math: Use sign as double for reduced case in sinf
[glibc.git] / sysdeps / ieee754 / flt-32 / s_sinf.c
blob418d4487c52423dac7c28aa43361f8b00320c8d4
1 /* Compute sine of argument.
2 Copyright (C) 2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
19 #include <errno.h>
20 #include <math.h>
21 #include <math_private.h>
22 #include <libm-alias-float.h>
24 #ifndef SINF
25 # define SINF_FUNC __sinf
26 #else
27 # define SINF_FUNC SINF
28 #endif
30 /* Chebyshev constants for cos, range -PI/4 - PI/4. */
31 static const double C0 = -0x1.ffffffffe98aep-2;
32 static const double C1 = 0x1.55555545c50c7p-5;
33 static const double C2 = -0x1.6c16b348b6874p-10;
34 static const double C3 = 0x1.a00eb9ac43ccp-16;
35 static const double C4 = -0x1.23c97dd8844d7p-22;
37 /* Chebyshev constants for sin, range -PI/4 - PI/4. */
38 static const double S0 = -0x1.5555555551cd9p-3;
39 static const double S1 = 0x1.1111110c2688bp-7;
40 static const double S2 = -0x1.a019f8b4bd1f9p-13;
41 static const double S3 = 0x1.71d7264e6b5b4p-19;
42 static const double S4 = -0x1.a947e1674b58ap-26;
44 /* Chebyshev constants for sin, range 2^-27 - 2^-5. */
45 static const double SS0 = -0x1.555555543d49dp-3;
46 static const double SS1 = 0x1.110f475cec8c5p-7;
48 /* PI/2 with 98 bits of accuracy. */
49 static const double PI_2_hi = -0x1.921fb544p+0;
50 static const double PI_2_lo = -0x1.0b4611a626332p-34;
52 static const double SMALL = 0x1p-50; /* 2^-50. */
53 static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */
55 #define FLOAT_EXPONENT_SHIFT 23
56 #define FLOAT_EXPONENT_BIAS 127
58 static const double pio2_table[] = {
59 0 * M_PI_2,
60 1 * M_PI_2,
61 2 * M_PI_2,
62 3 * M_PI_2,
63 4 * M_PI_2,
64 5 * M_PI_2
67 static const double invpio4_table[] = {
68 0x0p+0,
69 0x1.45f306cp+0,
70 0x1.c9c882ap-28,
71 0x1.4fe13a8p-58,
72 0x1.f47d4dp-85,
73 0x1.bb81b6cp-112,
74 0x1.4acc9ep-142,
75 0x1.0e4107cp-169
78 static const double ones[] = { 1.0, -1.0 };
80 /* Compute the sine value using Chebyshev polynomials where
81 THETA is the range reduced absolute value of the input
82 and it is less than Pi/4,
83 N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
84 whether a sine or cosine approximation is more accurate and
85 SIGNBIT is used to add the correct sign after the Chebyshev
86 polynomial is computed. */
87 static inline float
88 reduced (const double theta, const unsigned int n,
89 const unsigned int signbit)
91 double sx;
92 const double theta2 = theta * theta;
93 /* We are operating on |x|, so we need to add back the original
94 signbit for sinf. */
95 double sign;
96 /* Determine positive or negative primary interval. */
97 sign = ones[((n >> 2) & 1) ^ signbit];
98 /* Are we in the primary interval of sin or cos? */
99 if ((n & 2) == 0)
101 /* Here sinf() is calculated using sin Chebyshev polynomial:
102 x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
103 sx = S3 + theta2 * S4; /* S3+x^2*S4. */
104 sx = S2 + theta2 * sx; /* S2+x^2*(S3+x^2*S4). */
105 sx = S1 + theta2 * sx; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */
106 sx = S0 + theta2 * sx; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */
107 sx = theta + theta * theta2 * sx;
109 else
111 /* Here sinf() is calculated using cos Chebyshev polynomial:
112 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
113 sx = C3 + theta2 * C4; /* C3+x^2*C4. */
114 sx = C2 + theta2 * sx; /* C2+x^2*(C3+x^2*C4). */
115 sx = C1 + theta2 * sx; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */
116 sx = C0 + theta2 * sx; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */
117 sx = 1.0 + theta2 * sx;
120 /* Add in the signbit and assign the result. */
121 return sign * sx;
124 float
125 SINF_FUNC (float x)
127 double cx;
128 double theta = x;
129 double abstheta = fabs (theta);
130 /* If |x|< Pi/4. */
131 if (isless (abstheta, M_PI_4))
133 if (abstheta >= 0x1p-5) /* |x| >= 2^-5. */
135 const double theta2 = theta * theta;
136 /* Chebyshev polynomial of the form for sin
137 x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
138 cx = S3 + theta2 * S4;
139 cx = S2 + theta2 * cx;
140 cx = S1 + theta2 * cx;
141 cx = S0 + theta2 * cx;
142 cx = theta + theta * theta2 * cx;
143 return cx;
145 else if (abstheta >= 0x1p-27) /* |x| >= 2^-27. */
147 /* A simpler Chebyshev approximation is close enough for this range:
148 for sin: x+x^3*(SS0+x^2*SS1). */
149 const double theta2 = theta * theta;
150 cx = SS0 + theta2 * SS1;
151 cx = theta + theta * theta2 * cx;
152 return cx;
154 else
156 /* Handle some special cases. */
157 if (theta)
158 return theta - (theta * SMALL);
159 else
160 return theta;
163 else /* |x| >= Pi/4. */
165 unsigned int signbit = isless (x, 0);
166 if (isless (abstheta, 9 * M_PI_4)) /* |x| < 9*Pi/4. */
168 /* There are cases where FE_UPWARD rounding mode can
169 produce a result of abstheta * inv_PI_4 == 9,
170 where abstheta < 9pi/4, so the domain for
171 pio2_table must go to 5 (9 / 2 + 1). */
172 unsigned int n = (abstheta * inv_PI_4) + 1;
173 theta = abstheta - pio2_table[n / 2];
174 return reduced (theta, n, signbit);
176 else if (isless (abstheta, INFINITY))
178 if (abstheta < 0x1p+23) /* |x| < 2^23. */
180 unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
181 double x = n / 2;
182 theta = x * PI_2_lo + (x * PI_2_hi + abstheta);
183 /* Argument reduction needed. */
184 return reduced (theta, n, signbit);
186 else /* |x| >= 2^23. */
188 x = fabsf (x);
189 int exponent;
190 GET_FLOAT_WORD (exponent, x);
191 exponent
192 = (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS;
193 exponent += 3;
194 exponent /= 28;
195 double a = invpio4_table[exponent] * x;
196 double b = invpio4_table[exponent + 1] * x;
197 double c = invpio4_table[exponent + 2] * x;
198 double d = invpio4_table[exponent + 3] * x;
199 uint64_t l = a;
200 l &= ~0x7;
201 a -= l;
202 double e = a + b;
203 l = e;
204 e = a - l;
205 if (l & 1)
207 e -= 1.0;
208 e += b;
209 e += c;
210 e += d;
211 e *= M_PI_4;
212 return reduced (e, l + 1, signbit);
214 else
216 e += b;
217 e += c;
218 e += d;
219 if (e <= 1.0)
221 e *= M_PI_4;
222 return reduced (e, l + 1, signbit);
224 else
226 l++;
227 e -= 2.0;
228 e *= M_PI_4;
229 return reduced (e, l + 1, signbit);
234 else
236 int32_t ix;
237 /* High word of x. */
238 GET_FLOAT_WORD (ix, abstheta);
239 /* Sin(Inf or NaN) is NaN. */
240 if (ix == 0x7f800000)
241 __set_errno (EDOM);
242 return x - x;
247 #ifndef SINF
248 libm_alias_float (__sin, sin)
249 #endif