NaN inputs to the result of a floating-point
1895 operation. These functions, defined by TS 18661-1:2014 and TS
1896 18661-3:2015, return the payload of the NaN pointed to by @var{x}
1897 (returned as a positive integer, or positive zero, represented as a
1898 floating-point number); if @var{x} is not a NaN, they return an
1899 unspecified value. They raise no floating-point exceptions even for
1903 @deftypefun int setpayload (double *@var{x}, double @var{payload})
1904 @deftypefunx int setpayloadf (float *@var{x}, float @var{payload})
1905 @deftypefunx int setpayloadl (long double *@var{x}, long double @var{payload})
1906 @deftypefunx int setpayloadfN (_Float@var{N} *@var{x}, _Float@var{N} @var{payload})
1907 @deftypefunx int setpayloadfNx (_Float@var{N}x *@var{x}, _Float@var{N}x @var{payload})
1908 @standards{ISO, math.h}
1909 @standardsx{setpayloadfN, TS 18661-3:2015, math.h}
1910 @standardsx{setpayloadfNx, TS 18661-3:2015, math.h}
1911 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1912 These functions, defined by TS 18661-1:2014 and TS 18661-3:2015, set the
1913 object pointed to by @var{x} to a quiet NaN with payload @var{payload}
1914 and a zero sign bit and return zero. If @var{payload} is not a
1915 positive-signed integer that is a valid payload for a quiet NaN of the
1916 given type, the object pointed to by @var{x} is set to positive zero and
1917 a nonzero value is returned. They raise no floating-point exceptions.
1920 @deftypefun int setpayloadsig (double *@var{x}, double @var{payload})
1921 @deftypefunx int setpayloadsigf (float *@var{x}, float @var{payload})
1922 @deftypefunx int setpayloadsigl (long double *@var{x}, long double @var{payload})
1923 @deftypefunx int setpayloadsigfN (_Float@var{N} *@var{x}, _Float@var{N} @var{payload})
1924 @deftypefunx int setpayloadsigfNx (_Float@var{N}x *@var{x}, _Float@var{N}x @var{payload})
1925 @standards{ISO, math.h}
1926 @standardsx{setpayloadsigfN, TS 18661-3:2015, math.h}
1927 @standardsx{setpayloadsigfNx, TS 18661-3:2015, math.h}
1928 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1929 These functions, defined by TS 18661-1:2014 and TS 18661-3:2015, set the
1930 object pointed to by @var{x} to a signaling NaN with payload
1931 @var{payload} and a zero sign bit and return zero. If @var{payload} is
1932 not a positive-signed integer that is a valid payload for a signaling
1933 NaN of the given type, the object pointed to by @var{x} is set to
1934 positive zero and a nonzero value is returned. They raise no
1935 floating-point exceptions.
1938 @node FP Comparison Functions
1939 @subsection Floating-Point Comparison Functions
1940 @cindex unordered comparison
1942 The standard C comparison operators provoke exceptions when one or other
1943 of the operands is NaN. For example,
1950 will raise an exception if @var{a} is NaN. (This does @emph{not}
1951 happen with @code{==} and @code{!=}; those merely return false and true,
1952 respectively, when NaN is examined.) Frequently this exception is
1953 undesirable. @w{ISO C99} therefore defines comparison functions that
1954 do not raise exceptions when NaN is examined. All of the functions are
1955 implemented as macros which allow their arguments to be of any
1956 floating-point type. The macros are guaranteed to evaluate their
1957 arguments only once. TS 18661-1:2014 adds such a macro for an
1958 equality comparison that @emph{does} raise an exception for a NaN
1959 argument; it also adds functions that provide a total ordering on all
1960 floating-point values, including NaNs, without raising any exceptions
1961 even for signaling NaNs.
1963 @deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1964 @standards{ISO, math.h}
1965 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1966 This macro determines whether the argument @var{x} is greater than
1967 @var{y}. It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1968 exception is raised if @var{x} or @var{y} are NaN.
1971 @deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1972 @standards{ISO, math.h}
1973 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1974 This macro determines whether the argument @var{x} is greater than or
1975 equal to @var{y}. It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1976 exception is raised if @var{x} or @var{y} are NaN.
1979 @deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1980 @standards{ISO, math.h}
1981 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1982 This macro determines whether the argument @var{x} is less than @var{y}.
1983 It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1984 raised if @var{x} or @var{y} are NaN.
1987 @deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1988 @standards{ISO, math.h}
1989 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1990 This macro determines whether the argument @var{x} is less than or equal
1991 to @var{y}. It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1992 exception is raised if @var{x} or @var{y} are NaN.
1995 @deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1996 @standards{ISO, math.h}
1997 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1998 This macro determines whether the argument @var{x} is less or greater
1999 than @var{y}. It is equivalent to @code{(@var{x}) < (@var{y}) ||
2000 (@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
2001 once), but no exception is raised if @var{x} or @var{y} are NaN.
2003 This macro is not equivalent to @code{@var{x} != @var{y}}, because that
2004 expression is true if @var{x} or @var{y} are NaN.
2007 @deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2008 @standards{ISO, math.h}
2009 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2010 This macro determines whether its arguments are unordered. In other
2011 words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
2014 @deftypefn Macro int iseqsig (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2015 @standards{ISO, math.h}
2016 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2017 This macro determines whether its arguments are equal. It is
2018 equivalent to @code{(@var{x}) == (@var{y})}, but it raises the invalid
2019 exception and sets @code{errno} to @code{EDOM} if either argument is a
2023 @deftypefun int totalorder (const double *@var{x}, const double *@var{y})
2024 @deftypefunx int totalorderf (const float *@var{x}, const float *@var{y})
2025 @deftypefunx int totalorderl (const long double *@var{x}, const long double *@var{y})
2026 @deftypefunx int totalorderfN (const _Float@var{N} *@var{x}, const _Float@var{N} *@var{y})
2027 @deftypefunx int totalorderfNx (const _Float@var{N}x *@var{x}, const _Float@var{N}x *@var{y})
2028 @standards{TS 18661-1:2014, math.h}
2029 @standardsx{totalorderfN, TS 18661-3:2015, math.h}
2030 @standardsx{totalorderfNx, TS 18661-3:2015, math.h}
2031 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2032 These functions determine whether the total order relationship,
2033 defined in IEEE 754-2008, is true for @code{*@var{x}} and
2034 @code{*@var{y}}, returning
2035 nonzero if it is true and zero if it is false. No exceptions are
2036 raised even for signaling NaNs. The relationship is true if they are
2037 the same floating-point value (including sign for zero and NaNs, and
2038 payload for NaNs), or if @code{*@var{x}} comes before @code{*@var{y}}
2040 order: negative quiet NaNs, in order of decreasing payload; negative
2041 signaling NaNs, in order of decreasing payload; negative infinity;
2042 finite numbers, in ascending order, with negative zero before positive
2043 zero; positive infinity; positive signaling NaNs, in order of
2044 increasing payload; positive quiet NaNs, in order of increasing
2048 @deftypefun int totalordermag (const double *@var{x}, const double *@var{y})
2049 @deftypefunx int totalordermagf (const float *@var{x}, const float *@var{y})
2050 @deftypefunx int totalordermagl (const long double *@var{x}, const long double *@var{y})
2051 @deftypefunx int totalordermagfN (const _Float@var{N} *@var{x}, const _Float@var{N} *@var{y})
2052 @deftypefunx int totalordermagfNx (const _Float@var{N}x *@var{x}, const _Float@var{N}x *@var{y})
2053 @standards{TS 18661-1:2014, math.h}
2054 @standardsx{totalordermagfN, TS 18661-3:2015, math.h}
2055 @standardsx{totalordermagfNx, TS 18661-3:2015, math.h}
2056 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2057 These functions determine whether the total order relationship,
2058 defined in IEEE 754-2008, is true for the absolute values of @code{*@var{x}}
2059 and @code{*@var{y}}, returning nonzero if it is true and zero if it is false.
2060 No exceptions are raised even for signaling NaNs.
2063 Not all machines provide hardware support for these operations. On
2064 machines that don't, the macros can be very slow. Therefore, you should
2065 not use these functions when NaN is not a concern.
2067 @strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
2068 They are unnecessary, because the @code{==} and @code{!=} operators do
2069 @emph{not} throw an exception if one or both of the operands are NaN.
2071 @node Misc FP Arithmetic
2072 @subsection Miscellaneous FP arithmetic functions
2075 @cindex positive difference
2076 @cindex multiply-add
2078 The functions in this section perform miscellaneous but common
2079 operations that are awkward to express with C operators. On some
2080 processors these functions can use special machine instructions to
2081 perform these operations faster than the equivalent C code.
2083 @deftypefun double fmin (double @var{x}, double @var{y})
2084 @deftypefunx float fminf (float @var{x}, float @var{y})
2085 @deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
2086 @deftypefunx _FloatN fminfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2087 @deftypefunx _FloatNx fminfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2088 @standards{ISO, math.h}
2089 @standardsx{fminfN, TS 18661-3:2015, math.h}
2090 @standardsx{fminfNx, TS 18661-3:2015, math.h}
2091 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2092 The @code{fmin} function returns the lesser of the two values @var{x}
2093 and @var{y}. It is similar to the expression
2095 ((x) < (y) ? (x) : (y))
2097 except that @var{x} and @var{y} are only evaluated once.
2099 If an argument is NaN, the other argument is returned. If both arguments
2100 are NaN, NaN is returned.
2103 @deftypefun double fmax (double @var{x}, double @var{y})
2104 @deftypefunx float fmaxf (float @var{x}, float @var{y})
2105 @deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
2106 @deftypefunx _FloatN fmaxfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2107 @deftypefunx _FloatNx fmaxfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2108 @standards{ISO, math.h}
2109 @standardsx{fmaxfN, TS 18661-3:2015, math.h}
2110 @standardsx{fmaxfNx, TS 18661-3:2015, math.h}
2111 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2112 The @code{fmax} function returns the greater of the two values @var{x}
2115 If an argument is NaN, the other argument is returned. If both arguments
2116 are NaN, NaN is returned.
2119 @deftypefun double fminmag (double @var{x}, double @var{y})
2120 @deftypefunx float fminmagf (float @var{x}, float @var{y})
2121 @deftypefunx {long double} fminmagl (long double @var{x}, long double @var{y})
2122 @deftypefunx _FloatN fminmagfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2123 @deftypefunx _FloatNx fminmagfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2124 @standards{ISO, math.h}
2125 @standardsx{fminmagfN, TS 18661-3:2015, math.h}
2126 @standardsx{fminmagfNx, TS 18661-3:2015, math.h}
2127 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2128 These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2129 whichever of the two values @var{x} and @var{y} has the smaller absolute
2130 value. If both have the same absolute value, or either is NaN, they
2131 behave the same as the @code{fmin} functions.
2134 @deftypefun double fmaxmag (double @var{x}, double @var{y})
2135 @deftypefunx float fmaxmagf (float @var{x}, float @var{y})
2136 @deftypefunx {long double} fmaxmagl (long double @var{x}, long double @var{y})
2137 @deftypefunx _FloatN fmaxmagfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2138 @deftypefunx _FloatNx fmaxmagfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2139 @standards{ISO, math.h}
2140 @standardsx{fmaxmagfN, TS 18661-3:2015, math.h}
2141 @standardsx{fmaxmagfNx, TS 18661-3:2015, math.h}
2142 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2143 These functions, from TS 18661-1:2014, return whichever of the two
2144 values @var{x} and @var{y} has the greater absolute value. If both
2145 have the same absolute value, or either is NaN, they behave the same
2146 as the @code{fmax} functions.
2149 @deftypefun double fdim (double @var{x}, double @var{y})
2150 @deftypefunx float fdimf (float @var{x}, float @var{y})
2151 @deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
2152 @deftypefunx _FloatN fdimfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2153 @deftypefunx _FloatNx fdimfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2154 @standards{ISO, math.h}
2155 @standardsx{fdimfN, TS 18661-3:2015, math.h}
2156 @standardsx{fdimfNx, TS 18661-3:2015, math.h}
2157 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2158 The @code{fdim} function returns the positive difference between
2159 @var{x} and @var{y}. The positive difference is @math{@var{x} -
2160 @var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
2162 If @var{x}, @var{y}, or both are NaN, NaN is returned.
2165 @deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
2166 @deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
2167 @deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
2168 @deftypefunx _FloatN fmafN (_Float@var{N} @var{x}, _Float@var{N} @var{y}, _Float@var{N} @var{z})
2169 @deftypefunx _FloatNx fmafNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y}, _Float@var{N}x @var{z})
2170 @standards{ISO, math.h}
2171 @standardsx{fmafN, TS 18661-3:2015, math.h}
2172 @standardsx{fmafNx, TS 18661-3:2015, math.h}
2174 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2175 The @code{fma} function performs floating-point multiply-add. This is
2176 the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
2177 intermediate result is not rounded to the destination type. This can
2178 sometimes improve the precision of a calculation.
2180 This function was introduced because some processors have a special
2181 instruction to perform multiply-add. The C compiler cannot use it
2182 directly, because the expression @samp{x*y + z} is defined to round the
2183 intermediate result. @code{fma} lets you choose when you want to round
2187 On processors which do not implement multiply-add in hardware,
2188 @code{fma} can be very slow since it must avoid intermediate rounding.
2189 @file{math.h} defines the symbols @code{FP_FAST_FMA},
2190 @code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
2191 version of @code{fma} is no slower than the expression @samp{x*y + z}.
2192 In @theglibc{}, this always means the operation is implemented in
2196 @deftypefun float fadd (double @var{x}, double @var{y})
2197 @deftypefunx float faddl (long double @var{x}, long double @var{y})
2198 @deftypefunx double daddl (long double @var{x}, long double @var{y})
2199 @deftypefunx _FloatM fMaddfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2200 @deftypefunx _FloatM fMaddfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2201 @deftypefunx _FloatMx fMxaddfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2202 @deftypefunx _FloatMx fMxaddfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2203 @standards{TS 18661-1:2014, math.h}
2204 @standardsx{fMaddfN, TS 18661-3:2015, math.h}
2205 @standardsx{fMaddfNx, TS 18661-3:2015, math.h}
2206 @standardsx{fMxaddfN, TS 18661-3:2015, math.h}
2207 @standardsx{fMxaddfNx, TS 18661-3:2015, math.h}
2208 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2209 These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2210 @math{@var{x} + @var{y}}, rounded once to the return type of the
2211 function without any intermediate rounding to the type of the
2215 @deftypefun float fsub (double @var{x}, double @var{y})
2216 @deftypefunx float fsubl (long double @var{x}, long double @var{y})
2217 @deftypefunx double dsubl (long double @var{x}, long double @var{y})
2218 @deftypefunx _FloatM fMsubfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2219 @deftypefunx _FloatM fMsubfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2220 @deftypefunx _FloatMx fMxsubfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2221 @deftypefunx _FloatMx fMxsubfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2222 @standards{TS 18661-1:2014, math.h}
2223 @standardsx{fMsubfN, TS 18661-3:2015, math.h}
2224 @standardsx{fMsubfNx, TS 18661-3:2015, math.h}
2225 @standardsx{fMxsubfN, TS 18661-3:2015, math.h}
2226 @standardsx{fMxsubfNx, TS 18661-3:2015, math.h}
2227 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2228 These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2229 @math{@var{x} - @var{y}}, rounded once to the return type of the
2230 function without any intermediate rounding to the type of the
2234 @deftypefun float fmul (double @var{x}, double @var{y})
2235 @deftypefunx float fmull (long double @var{x}, long double @var{y})
2236 @deftypefunx double dmull (long double @var{x}, long double @var{y})
2237 @deftypefunx _FloatM fMmulfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2238 @deftypefunx _FloatM fMmulfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2239 @deftypefunx _FloatMx fMxmulfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2240 @deftypefunx _FloatMx fMxmulfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2241 @standards{TS 18661-1:2014, math.h}
2242 @standardsx{fMmulfN, TS 18661-3:2015, math.h}
2243 @standardsx{fMmulfNx, TS 18661-3:2015, math.h}
2244 @standardsx{fMxmulfN, TS 18661-3:2015, math.h}
2245 @standardsx{fMxmulfNx, TS 18661-3:2015, math.h}
2246 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2247 These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2248 @math{@var{x} * @var{y}}, rounded once to the return type of the
2249 function without any intermediate rounding to the type of the
2253 @deftypefun float fdiv (double @var{x}, double @var{y})
2254 @deftypefunx float fdivl (long double @var{x}, long double @var{y})
2255 @deftypefunx double ddivl (long double @var{x}, long double @var{y})
2256 @deftypefunx _FloatM fMdivfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2257 @deftypefunx _FloatM fMdivfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2258 @deftypefunx _FloatMx fMxdivfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2259 @deftypefunx _FloatMx fMxdivfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2260 @standards{TS 18661-1:2014, math.h}
2261 @standardsx{fMdivfN, TS 18661-3:2015, math.h}
2262 @standardsx{fMdivfNx, TS 18661-3:2015, math.h}
2263 @standardsx{fMxdivfN, TS 18661-3:2015, math.h}
2264 @standardsx{fMxdivfNx, TS 18661-3:2015, math.h}
2265 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2266 These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2267 @math{@var{x} / @var{y}}, rounded once to the return type of the
2268 function without any intermediate rounding to the type of the
2272 @node Complex Numbers
2273 @section Complex Numbers
2275 @cindex complex numbers
2277 @w{ISO C99} introduces support for complex numbers in C. This is done
2278 with a new type qualifier, @code{complex}. It is a keyword if and only
2279 if @file{complex.h} has been included. There are three complex types,
2280 corresponding to the three real types: @code{float complex},
2281 @code{double complex}, and @code{long double complex}.
2283 Likewise, on machines that have support for @code{_Float@var{N}} or
2284 @code{_Float@var{N}x} enabled, the complex types @code{_Float@var{N}
2285 complex} and @code{_Float@var{N}x complex} are also available if
2286 @file{complex.h} has been included; @pxref{Mathematics}.
2288 To construct complex numbers you need a way to indicate the imaginary
2289 part of a number. There is no standard notation for an imaginary
2290 floating point constant. Instead, @file{complex.h} defines two macros
2291 that can be used to create complex numbers.
2293 @deftypevr Macro {const float complex} _Complex_I
2294 @standards{C99, complex.h}
2295 This macro is a representation of the complex number ``@math{0+1i}''.
2296 Multiplying a real floating-point value by @code{_Complex_I} gives a
2297 complex number whose value is purely imaginary. You can use this to
2298 construct complex constants:
2301 @math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
2304 Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
2305 the type of that value is @code{complex}.
2308 @c Put this back in when gcc supports _Imaginary_I. It's too confusing.
2311 Without an optimizing compiler this is more expensive than the use of
2312 @code{_Imaginary_I} but with is better than nothing. You can avoid all
2313 the hassles if you use the @code{I} macro below if the name is not
2316 @deftypevr Macro {const float imaginary} _Imaginary_I
2317 This macro is a representation of the value ``@math{1i}''. I.e., it is
2321 _Imaginary_I * _Imaginary_I = -1
2325 The result is not of type @code{float imaginary} but instead @code{float}.
2326 One can use it to easily construct complex number like in
2329 3.0 - _Imaginary_I * 4.0
2333 which results in the complex number with a real part of 3.0 and a
2334 imaginary part -4.0.
2339 @code{_Complex_I} is a bit of a mouthful. @file{complex.h} also defines
2340 a shorter name for the same constant.
2342 @deftypevr Macro {const float complex} I
2343 @standards{C99, complex.h}
2344 This macro has exactly the same value as @code{_Complex_I}. Most of the
2345 time it is preferable. However, it causes problems if you want to use
2346 the identifier @code{I} for something else. You can safely write
2349 #include <complex.h>
2354 if you need @code{I} for your own purposes. (In that case we recommend
2355 you also define some other short name for @code{_Complex_I}, such as
2359 If the implementation does not support the @code{imaginary} types
2360 @code{I} is defined as @code{_Complex_I} which is the second best
2361 solution. It still can be used in the same way but requires a most
2362 clever compiler to get the same results.
2366 @node Operations on Complex
2367 @section Projections, Conjugates, and Decomposing of Complex Numbers
2368 @cindex project complex numbers
2369 @cindex conjugate complex numbers
2370 @cindex decompose complex numbers
2373 @w{ISO C99} also defines functions that perform basic operations on
2374 complex numbers, such as decomposition and conjugation. The prototypes
2375 for all these functions are in @file{complex.h}. All functions are
2376 available in three variants, one for each of the three complex types.
2378 @deftypefun double creal (complex double @var{z})
2379 @deftypefunx float crealf (complex float @var{z})
2380 @deftypefunx {long double} creall (complex long double @var{z})
2381 @deftypefunx _FloatN crealfN (complex _Float@var{N} @var{z})
2382 @deftypefunx _FloatNx crealfNx (complex _Float@var{N}x @var{z})
2383 @standards{ISO, complex.h}
2384 @standardsx{crealfN, TS 18661-3:2015, complex.h}
2385 @standardsx{crealfNx, TS 18661-3:2015, complex.h}
2386 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2387 These functions return the real part of the complex number @var{z}.
2390 @deftypefun double cimag (complex double @var{z})
2391 @deftypefunx float cimagf (complex float @var{z})
2392 @deftypefunx {long double} cimagl (complex long double @var{z})
2393 @deftypefunx _FloatN cimagfN (complex _Float@var{N} @var{z})
2394 @deftypefunx _FloatNx cimagfNx (complex _Float@var{N}x @var{z})
2395 @standards{ISO, complex.h}
2396 @standardsx{cimagfN, TS 18661-3:2015, complex.h}
2397 @standardsx{cimagfNx, TS 18661-3:2015, complex.h}
2398 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2399 These functions return the imaginary part of the complex number @var{z}.
2402 @deftypefun {complex double} conj (complex double @var{z})
2403 @deftypefunx {complex float} conjf (complex float @var{z})
2404 @deftypefunx {complex long double} conjl (complex long double @var{z})
2405 @deftypefunx {complex _FloatN} conjfN (complex _Float@var{N} @var{z})
2406 @deftypefunx {complex _FloatNx} conjfNx (complex _Float@var{N}x @var{z})
2407 @standards{ISO, complex.h}
2408 @standardsx{conjfN, TS 18661-3:2015, complex.h}
2409 @standardsx{conjfNx, TS 18661-3:2015, complex.h}
2410 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2411 These functions return the conjugate value of the complex number
2412 @var{z}. The conjugate of a complex number has the same real part and a
2413 negated imaginary part. In other words, @samp{conj(a + bi) = a + -bi}.
2416 @deftypefun double carg (complex double @var{z})
2417 @deftypefunx float cargf (complex float @var{z})
2418 @deftypefunx {long double} cargl (complex long double @var{z})
2419 @deftypefunx _FloatN cargfN (complex _Float@var{N} @var{z})
2420 @deftypefunx _FloatNx cargfNx (complex _Float@var{N}x @var{z})
2421 @standards{ISO, complex.h}
2422 @standardsx{cargfN, TS 18661-3:2015, complex.h}
2423 @standardsx{cargfNx, TS 18661-3:2015, complex.h}
2424 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2425 These functions return the argument of the complex number @var{z}.
2426 The argument of a complex number is the angle in the complex plane
2427 between the positive real axis and a line passing through zero and the
2428 number. This angle is measured in the usual fashion and ranges from
2429 @math{-@pi{}} to @math{@pi{}}.
2431 @code{carg} has a branch cut along the negative real axis.
2434 @deftypefun {complex double} cproj (complex double @var{z})
2435 @deftypefunx {complex float} cprojf (complex float @var{z})
2436 @deftypefunx {complex long double} cprojl (complex long double @var{z})
2437 @deftypefunx {complex _FloatN} cprojfN (complex _Float@var{N} @var{z})
2438 @deftypefunx {complex _FloatNx} cprojfNx (complex _Float@var{N}x @var{z})
2439 @standards{ISO, complex.h}
2440 @standardsx{cprojfN, TS 18661-3:2015, complex.h}
2441 @standardsx{cprojfNx, TS 18661-3:2015, complex.h}
2442 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2443 These functions return the projection of the complex value @var{z} onto
2444 the Riemann sphere. Values with an infinite imaginary part are projected
2445 to positive infinity on the real axis, even if the real part is NaN. If
2446 the real part is infinite, the result is equivalent to
2449 INFINITY + I * copysign (0.0, cimag (z))
2453 @node Parsing of Numbers
2454 @section Parsing of Numbers
2455 @cindex parsing numbers (in formatted input)
2456 @cindex converting strings to numbers
2457 @cindex number syntax, parsing
2458 @cindex syntax, for reading numbers
2460 This section describes functions for ``reading'' integer and
2461 floating-point numbers from a string. It may be more convenient in some
2462 cases to use @code{sscanf} or one of the related functions; see
2463 @ref{Formatted Input}. But often you can make a program more robust by
2464 finding the tokens in the string by hand, then converting the numbers
2468 * Parsing of Integers:: Functions for conversion of integer values.
2469 * Parsing of Floats:: Functions for conversion of floating-point
2473 @node Parsing of Integers
2474 @subsection Parsing of Integers
2478 The @samp{str} functions are declared in @file{stdlib.h} and those
2479 beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2480 wonder about the use of @code{restrict} in the prototypes of the
2481 functions in this section. It is seemingly useless but the @w{ISO C}
2482 standard uses it (for the functions defined there) so we have to do it
2485 @deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2486 @standards{ISO, stdlib.h}
2487 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2488 @c strtol uses the thread-local pointer to the locale in effect, and
2489 @c strtol_l loads the LC_NUMERIC locale data from it early on and once,
2490 @c but if the locale is the global locale, and another thread calls
2491 @c setlocale in a way that modifies the pointer to the LC_CTYPE locale
2492 @c category, the behavior of e.g. IS*, TOUPPER will vary throughout the
2493 @c execution of the function, because they re-read the locale data from
2494 @c the given locale pointer. We solved this by documenting setlocale as
2496 The @code{strtol} (``string-to-long'') function converts the initial
2497 part of @var{string} to a signed integer, which is returned as a value
2498 of type @code{long int}.
2500 This function attempts to decompose @var{string} as follows:
2504 A (possibly empty) sequence of whitespace characters. Which characters
2505 are whitespace is determined by the @code{isspace} function
2506 (@pxref{Classification of Characters}). These are discarded.
2509 An optional plus or minus sign (@samp{+} or @samp{-}).
2512 A nonempty sequence of digits in the radix specified by @var{base}.
2514 If @var{base} is zero, decimal radix is assumed unless the series of
2515 digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2516 @samp{0X} (specifying hexadecimal radix); in other words, the same
2517 syntax used for integer constants in C.
2519 Otherwise @var{base} must have a value between @code{2} and @code{36}.
2520 If @var{base} is @code{16}, the digits may optionally be preceded by
2521 @samp{0x} or @samp{0X}. If base has no legal value the value returned
2522 is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
2525 Any remaining characters in the string. If @var{tailptr} is not a null
2526 pointer, @code{strtol} stores a pointer to this tail in
2527 @code{*@var{tailptr}}.
2530 If the string is empty, contains only whitespace, or does not contain an
2531 initial substring that has the expected syntax for an integer in the
2532 specified @var{base}, no conversion is performed. In this case,
2533 @code{strtol} returns a value of zero and the value stored in
2534 @code{*@var{tailptr}} is the value of @var{string}.
2536 In a locale other than the standard @code{"C"} locale, this function
2537 may recognize additional implementation-dependent syntax.
2539 If the string has valid syntax for an integer but the value is not
2540 representable because of overflow, @code{strtol} returns either
2541 @code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2542 appropriate for the sign of the value. It also sets @code{errno}
2543 to @code{ERANGE} to indicate there was overflow.
2545 You should not check for errors by examining the return value of
2546 @code{strtol}, because the string might be a valid representation of
2547 @code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}. Instead, check whether
2548 @var{tailptr} points to what you expect after the number
2549 (e.g. @code{'\0'} if the string should end after the number). You also
2550 need to clear @code{errno} before the call and check it afterward, in
2551 case there was overflow.
2553 There is an example at the end of this section.
2556 @deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2557 @standards{ISO, wchar.h}
2558 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2559 The @code{wcstol} function is equivalent to the @code{strtol} function
2560 in nearly all aspects but handles wide character strings.
2562 The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2565 @deftypefun {unsigned long int} strtoul (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2566 @standards{ISO, stdlib.h}
2567 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2568 The @code{strtoul} (``string-to-unsigned-long'') function is like
2569 @code{strtol} except it converts to an @code{unsigned long int} value.
2570 The syntax is the same as described above for @code{strtol}. The value
2571 returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2573 If @var{string} depicts a negative number, @code{strtoul} acts the same
2574 as @var{strtol} but casts the result to an unsigned integer. That means
2575 for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
2576 and an input more negative than @code{LONG_MIN} returns
2577 (@code{ULONG_MAX} + 1) / 2.
2579 @code{strtoul} sets @code{errno} to @code{EINVAL} if @var{base} is out of
2580 range, or @code{ERANGE} on overflow.
2583 @deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2584 @standards{ISO, wchar.h}
2585 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2586 The @code{wcstoul} function is equivalent to the @code{strtoul} function
2587 in nearly all aspects but handles wide character strings.
2589 The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2592 @deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2593 @standards{ISO, stdlib.h}
2594 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2595 The @code{strtoll} function is like @code{strtol} except that it returns
2596 a @code{long long int} value, and accepts numbers with a correspondingly
2599 If the string has valid syntax for an integer but the value is not
2600 representable because of overflow, @code{strtoll} returns either
2601 @code{LLONG_MAX} or @code{LLONG_MIN} (@pxref{Range of Type}), as
2602 appropriate for the sign of the value. It also sets @code{errno} to
2603 @code{ERANGE} to indicate there was overflow.
2605 The @code{strtoll} function was introduced in @w{ISO C99}.
2608 @deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2609 @standards{ISO, wchar.h}
2610 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2611 The @code{wcstoll} function is equivalent to the @code{strtoll} function
2612 in nearly all aspects but handles wide character strings.
2614 The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2617 @deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2618 @standards{BSD, stdlib.h}
2619 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2620 @code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2623 @deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2624 @standards{GNU, wchar.h}
2625 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2626 The @code{wcstoq} function is equivalent to the @code{strtoq} function
2627 in nearly all aspects but handles wide character strings.
2629 The @code{wcstoq} function is a GNU extension.
2632 @deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2633 @standards{ISO, stdlib.h}
2634 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2635 The @code{strtoull} function is related to @code{strtoll} the same way
2636 @code{strtoul} is related to @code{strtol}.
2638 The @code{strtoull} function was introduced in @w{ISO C99}.
2641 @deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2642 @standards{ISO, wchar.h}
2643 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2644 The @code{wcstoull} function is equivalent to the @code{strtoull} function
2645 in nearly all aspects but handles wide character strings.
2647 The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2650 @deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2651 @standards{BSD, stdlib.h}
2652 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2653 @code{strtouq} is the BSD name for @code{strtoull}.
2656 @deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2657 @standards{GNU, wchar.h}
2658 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2659 The @code{wcstouq} function is equivalent to the @code{strtouq} function
2660 in nearly all aspects but handles wide character strings.
2662 The @code{wcstouq} function is a GNU extension.
2665 @deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2666 @standards{ISO, inttypes.h}
2667 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2668 The @code{strtoimax} function is like @code{strtol} except that it returns
2669 a @code{intmax_t} value, and accepts numbers of a corresponding range.
2671 If the string has valid syntax for an integer but the value is not
2672 representable because of overflow, @code{strtoimax} returns either
2673 @code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2674 appropriate for the sign of the value. It also sets @code{errno} to
2675 @code{ERANGE} to indicate there was overflow.
2677 See @ref{Integers} for a description of the @code{intmax_t} type. The
2678 @code{strtoimax} function was introduced in @w{ISO C99}.
2681 @deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2682 @standards{ISO, wchar.h}
2683 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2684 The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2685 in nearly all aspects but handles wide character strings.
2687 The @code{wcstoimax} function was introduced in @w{ISO C99}.
2690 @deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2691 @standards{ISO, inttypes.h}
2692 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2693 The @code{strtoumax} function is related to @code{strtoimax}
2694 the same way that @code{strtoul} is related to @code{strtol}.
2696 See @ref{Integers} for a description of the @code{intmax_t} type. The
2697 @code{strtoumax} function was introduced in @w{ISO C99}.
2700 @deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2701 @standards{ISO, wchar.h}
2702 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2703 The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2704 in nearly all aspects but handles wide character strings.
2706 The @code{wcstoumax} function was introduced in @w{ISO C99}.
2709 @deftypefun {long int} atol (const char *@var{string})
2710 @standards{ISO, stdlib.h}
2711 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2712 This function is similar to the @code{strtol} function with a @var{base}
2713 argument of @code{10}, except that it need not detect overflow errors.
2714 The @code{atol} function is provided mostly for compatibility with
2715 existing code; using @code{strtol} is more robust.
2718 @deftypefun int atoi (const char *@var{string})
2719 @standards{ISO, stdlib.h}
2720 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2721 This function is like @code{atol}, except that it returns an @code{int}.
2722 The @code{atoi} function is also considered obsolete; use @code{strtol}
2726 @deftypefun {long long int} atoll (const char *@var{string})
2727 @standards{ISO, stdlib.h}
2728 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2729 This function is similar to @code{atol}, except it returns a @code{long
2732 The @code{atoll} function was introduced in @w{ISO C99}. It too is
2733 obsolete (despite having just been added); use @code{strtoll} instead.
2736 All the functions mentioned in this section so far do not handle
2737 alternative representations of characters as described in the locale
2738 data. Some locales specify thousands separator and the way they have to
2739 be used which can help to make large numbers more readable. To read
2740 such numbers one has to use the @code{scanf} functions with the @samp{'}
2743 Here is a function which parses a string as a sequence of integers and
2744 returns the sum of them:
2748 sum_ints_from_string (char *string)
2756 /* @r{Skip whitespace by hand, to detect the end.} */
2757 while (isspace (*string)) string++;
2761 /* @r{There is more nonwhitespace,} */
2762 /* @r{so it ought to be another number.} */
2765 next = strtol (string, &tail, 0);
2766 /* @r{Add it in, if not overflow.} */
2768 printf ("Overflow\n");
2771 /* @r{Advance past it.} */
2779 @node Parsing of Floats
2780 @subsection Parsing of Floats
2783 The @samp{str} functions are declared in @file{stdlib.h} and those
2784 beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2785 wonder about the use of @code{restrict} in the prototypes of the
2786 functions in this section. It is seemingly useless but the @w{ISO C}
2787 standard uses it (for the functions defined there) so we have to do it
2790 @deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
2791 @standards{ISO, stdlib.h}
2792 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2793 @c Besides the unsafe-but-ruled-safe locale uses, this uses a lot of
2794 @c mpn, but it's all safe.
2797 @c get_rounding_mode ok
2801 @c MPN2FLOAT -> mpn_construct_(float|double|long_double) ok
2803 @c mpn_mul_1 -> umul_ppmm ok
2805 @c mpn_lshift_1 -> mpn_lshift ok
2808 @c SET_NAN_PAYLOAD ok
2809 @c STRNCASECMP ok, wide and narrow
2810 @c round_and_return ok
2816 @c count_leading_zeros ok
2821 The @code{strtod} (``string-to-double'') function converts the initial
2822 part of @var{string} to a floating-point number, which is returned as a
2823 value of type @code{double}.
2825 This function attempts to decompose @var{string} as follows:
2829 A (possibly empty) sequence of whitespace characters. Which characters
2830 are whitespace is determined by the @code{isspace} function
2831 (@pxref{Classification of Characters}). These are discarded.
2834 An optional plus or minus sign (@samp{+} or @samp{-}).
2836 @item A floating point number in decimal or hexadecimal format. The
2841 A nonempty sequence of digits optionally containing a decimal-point
2842 character---normally @samp{.}, but it depends on the locale
2843 (@pxref{General Numeric}).
2846 An optional exponent part, consisting of a character @samp{e} or
2847 @samp{E}, an optional sign, and a sequence of digits.
2851 The hexadecimal format is as follows:
2855 A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2856 optionally containing a decimal-point character---normally @samp{.}, but
2857 it depends on the locale (@pxref{General Numeric}).
2860 An optional binary-exponent part, consisting of a character @samp{p} or
2861 @samp{P}, an optional sign, and a sequence of digits.
2866 Any remaining characters in the string. If @var{tailptr} is not a null
2867 pointer, a pointer to this tail of the string is stored in
2868 @code{*@var{tailptr}}.
2871 If the string is empty, contains only whitespace, or does not contain an
2872 initial substring that has the expected syntax for a floating-point
2873 number, no conversion is performed. In this case, @code{strtod} returns
2874 a value of zero and the value returned in @code{*@var{tailptr}} is the
2875 value of @var{string}.
2877 In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2878 this function may recognize additional locale-dependent syntax.
2880 If the string has valid syntax for a floating-point number but the value
2881 is outside the range of a @code{double}, @code{strtod} will signal
2882 overflow or underflow as described in @ref{Math Error Reporting}.
2884 @code{strtod} recognizes four special input strings. The strings
2885 @code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2886 or to the largest representable value if the floating-point format
2887 doesn't support infinities. You can prepend a @code{"+"} or @code{"-"}
2888 to specify the sign. Case is ignored when scanning these strings.
2890 The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
2891 to NaN. Again, case is ignored. If @var{chars@dots{}} are provided, they
2892 are used in some unspecified fashion to select a particular
2893 representation of NaN (there can be several).
2895 Since zero is a valid result as well as the value returned on error, you
2896 should check for errors in the same way as for @code{strtol}, by
2897 examining @code{errno} and @var{tailptr}.
2900 @deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
2901 @deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2902 @standards{ISO, stdlib.h}
2903 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2904 @comment See safety comments for strtod.
2905 These functions are analogous to @code{strtod}, but return @code{float}
2906 and @code{long double} values respectively. They report errors in the
2907 same way as @code{strtod}. @code{strtof} can be substantially faster
2908 than @code{strtod}, but has less precision; conversely, @code{strtold}
2909 can be much slower but has more precision (on systems where @code{long
2910 double} is a separate type).
2912 These functions have been GNU extensions and are new to @w{ISO C99}.
2915 @deftypefun _FloatN strtofN (const char *@var{string}, char **@var{tailptr})
2916 @deftypefunx _FloatNx strtofNx (const char *@var{string}, char **@var{tailptr})
2917 @standards{ISO/IEC TS 18661-3, stdlib.h}
2918 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2919 @comment See safety comments for strtod.
2920 These functions are like @code{strtod}, except for the return type.
2922 They were introduced in @w{ISO/IEC TS 18661-3} and are available on machines
2923 that support the related types; @pxref{Mathematics}.
2926 @deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2927 @deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2928 @deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2929 @deftypefunx _FloatN wcstofN (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2930 @deftypefunx _FloatNx wcstofNx (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2931 @standards{ISO, wchar.h}
2932 @standardsx{wcstofN, GNU, wchar.h}
2933 @standardsx{wcstofNx, GNU, wchar.h}
2934 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2935 @comment See safety comments for strtod.
2936 The @code{wcstod}, @code{wcstof}, @code{wcstol}, @code{wcstof@var{N}},
2937 and @code{wcstof@var{N}x} functions are equivalent in nearly all aspects
2938 to the @code{strtod}, @code{strtof}, @code{strtold},
2939 @code{strtof@var{N}}, and @code{strtof@var{N}x} functions, but they
2940 handle wide character strings.
2942 The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2943 C90}. The @code{wcstof} and @code{wcstold} functions were introduced in
2946 The @code{wcstof@var{N}} and @code{wcstof@var{N}x} functions are not in
2947 any standard, but are added to provide completeness for the
2948 non-deprecated interface of wide character string to floating-point
2949 conversion functions. They are only available on machines that support
2950 the related types; @pxref{Mathematics}.
2953 @deftypefun double atof (const char *@var{string})
2954 @standards{ISO, stdlib.h}
2955 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2956 This function is similar to the @code{strtod} function, except that it
2957 need not detect overflow and underflow errors. The @code{atof} function
2958 is provided mostly for compatibility with existing code; using
2959 @code{strtod} is more robust.
2962 @Theglibc{} also provides @samp{_l} versions of these functions,
2963 which take an additional argument, the locale to use in conversion.
2965 See also @ref{Parsing of Integers}.
2967 @node Printing of Floats
2968 @section Printing of Floats
2971 The @samp{strfrom} functions are declared in @file{stdlib.h}.
2973 @deftypefun int strfromd (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, double @var{value})
2974 @deftypefunx int strfromf (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, float @var{value})
2975 @deftypefunx int strfroml (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, long double @var{value})
2976 @standards{ISO/IEC TS 18661-1, stdlib.h}
2977 @safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2978 @comment All these functions depend on both __printf_fp and __printf_fphex,
2979 @comment which are both AS-unsafe (ascuheap) and AC-unsafe (acsmem).
2980 The functions @code{strfromd} (``string-from-double''), @code{strfromf}
2981 (``string-from-float''), and @code{strfroml} (``string-from-long-double'')
2982 convert the floating-point number @var{value} to a string of characters and
2983 stores them into the area pointed to by @var{string}. The conversion
2984 writes at most @var{size} characters and respects the format specified by
2987 The format string must start with the character @samp{%}. An optional
2988 precision follows, which starts with a period, @samp{.}, and may be
2989 followed by a decimal integer, representing the precision. If a decimal
2990 integer is not specified after the period, the precision is taken to be
2991 zero. The character @samp{*} is not allowed. Finally, the format string
2992 ends with one of the following conversion specifiers: @samp{a}, @samp{A},
2993 @samp{e}, @samp{E}, @samp{f}, @samp{F}, @samp{g} or @samp{G} (@pxref{Table
2994 of Output Conversions}). Invalid format strings result in undefined
2997 These functions return the number of characters that would have been
2998 written to @var{string} had @var{size} been sufficiently large, not
2999 counting the terminating null character. Thus, the null-terminated output
3000 has been completely written if and only if the returned value is less than
3003 These functions were introduced by ISO/IEC TS 18661-1.
3006 @deftypefun int strfromfN (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, _Float@var{N} @var{value})
3007 @deftypefunx int strfromfNx (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, _Float@var{N}x @var{value})
3008 @standards{ISO/IEC TS 18661-3, stdlib.h}
3009 @safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
3010 @comment See safety comments for strfromd.
3011 These functions are like @code{strfromd}, except for the type of
3014 They were introduced in @w{ISO/IEC TS 18661-3} and are available on machines
3015 that support the related types; @pxref{Mathematics}.
3018 @node System V Number Conversion
3019 @section Old-fashioned System V number-to-string functions
3021 The old @w{System V} C library provided three functions to convert
3022 numbers to strings, with unusual and hard-to-use semantics. @Theglibc{}
3023 also provides these functions and some natural extensions.
3025 These functions are only available in @theglibc{} and on systems descended
3026 from AT&T Unix. Therefore, unless these functions do precisely what you
3027 need, it is better to use @code{sprintf}, which is standard.
3029 All these functions are defined in @file{stdlib.h}.
3031 @deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3032 @standards{SVID, stdlib.h}
3033 @standards{Unix98, stdlib.h}
3034 @safety{@prelim{}@mtunsafe{@mtasurace{:ecvt}}@asunsafe{}@acsafe{}}
3035 The function @code{ecvt} converts the floating-point number @var{value}
3036 to a string with at most @var{ndigit} decimal digits. The
3037 returned string contains no decimal point or sign. The first digit of
3038 the string is non-zero (unless @var{value} is actually zero) and the
3039 last digit is rounded to nearest. @code{*@var{decpt}} is set to the
3040 index in the string of the first digit after the decimal point.
3041 @code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
3044 If @var{ndigit} decimal digits would exceed the precision of a
3045 @code{double} it is reduced to a system-specific value.
3047 The returned string is statically allocated and overwritten by each call
3050 If @var{value} is zero, it is implementation defined whether
3051 @code{*@var{decpt}} is @code{0} or @code{1}.
3053 For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
3054 and sets @var{d} to @code{2} and @var{n} to @code{0}.
3057 @deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3058 @standards{SVID, stdlib.h}
3059 @standards{Unix98, stdlib.h}
3060 @safety{@prelim{}@mtunsafe{@mtasurace{:fcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
3061 The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
3062 the number of digits after the decimal point. If @var{ndigit} is less
3063 than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
3064 left of the decimal point. For example, if @var{ndigit} is @code{-1},
3065 @var{value} will be rounded to the nearest 10. If @var{ndigit} is
3066 negative and larger than the number of digits to the left of the decimal
3067 point in @var{value}, @var{value} will be rounded to one significant digit.
3069 If @var{ndigit} decimal digits would exceed the precision of a
3070 @code{double} it is reduced to a system-specific value.
3072 The returned string is statically allocated and overwritten by each call
3076 @deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
3077 @standards{SVID, stdlib.h}
3078 @standards{Unix98, stdlib.h}
3079 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3080 @c gcvt calls sprintf, that ultimately calls vfprintf, which malloc()s
3081 @c args_value if it's too large, but gcvt never exercises this path.
3082 @code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
3083 ndigit, value)}. It is provided only for compatibility's sake. It
3086 If @var{ndigit} decimal digits would exceed the precision of a
3087 @code{double} it is reduced to a system-specific value.
3090 As extensions, @theglibc{} provides versions of these three
3091 functions that take @code{long double} arguments.
3093 @deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3094 @standards{GNU, stdlib.h}
3095 @safety{@prelim{}@mtunsafe{@mtasurace{:qecvt}}@asunsafe{}@acsafe{}}
3096 This function is equivalent to @code{ecvt} except that it takes a
3097 @code{long double} for the first parameter and that @var{ndigit} is
3098 restricted by the precision of a @code{long double}.
3101 @deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3102 @standards{GNU, stdlib.h}
3103 @safety{@prelim{}@mtunsafe{@mtasurace{:qfcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
3104 This function is equivalent to @code{fcvt} except that it
3105 takes a @code{long double} for the first parameter and that @var{ndigit} is
3106 restricted by the precision of a @code{long double}.
3109 @deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
3110 @standards{GNU, stdlib.h}
3111 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3112 This function is equivalent to @code{gcvt} except that it takes a
3113 @code{long double} for the first parameter and that @var{ndigit} is
3114 restricted by the precision of a @code{long double}.
3119 The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
3120 equivalents, all return a string located in a static buffer which is
3121 overwritten by the next call to the function. @Theglibc{}
3122 provides another set of extended functions which write the converted
3123 string into a user-supplied buffer. These have the conventional
3126 @code{gcvt_r} is not necessary, because @code{gcvt} already uses a
3127 user-supplied buffer.
3129 @deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3130 @standards{GNU, stdlib.h}
3131 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3132 The @code{ecvt_r} function is the same as @code{ecvt}, except
3133 that it places its result into the user-specified buffer pointed to by
3134 @var{buf}, with length @var{len}. The return value is @code{-1} in
3135 case of an error and zero otherwise.
3137 This function is a GNU extension.
3140 @deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3141 @standards{SVID, stdlib.h}
3142 @standards{Unix98, stdlib.h}
3143 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3144 The @code{fcvt_r} function is the same as @code{fcvt}, except that it
3145 places its result into the user-specified buffer pointed to by
3146 @var{buf}, with length @var{len}. The return value is @code{-1} in
3147 case of an error and zero otherwise.
3149 This function is a GNU extension.
3152 @deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3153 @standards{GNU, stdlib.h}
3154 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3155 The @code{qecvt_r} function is the same as @code{qecvt}, except
3156 that it places its result into the user-specified buffer pointed to by
3157 @var{buf}, with length @var{len}. The return value is @code{-1} in
3158 case of an error and zero otherwise.
3160 This function is a GNU extension.
3163 @deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3164 @standards{GNU, stdlib.h}
3165 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3166 The @code{qfcvt_r} function is the same as @code{qfcvt}, except
3167 that it places its result into the user-specified buffer pointed to by
3168 @var{buf}, with length @var{len}. The return value is @code{-1} in
3169 case of an error and zero otherwise.
3171 This function is a GNU extension.