New generic sincosf
[glibc.git] / sysdeps / ieee754 / flt-32 / s_sincosf.h
blobb0110fc2afc09023e5dffe65a27ef80be40a1198
1 /* Used by sinf, cosf and sincosf functions.
2 Copyright (C) 2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
19 /* Chebyshev constants for cos, range -PI/4 - PI/4. */
20 static const double C0 = -0x1.ffffffffe98aep-2;
21 static const double C1 = 0x1.55555545c50c7p-5;
22 static const double C2 = -0x1.6c16b348b6874p-10;
23 static const double C3 = 0x1.a00eb9ac43ccp-16;
24 static const double C4 = -0x1.23c97dd8844d7p-22;
26 /* Chebyshev constants for sin, range -PI/4 - PI/4. */
27 static const double S0 = -0x1.5555555551cd9p-3;
28 static const double S1 = 0x1.1111110c2688bp-7;
29 static const double S2 = -0x1.a019f8b4bd1f9p-13;
30 static const double S3 = 0x1.71d7264e6b5b4p-19;
31 static const double S4 = -0x1.a947e1674b58ap-26;
33 /* Chebyshev constants for sin, range 2^-27 - 2^-5. */
34 static const double SS0 = -0x1.555555543d49dp-3;
35 static const double SS1 = 0x1.110f475cec8c5p-7;
37 /* Chebyshev constants for cos, range 2^-27 - 2^-5. */
38 static const double CC0 = -0x1.fffffff5cc6fdp-2;
39 static const double CC1 = 0x1.55514b178dac5p-5;
41 /* PI/2 with 98 bits of accuracy. */
42 static const double PI_2_hi = 0x1.921fb544p+0;
43 static const double PI_2_lo = 0x1.0b4611a626332p-34;
45 static const double SMALL = 0x1p-50; /* 2^-50. */
46 static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */
48 #define FLOAT_EXPONENT_SHIFT 23
49 #define FLOAT_EXPONENT_BIAS 127
51 static const double pio2_table[] = {
52 0 * M_PI_2,
53 1 * M_PI_2,
54 2 * M_PI_2,
55 3 * M_PI_2,
56 4 * M_PI_2,
57 5 * M_PI_2
60 static const double invpio4_table[] = {
61 0x0p+0,
62 0x1.45f306cp+0,
63 0x1.c9c882ap-28,
64 0x1.4fe13a8p-58,
65 0x1.f47d4dp-85,
66 0x1.bb81b6cp-112,
67 0x1.4acc9ep-142,
68 0x1.0e4107cp-169
71 static const double ones[] = { 1.0, -1.0 };
73 /* Compute the sine value using Chebyshev polynomials where
74 THETA is the range reduced absolute value of the input
75 and it is less than Pi/4,
76 N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
77 whether a sine or cosine approximation is more accurate and
78 SIGNBIT is used to add the correct sign after the Chebyshev
79 polynomial is computed. */
80 static inline float
81 reduced_sin (const double theta, const unsigned int n,
82 const unsigned int signbit)
84 double sx;
85 const double theta2 = theta * theta;
86 /* We are operating on |x|, so we need to add back the original
87 signbit for sinf. */
88 double sign;
89 /* Determine positive or negative primary interval. */
90 sign = ones[((n >> 2) & 1) ^ signbit];
91 /* Are we in the primary interval of sin or cos? */
92 if ((n & 2) == 0)
94 /* Here sinf() is calculated using sin Chebyshev polynomial:
95 x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
96 sx = S3 + theta2 * S4; /* S3+x^2*S4. */
97 sx = S2 + theta2 * sx; /* S2+x^2*(S3+x^2*S4). */
98 sx = S1 + theta2 * sx; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */
99 sx = S0 + theta2 * sx; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */
100 sx = theta + theta * theta2 * sx;
102 else
104 /* Here sinf() is calculated using cos Chebyshev polynomial:
105 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
106 sx = C3 + theta2 * C4; /* C3+x^2*C4. */
107 sx = C2 + theta2 * sx; /* C2+x^2*(C3+x^2*C4). */
108 sx = C1 + theta2 * sx; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */
109 sx = C0 + theta2 * sx; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */
110 sx = 1.0 + theta2 * sx;
113 /* Add in the signbit and assign the result. */
114 return sign * sx;
117 /* Compute the cosine value using Chebyshev polynomials where
118 THETA is the range reduced absolute value of the input
119 and it is less than Pi/4,
120 N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
121 whether a sine or cosine approximation is more accurate and
122 the sign of the result. */
123 static inline float
124 reduced_cos (double theta, unsigned int n)
126 double sign, cx;
127 const double theta2 = theta * theta;
129 /* Determine positive or negative primary interval. */
130 n += 2;
131 sign = ones[(n >> 2) & 1];
133 /* Are we in the primary interval of sin or cos? */
134 if ((n & 2) == 0)
136 /* Here cosf() is calculated using sin Chebyshev polynomial:
137 x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
138 cx = S3 + theta2 * S4;
139 cx = S2 + theta2 * cx;
140 cx = S1 + theta2 * cx;
141 cx = S0 + theta2 * cx;
142 cx = theta + theta * theta2 * cx;
144 else
146 /* Here cosf() is calculated using cos Chebyshev polynomial:
147 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
148 cx = C3 + theta2 * C4;
149 cx = C2 + theta2 * cx;
150 cx = C1 + theta2 * cx;
151 cx = C0 + theta2 * cx;
152 cx = 1. + theta2 * cx;
154 return sign * cx;