[BZ #2517]
[glibc.git] / misc / sys / queue.h
blobd709d48be59440c3623094b3bc59e8b615c1856b
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)queue.h 8.5 (Berkeley) 8/20/94
32 #ifndef _SYS_QUEUE_H_
33 #define _SYS_QUEUE_H_
36 * This file defines five types of data structures: singly-linked lists,
37 * lists, simple queues, tail queues, and circular queues.
39 * A singly-linked list is headed by a single forward pointer. The
40 * elements are singly linked for minimum space and pointer manipulation
41 * overhead at the expense of O(n) removal for arbitrary elements. New
42 * elements can be added to the list after an existing element or at the
43 * head of the list. Elements being removed from the head of the list
44 * should use the explicit macro for this purpose for optimum
45 * efficiency. A singly-linked list may only be traversed in the forward
46 * direction. Singly-linked lists are ideal for applications with large
47 * datasets and few or no removals or for implementing a LIFO queue.
49 * A list is headed by a single forward pointer (or an array of forward
50 * pointers for a hash table header). The elements are doubly linked
51 * so that an arbitrary element can be removed without a need to
52 * traverse the list. New elements can be added to the list before
53 * or after an existing element or at the head of the list. A list
54 * may only be traversed in the forward direction.
56 * A simple queue is headed by a pair of pointers, one the head of the
57 * list and the other to the tail of the list. The elements are singly
58 * linked to save space, so elements can only be removed from the
59 * head of the list. New elements can be added to the list after
60 * an existing element, at the head of the list, or at the end of the
61 * list. A simple queue may only be traversed in the forward direction.
63 * A tail queue is headed by a pair of pointers, one to the head of the
64 * list and the other to the tail of the list. The elements are doubly
65 * linked so that an arbitrary element can be removed without a need to
66 * traverse the list. New elements can be added to the list before or
67 * after an existing element, at the head of the list, or at the end of
68 * the list. A tail queue may be traversed in either direction.
70 * A circle queue is headed by a pair of pointers, one to the head of the
71 * list and the other to the tail of the list. The elements are doubly
72 * linked so that an arbitrary element can be removed without a need to
73 * traverse the list. New elements can be added to the list before or after
74 * an existing element, at the head of the list, or at the end of the list.
75 * A circle queue may be traversed in either direction, but has a more
76 * complex end of list detection.
78 * For details on the use of these macros, see the queue(3) manual page.
82 * List definitions.
84 #define LIST_HEAD(name, type) \
85 struct name { \
86 struct type *lh_first; /* first element */ \
89 #define LIST_HEAD_INITIALIZER(head) \
90 { NULL }
92 #define LIST_ENTRY(type) \
93 struct { \
94 struct type *le_next; /* next element */ \
95 struct type **le_prev; /* address of previous next element */ \
99 * List functions.
101 #define LIST_INIT(head) do { \
102 (head)->lh_first = NULL; \
103 } while (/*CONSTCOND*/0)
105 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
106 QUEUEDEBUG_LIST_OP((listelm), field) \
107 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
108 (listelm)->field.le_next->field.le_prev = \
109 &(elm)->field.le_next; \
110 (listelm)->field.le_next = (elm); \
111 (elm)->field.le_prev = &(listelm)->field.le_next; \
112 } while (/*CONSTCOND*/0)
114 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
115 QUEUEDEBUG_LIST_OP((listelm), field) \
116 (elm)->field.le_prev = (listelm)->field.le_prev; \
117 (elm)->field.le_next = (listelm); \
118 *(listelm)->field.le_prev = (elm); \
119 (listelm)->field.le_prev = &(elm)->field.le_next; \
120 } while (/*CONSTCOND*/0)
122 #define LIST_INSERT_HEAD(head, elm, field) do { \
123 QUEUEDEBUG_LIST_INSERT_HEAD((head), (elm), field) \
124 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
125 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
126 (head)->lh_first = (elm); \
127 (elm)->field.le_prev = &(head)->lh_first; \
128 } while (/*CONSTCOND*/0)
130 #define LIST_REMOVE(elm, field) do { \
131 QUEUEDEBUG_LIST_OP((elm), field) \
132 if ((elm)->field.le_next != NULL) \
133 (elm)->field.le_next->field.le_prev = \
134 (elm)->field.le_prev; \
135 *(elm)->field.le_prev = (elm)->field.le_next; \
136 QUEUEDEBUG_LIST_POSTREMOVE((elm), field) \
137 } while (/*CONSTCOND*/0)
139 #define LIST_FOREACH(var, head, field) \
140 for ((var) = ((head)->lh_first); \
141 (var); \
142 (var) = ((var)->field.le_next))
145 * List access methods.
147 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
148 #define LIST_FIRST(head) ((head)->lh_first)
149 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
153 * Singly-linked List definitions.
155 #define SLIST_HEAD(name, type) \
156 struct name { \
157 struct type *slh_first; /* first element */ \
160 #define SLIST_HEAD_INITIALIZER(head) \
161 { NULL }
163 #define SLIST_ENTRY(type) \
164 struct { \
165 struct type *sle_next; /* next element */ \
169 * Singly-linked List functions.
171 #define SLIST_INIT(head) do { \
172 (head)->slh_first = NULL; \
173 } while (/*CONSTCOND*/0)
175 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
176 (elm)->field.sle_next = (slistelm)->field.sle_next; \
177 (slistelm)->field.sle_next = (elm); \
178 } while (/*CONSTCOND*/0)
180 #define SLIST_INSERT_HEAD(head, elm, field) do { \
181 (elm)->field.sle_next = (head)->slh_first; \
182 (head)->slh_first = (elm); \
183 } while (/*CONSTCOND*/0)
185 #define SLIST_REMOVE_HEAD(head, field) do { \
186 (head)->slh_first = (head)->slh_first->field.sle_next; \
187 } while (/*CONSTCOND*/0)
189 #define SLIST_REMOVE(head, elm, type, field) do { \
190 if ((head)->slh_first == (elm)) { \
191 SLIST_REMOVE_HEAD((head), field); \
193 else { \
194 struct type *curelm = (head)->slh_first; \
195 while(curelm->field.sle_next != (elm)) \
196 curelm = curelm->field.sle_next; \
197 curelm->field.sle_next = \
198 curelm->field.sle_next->field.sle_next; \
200 } while (/*CONSTCOND*/0)
202 #define SLIST_FOREACH(var, head, field) \
203 for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
206 * Singly-linked List access methods.
208 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
209 #define SLIST_FIRST(head) ((head)->slh_first)
210 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
214 * Singly-linked Tail queue declarations.
216 #define STAILQ_HEAD(name, type) \
217 struct name { \
218 struct type *stqh_first; /* first element */ \
219 struct type **stqh_last; /* addr of last next element */ \
222 #define STAILQ_HEAD_INITIALIZER(head) \
223 { NULL, &(head).stqh_first }
225 #define STAILQ_ENTRY(type) \
226 struct { \
227 struct type *stqe_next; /* next element */ \
231 * Singly-linked Tail queue functions.
233 #define STAILQ_INIT(head) do { \
234 (head)->stqh_first = NULL; \
235 (head)->stqh_last = &(head)->stqh_first; \
236 } while (/*CONSTCOND*/0)
238 #define STAILQ_INSERT_HEAD(head, elm, field) do { \
239 if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
240 (head)->stqh_last = &(elm)->field.stqe_next; \
241 (head)->stqh_first = (elm); \
242 } while (/*CONSTCOND*/0)
244 #define STAILQ_INSERT_TAIL(head, elm, field) do { \
245 (elm)->field.stqe_next = NULL; \
246 *(head)->stqh_last = (elm); \
247 (head)->stqh_last = &(elm)->field.stqe_next; \
248 } while (/*CONSTCOND*/0)
250 #define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
251 if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
252 (head)->stqh_last = &(elm)->field.stqe_next; \
253 (listelm)->field.stqe_next = (elm); \
254 } while (/*CONSTCOND*/0)
256 #define STAILQ_REMOVE_HEAD(head, field) do { \
257 if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
258 (head)->stqh_last = &(head)->stqh_first; \
259 } while (/*CONSTCOND*/0)
261 #define STAILQ_REMOVE(head, elm, type, field) do { \
262 if ((head)->stqh_first == (elm)) { \
263 STAILQ_REMOVE_HEAD((head), field); \
264 } else { \
265 struct type *curelm = (head)->stqh_first; \
266 while (curelm->field.stqe_next != (elm)) \
267 curelm = curelm->field.stqe_next; \
268 if ((curelm->field.stqe_next = \
269 curelm->field.stqe_next->field.stqe_next) == NULL) \
270 (head)->stqh_last = &(curelm)->field.stqe_next; \
272 } while (/*CONSTCOND*/0)
274 #define STAILQ_FOREACH(var, head, field) \
275 for ((var) = ((head)->stqh_first); \
276 (var); \
277 (var) = ((var)->field.stqe_next))
280 * Singly-linked Tail queue access methods.
282 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
283 #define STAILQ_FIRST(head) ((head)->stqh_first)
284 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
288 * Simple queue definitions.
290 #define SIMPLEQ_HEAD(name, type) \
291 struct name { \
292 struct type *sqh_first; /* first element */ \
293 struct type **sqh_last; /* addr of last next element */ \
296 #define SIMPLEQ_HEAD_INITIALIZER(head) \
297 { NULL, &(head).sqh_first }
299 #define SIMPLEQ_ENTRY(type) \
300 struct { \
301 struct type *sqe_next; /* next element */ \
305 * Simple queue functions.
307 #define SIMPLEQ_INIT(head) do { \
308 (head)->sqh_first = NULL; \
309 (head)->sqh_last = &(head)->sqh_first; \
310 } while (/*CONSTCOND*/0)
312 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
313 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
314 (head)->sqh_last = &(elm)->field.sqe_next; \
315 (head)->sqh_first = (elm); \
316 } while (/*CONSTCOND*/0)
318 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
319 (elm)->field.sqe_next = NULL; \
320 *(head)->sqh_last = (elm); \
321 (head)->sqh_last = &(elm)->field.sqe_next; \
322 } while (/*CONSTCOND*/0)
324 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
325 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
326 (head)->sqh_last = &(elm)->field.sqe_next; \
327 (listelm)->field.sqe_next = (elm); \
328 } while (/*CONSTCOND*/0)
330 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
331 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
332 (head)->sqh_last = &(head)->sqh_first; \
333 } while (/*CONSTCOND*/0)
335 #define SIMPLEQ_REMOVE(head, elm, type, field) do { \
336 if ((head)->sqh_first == (elm)) { \
337 SIMPLEQ_REMOVE_HEAD((head), field); \
338 } else { \
339 struct type *curelm = (head)->sqh_first; \
340 while (curelm->field.sqe_next != (elm)) \
341 curelm = curelm->field.sqe_next; \
342 if ((curelm->field.sqe_next = \
343 curelm->field.sqe_next->field.sqe_next) == NULL) \
344 (head)->sqh_last = &(curelm)->field.sqe_next; \
346 } while (/*CONSTCOND*/0)
348 #define SIMPLEQ_FOREACH(var, head, field) \
349 for ((var) = ((head)->sqh_first); \
350 (var); \
351 (var) = ((var)->field.sqe_next))
354 * Simple queue access methods.
356 #define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
357 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
358 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
362 * Tail queue definitions.
364 #define _TAILQ_HEAD(name, type, qual) \
365 struct name { \
366 qual type *tqh_first; /* first element */ \
367 qual type *qual *tqh_last; /* addr of last next element */ \
369 #define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,)
371 #define TAILQ_HEAD_INITIALIZER(head) \
372 { NULL, &(head).tqh_first }
374 #define _TAILQ_ENTRY(type, qual) \
375 struct { \
376 qual type *tqe_next; /* next element */ \
377 qual type *qual *tqe_prev; /* address of previous next element */\
379 #define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,)
382 * Tail queue functions.
384 #define TAILQ_INIT(head) do { \
385 (head)->tqh_first = NULL; \
386 (head)->tqh_last = &(head)->tqh_first; \
387 } while (/*CONSTCOND*/0)
389 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
390 QUEUEDEBUG_TAILQ_INSERT_HEAD((head), (elm), field) \
391 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
392 (head)->tqh_first->field.tqe_prev = \
393 &(elm)->field.tqe_next; \
394 else \
395 (head)->tqh_last = &(elm)->field.tqe_next; \
396 (head)->tqh_first = (elm); \
397 (elm)->field.tqe_prev = &(head)->tqh_first; \
398 } while (/*CONSTCOND*/0)
400 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
401 QUEUEDEBUG_TAILQ_INSERT_TAIL((head), (elm), field) \
402 (elm)->field.tqe_next = NULL; \
403 (elm)->field.tqe_prev = (head)->tqh_last; \
404 *(head)->tqh_last = (elm); \
405 (head)->tqh_last = &(elm)->field.tqe_next; \
406 } while (/*CONSTCOND*/0)
408 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
409 QUEUEDEBUG_TAILQ_OP((listelm), field) \
410 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
411 (elm)->field.tqe_next->field.tqe_prev = \
412 &(elm)->field.tqe_next; \
413 else \
414 (head)->tqh_last = &(elm)->field.tqe_next; \
415 (listelm)->field.tqe_next = (elm); \
416 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
417 } while (/*CONSTCOND*/0)
419 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
420 QUEUEDEBUG_TAILQ_OP((listelm), field) \
421 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
422 (elm)->field.tqe_next = (listelm); \
423 *(listelm)->field.tqe_prev = (elm); \
424 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
425 } while (/*CONSTCOND*/0)
427 #define TAILQ_REMOVE(head, elm, field) do { \
428 QUEUEDEBUG_TAILQ_PREREMOVE((head), (elm), field) \
429 QUEUEDEBUG_TAILQ_OP((elm), field) \
430 if (((elm)->field.tqe_next) != NULL) \
431 (elm)->field.tqe_next->field.tqe_prev = \
432 (elm)->field.tqe_prev; \
433 else \
434 (head)->tqh_last = (elm)->field.tqe_prev; \
435 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
436 QUEUEDEBUG_TAILQ_POSTREMOVE((elm), field); \
437 } while (/*CONSTCOND*/0)
439 #define TAILQ_FOREACH(var, head, field) \
440 for ((var) = ((head)->tqh_first); \
441 (var); \
442 (var) = ((var)->field.tqe_next))
444 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
445 for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
446 (var); \
447 (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
450 * Tail queue access methods.
452 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
453 #define TAILQ_FIRST(head) ((head)->tqh_first)
454 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
456 #define TAILQ_LAST(head, headname) \
457 (*(((struct headname *)((head)->tqh_last))->tqh_last))
458 #define TAILQ_PREV(elm, headname, field) \
459 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
463 * Circular queue definitions.
465 #define CIRCLEQ_HEAD(name, type) \
466 struct name { \
467 struct type *cqh_first; /* first element */ \
468 struct type *cqh_last; /* last element */ \
471 #define CIRCLEQ_HEAD_INITIALIZER(head) \
472 { (void *)&head, (void *)&head }
474 #define CIRCLEQ_ENTRY(type) \
475 struct { \
476 struct type *cqe_next; /* next element */ \
477 struct type *cqe_prev; /* previous element */ \
481 * Circular queue functions.
483 #define CIRCLEQ_INIT(head) do { \
484 (head)->cqh_first = (void *)(head); \
485 (head)->cqh_last = (void *)(head); \
486 } while (/*CONSTCOND*/0)
488 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
489 QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
490 QUEUEDEBUG_CIRCLEQ_ELM((head), (listelm), field) \
491 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
492 (elm)->field.cqe_prev = (listelm); \
493 if ((listelm)->field.cqe_next == (void *)(head)) \
494 (head)->cqh_last = (elm); \
495 else \
496 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
497 (listelm)->field.cqe_next = (elm); \
498 } while (/*CONSTCOND*/0)
500 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
501 QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
502 QUEUEDEBUG_CIRCLEQ_ELM((head), (listelm), field) \
503 (elm)->field.cqe_next = (listelm); \
504 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
505 if ((listelm)->field.cqe_prev == (void *)(head)) \
506 (head)->cqh_first = (elm); \
507 else \
508 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
509 (listelm)->field.cqe_prev = (elm); \
510 } while (/*CONSTCOND*/0)
512 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
513 QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
514 (elm)->field.cqe_next = (head)->cqh_first; \
515 (elm)->field.cqe_prev = (void *)(head); \
516 if ((head)->cqh_last == (void *)(head)) \
517 (head)->cqh_last = (elm); \
518 else \
519 (head)->cqh_first->field.cqe_prev = (elm); \
520 (head)->cqh_first = (elm); \
521 } while (/*CONSTCOND*/0)
523 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
524 QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
525 (elm)->field.cqe_next = (void *)(head); \
526 (elm)->field.cqe_prev = (head)->cqh_last; \
527 if ((head)->cqh_first == (void *)(head)) \
528 (head)->cqh_first = (elm); \
529 else \
530 (head)->cqh_last->field.cqe_next = (elm); \
531 (head)->cqh_last = (elm); \
532 } while (/*CONSTCOND*/0)
534 #define CIRCLEQ_REMOVE(head, elm, field) do { \
535 QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
536 QUEUEDEBUG_CIRCLEQ_ELM((head), (elm), field) \
537 if ((elm)->field.cqe_next == (void *)(head)) \
538 (head)->cqh_last = (elm)->field.cqe_prev; \
539 else \
540 (elm)->field.cqe_next->field.cqe_prev = \
541 (elm)->field.cqe_prev; \
542 if ((elm)->field.cqe_prev == (void *)(head)) \
543 (head)->cqh_first = (elm)->field.cqe_next; \
544 else \
545 (elm)->field.cqe_prev->field.cqe_next = \
546 (elm)->field.cqe_next; \
547 QUEUEDEBUG_CIRCLEQ_POSTREMOVE((elm), field) \
548 } while (/*CONSTCOND*/0)
550 #define CIRCLEQ_FOREACH(var, head, field) \
551 for ((var) = ((head)->cqh_first); \
552 (var) != (const void *)(head); \
553 (var) = ((var)->field.cqe_next))
555 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
556 for ((var) = ((head)->cqh_last); \
557 (var) != (const void *)(head); \
558 (var) = ((var)->field.cqe_prev))
561 * Circular queue access methods.
563 #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
564 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
565 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
566 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
567 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
569 #define CIRCLEQ_LOOP_NEXT(head, elm, field) \
570 (((elm)->field.cqe_next == (void *)(head)) \
571 ? ((head)->cqh_first) \
572 : (elm->field.cqe_next))
573 #define CIRCLEQ_LOOP_PREV(head, elm, field) \
574 (((elm)->field.cqe_prev == (void *)(head)) \
575 ? ((head)->cqh_last) \
576 : (elm->field.cqe_prev))
578 #endif /* sys/queue.h */