1 /* Compute sine of argument.
2 Copyright (C) 2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
21 #include <math_private.h>
22 #include <libm-alias-float.h>
25 # define SINF_FUNC __sinf
27 # define SINF_FUNC SINF
30 /* Chebyshev constants for cos, range -PI/4 - PI/4. */
31 static const double C0
= -0x1.ffffffffe98aep
-2;
32 static const double C1
= 0x1.55555545c50c7p
-5;
33 static const double C2
= -0x1.6c16b348b6874p
-10;
34 static const double C3
= 0x1.a00eb9ac43ccp
-16;
35 static const double C4
= -0x1.23c97dd8844d7p
-22;
37 /* Chebyshev constants for sin, range -PI/4 - PI/4. */
38 static const double S0
= -0x1.5555555551cd9p
-3;
39 static const double S1
= 0x1.1111110c2688bp
-7;
40 static const double S2
= -0x1.a019f8b4bd1f9p
-13;
41 static const double S3
= 0x1.71d7264e6b5b4p
-19;
42 static const double S4
= -0x1.a947e1674b58ap
-26;
44 /* Chebyshev constants for sin, range 2^-27 - 2^-5. */
45 static const double SS0
= -0x1.555555543d49dp
-3;
46 static const double SS1
= 0x1.110f475cec8c5p
-7;
48 /* PI/2 with 98 bits of accuracy. */
49 static const double PI_2_hi
= -0x1.921fb544p
+0;
50 static const double PI_2_lo
= -0x1.0b4611a626332p
-34;
52 static const double SMALL
= 0x1p
-50; /* 2^-50. */
53 static const double inv_PI_4
= 0x1.45f306dc9c883p
+0; /* 4/PI. */
55 #define FLOAT_EXPONENT_SHIFT 23
56 #define FLOAT_EXPONENT_BIAS 127
58 static const double pio2_table
[] = {
67 static const double invpio4_table
[] = {
78 static const double ones
[] = { 1.0, -1.0 };
80 /* Compute the sine value using Chebyshev polynomials where
81 THETA is the range reduced absolute value of the input
82 and it is less than Pi/4,
83 N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
84 whether a sine or cosine approximation is more accurate and
85 SIGNBIT is used to add the correct sign after the Chebyshev
86 polynomial is computed. */
88 reduced (const double theta
, const unsigned int n
,
89 const unsigned int signbit
)
92 const double theta2
= theta
* theta
;
93 /* We are operating on |x|, so we need to add back the original
96 /* Determine positive or negative primary interval. */
97 sign
= ones
[((n
>> 2) & 1) ^ signbit
];
98 /* Are we in the primary interval of sin or cos? */
101 /* Here sinf() is calculated using sin Chebyshev polynomial:
102 x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
103 sx
= S3
+ theta2
* S4
; /* S3+x^2*S4. */
104 sx
= S2
+ theta2
* sx
; /* S2+x^2*(S3+x^2*S4). */
105 sx
= S1
+ theta2
* sx
; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */
106 sx
= S0
+ theta2
* sx
; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */
107 sx
= theta
+ theta
* theta2
* sx
;
111 /* Here sinf() is calculated using cos Chebyshev polynomial:
112 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
113 sx
= C3
+ theta2
* C4
; /* C3+x^2*C4. */
114 sx
= C2
+ theta2
* sx
; /* C2+x^2*(C3+x^2*C4). */
115 sx
= C1
+ theta2
* sx
; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */
116 sx
= C0
+ theta2
* sx
; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */
117 sx
= 1.0 + theta2
* sx
;
120 /* Add in the signbit and assign the result. */
129 double abstheta
= fabs (theta
);
131 if (isless (abstheta
, M_PI_4
))
133 if (abstheta
>= 0x1p
-5) /* |x| >= 2^-5. */
135 const double theta2
= theta
* theta
;
136 /* Chebyshev polynomial of the form for sin
137 x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
138 cx
= S3
+ theta2
* S4
;
139 cx
= S2
+ theta2
* cx
;
140 cx
= S1
+ theta2
* cx
;
141 cx
= S0
+ theta2
* cx
;
142 cx
= theta
+ theta
* theta2
* cx
;
145 else if (abstheta
>= 0x1p
-27) /* |x| >= 2^-27. */
147 /* A simpler Chebyshev approximation is close enough for this range:
148 for sin: x+x^3*(SS0+x^2*SS1). */
149 const double theta2
= theta
* theta
;
150 cx
= SS0
+ theta2
* SS1
;
151 cx
= theta
+ theta
* theta2
* cx
;
156 /* Handle some special cases. */
158 return theta
- (theta
* SMALL
);
163 else /* |x| >= Pi/4. */
165 unsigned int signbit
= isless (x
, 0);
166 if (isless (abstheta
, 9 * M_PI_4
)) /* |x| < 9*Pi/4. */
168 /* There are cases where FE_UPWARD rounding mode can
169 produce a result of abstheta * inv_PI_4 == 9,
170 where abstheta < 9pi/4, so the domain for
171 pio2_table must go to 5 (9 / 2 + 1). */
172 unsigned int n
= (abstheta
* inv_PI_4
) + 1;
173 theta
= abstheta
- pio2_table
[n
/ 2];
174 return reduced (theta
, n
, signbit
);
176 else if (isless (abstheta
, INFINITY
))
178 if (abstheta
< 0x1p
+23) /* |x| < 2^23. */
180 unsigned int n
= ((unsigned int) (abstheta
* inv_PI_4
)) + 1;
182 theta
= x
* PI_2_lo
+ (x
* PI_2_hi
+ abstheta
);
183 /* Argument reduction needed. */
184 return reduced (theta
, n
, signbit
);
186 else /* |x| >= 2^23. */
190 GET_FLOAT_WORD (exponent
, x
);
192 = (exponent
>> FLOAT_EXPONENT_SHIFT
) - FLOAT_EXPONENT_BIAS
;
195 double a
= invpio4_table
[exponent
] * x
;
196 double b
= invpio4_table
[exponent
+ 1] * x
;
197 double c
= invpio4_table
[exponent
+ 2] * x
;
198 double d
= invpio4_table
[exponent
+ 3] * x
;
212 return reduced (e
, l
+ 1, signbit
);
222 return reduced (e
, l
+ 1, signbit
);
229 return reduced (e
, l
+ 1, signbit
);
237 /* High word of x. */
238 GET_FLOAT_WORD (ix
, abstheta
);
239 /* Sin(Inf or NaN) is NaN. */
240 if (ix
== 0x7f800000)
248 libm_alias_float (__sin
, sin
)