1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
38 # define PARAMS(args) ()
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
59 /* This is for multi byte string support. */
61 # define CHAR_TYPE wchar_t
62 # define US_CHAR_TYPE wchar_t/* unsigned character type */
63 # define COMPILED_BUFFER_VAR wc_buffer
64 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
65 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_TYPE)+1)
66 # define PUT_CHAR(c) \
68 if (MB_CUR_MAX == 1) \
71 printf ("%C", (wint_t) c); /* Should we use wide stream?? */ \
76 # define CHAR_TYPE char
77 # define US_CHAR_TYPE unsigned char /* unsigned character type */
78 # define COMPILED_BUFFER_VAR bufp->buffer
79 # define OFFSET_ADDRESS_SIZE 2
80 # define PUT_CHAR(c) putchar (c)
81 #endif /* MBS_SUPPORT */
84 /* We have to keep the namespace clean. */
85 # define regfree(preg) __regfree (preg)
86 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
87 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
88 # define regerror(errcode, preg, errbuf, errbuf_size) \
89 __regerror(errcode, preg, errbuf, errbuf_size)
90 # define re_set_registers(bu, re, nu, st, en) \
91 __re_set_registers (bu, re, nu, st, en)
92 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
93 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
94 # define re_match(bufp, string, size, pos, regs) \
95 __re_match (bufp, string, size, pos, regs)
96 # define re_search(bufp, string, size, startpos, range, regs) \
97 __re_search (bufp, string, size, startpos, range, regs)
98 # define re_compile_pattern(pattern, length, bufp) \
99 __re_compile_pattern (pattern, length, bufp)
100 # define re_set_syntax(syntax) __re_set_syntax (syntax)
101 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
102 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
103 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
105 # define btowc __btowc
107 /* We are also using some library internals. */
108 # include <locale/localeinfo.h>
109 # include <locale/elem-hash.h>
110 # include <langinfo.h>
111 # include <locale/coll-lookup.h>
114 /* This is for other GNU distributions with internationalized messages. */
115 #if HAVE_LIBINTL_H || defined _LIBC
116 # include <libintl.h>
119 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
122 # define gettext(msgid) (msgid)
126 /* This define is so xgettext can find the internationalizable
128 # define gettext_noop(String) String
131 /* The `emacs' switch turns on certain matching commands
132 that make sense only in Emacs. */
139 #else /* not emacs */
141 /* If we are not linking with Emacs proper,
142 we can't use the relocating allocator
143 even if config.h says that we can. */
146 # if defined STDC_HEADERS || defined _LIBC
153 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
154 If nothing else has been done, use the method below. */
155 # ifdef INHIBIT_STRING_HEADER
156 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
157 # if !defined bzero && !defined bcopy
158 # undef INHIBIT_STRING_HEADER
163 /* This is the normal way of making sure we have a bcopy and a bzero.
164 This is used in most programs--a few other programs avoid this
165 by defining INHIBIT_STRING_HEADER. */
166 # ifndef INHIBIT_STRING_HEADER
167 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
171 # define bzero(s, n) (memset (s, '\0', n), (s))
173 # define bzero(s, n) __bzero (s, n)
177 # include <strings.h>
179 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
182 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
187 /* Define the syntax stuff for \<, \>, etc. */
189 /* This must be nonzero for the wordchar and notwordchar pattern
190 commands in re_match_2. */
195 # ifdef SWITCH_ENUM_BUG
196 # define SWITCH_ENUM_CAST(x) ((int)(x))
198 # define SWITCH_ENUM_CAST(x) (x)
201 #endif /* not emacs */
203 #if defined _LIBC || HAVE_LIMITS_H
208 # define MB_LEN_MAX 1
211 /* Get the interface, including the syntax bits. */
214 /* isalpha etc. are used for the character classes. */
217 /* Jim Meyering writes:
219 "... Some ctype macros are valid only for character codes that
220 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
221 using /bin/cc or gcc but without giving an ansi option). So, all
222 ctype uses should be through macros like ISPRINT... If
223 STDC_HEADERS is defined, then autoconf has verified that the ctype
224 macros don't need to be guarded with references to isascii. ...
225 Defining isascii to 1 should let any compiler worth its salt
226 eliminate the && through constant folding."
227 Solaris defines some of these symbols so we must undefine them first. */
230 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
231 # define ISASCII(c) 1
233 # define ISASCII(c) isascii(c)
237 # define ISBLANK(c) (ISASCII (c) && isblank (c))
239 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
242 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
244 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
248 #define ISPRINT(c) (ISASCII (c) && isprint (c))
249 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
250 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
251 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
252 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
253 #define ISLOWER(c) (ISASCII (c) && islower (c))
254 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
255 #define ISSPACE(c) (ISASCII (c) && isspace (c))
256 #define ISUPPER(c) (ISASCII (c) && isupper (c))
257 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
260 # define TOLOWER(c) _tolower(c)
262 # define TOLOWER(c) tolower(c)
266 # define NULL (void *)0
269 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
270 since ours (we hope) works properly with all combinations of
271 machines, compilers, `char' and `unsigned char' argument types.
272 (Per Bothner suggested the basic approach.) */
273 #undef SIGN_EXTEND_CHAR
275 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
276 #else /* not __STDC__ */
277 /* As in Harbison and Steele. */
278 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
282 /* How many characters in the character set. */
283 # define CHAR_SET_SIZE 256
287 extern char *re_syntax_table
;
289 # else /* not SYNTAX_TABLE */
291 static char re_syntax_table
[CHAR_SET_SIZE
];
293 static void init_syntax_once
PARAMS ((void));
303 bzero (re_syntax_table
, sizeof re_syntax_table
);
305 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
307 re_syntax_table
[c
] = Sword
;
309 re_syntax_table
['_'] = Sword
;
314 # endif /* not SYNTAX_TABLE */
316 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
320 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
321 use `alloca' instead of `malloc'. This is because using malloc in
322 re_search* or re_match* could cause memory leaks when C-g is used in
323 Emacs; also, malloc is slower and causes storage fragmentation. On
324 the other hand, malloc is more portable, and easier to debug.
326 Because we sometimes use alloca, some routines have to be macros,
327 not functions -- `alloca'-allocated space disappears at the end of the
328 function it is called in. */
332 # define REGEX_ALLOCATE malloc
333 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
334 # define REGEX_FREE free
336 #else /* not REGEX_MALLOC */
338 /* Emacs already defines alloca, sometimes. */
341 /* Make alloca work the best possible way. */
343 # define alloca __builtin_alloca
344 # else /* not __GNUC__ */
347 # endif /* HAVE_ALLOCA_H */
348 # endif /* not __GNUC__ */
350 # endif /* not alloca */
352 # define REGEX_ALLOCATE alloca
354 /* Assumes a `char *destination' variable. */
355 # define REGEX_REALLOCATE(source, osize, nsize) \
356 (destination = (char *) alloca (nsize), \
357 memcpy (destination, source, osize))
359 /* No need to do anything to free, after alloca. */
360 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
362 #endif /* not REGEX_MALLOC */
364 /* Define how to allocate the failure stack. */
366 #if defined REL_ALLOC && defined REGEX_MALLOC
368 # define REGEX_ALLOCATE_STACK(size) \
369 r_alloc (&failure_stack_ptr, (size))
370 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
371 r_re_alloc (&failure_stack_ptr, (nsize))
372 # define REGEX_FREE_STACK(ptr) \
373 r_alloc_free (&failure_stack_ptr)
375 #else /* not using relocating allocator */
379 # define REGEX_ALLOCATE_STACK malloc
380 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
381 # define REGEX_FREE_STACK free
383 # else /* not REGEX_MALLOC */
385 # define REGEX_ALLOCATE_STACK alloca
387 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
388 REGEX_REALLOCATE (source, osize, nsize)
389 /* No need to explicitly free anything. */
390 # define REGEX_FREE_STACK(arg)
392 # endif /* not REGEX_MALLOC */
393 #endif /* not using relocating allocator */
396 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
397 `string1' or just past its end. This works if PTR is NULL, which is
399 #define FIRST_STRING_P(ptr) \
400 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
402 /* (Re)Allocate N items of type T using malloc, or fail. */
403 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
404 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
405 #define RETALLOC_IF(addr, n, t) \
406 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
407 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
409 #define BYTEWIDTH 8 /* In bits. */
411 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
415 #define MAX(a, b) ((a) > (b) ? (a) : (b))
416 #define MIN(a, b) ((a) < (b) ? (a) : (b))
418 typedef char boolean
;
422 static int re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
423 const char *string1
, int size1
,
424 const char *string2
, int size2
,
426 struct re_registers
*regs
,
429 /* These are the command codes that appear in compiled regular
430 expressions. Some opcodes are followed by argument bytes. A
431 command code can specify any interpretation whatsoever for its
432 arguments. Zero bytes may appear in the compiled regular expression. */
438 /* Succeed right away--no more backtracking. */
441 /* Followed by one byte giving n, then by n literal bytes. */
445 /* Same as exactn, but contains binary data. */
449 /* Matches any (more or less) character. */
452 /* Matches any one char belonging to specified set. First
453 following byte is number of bitmap bytes. Then come bytes
454 for a bitmap saying which chars are in. Bits in each byte
455 are ordered low-bit-first. A character is in the set if its
456 bit is 1. A character too large to have a bit in the map is
457 automatically not in the set. */
458 /* ifdef MBS_SUPPORT, following element is length of character
459 classes, length of collating symbols, length of equivalence
460 classes, length of character ranges, and length of characters.
461 Next, character class element, collating symbols elements,
462 equivalence class elements, range elements, and character
464 See regex_compile function. */
467 /* Same parameters as charset, but match any character that is
468 not one of those specified. */
471 /* Start remembering the text that is matched, for storing in a
472 register. Followed by one byte with the register number, in
473 the range 0 to one less than the pattern buffer's re_nsub
474 field. Then followed by one byte with the number of groups
475 inner to this one. (This last has to be part of the
476 start_memory only because we need it in the on_failure_jump
480 /* Stop remembering the text that is matched and store it in a
481 memory register. Followed by one byte with the register
482 number, in the range 0 to one less than `re_nsub' in the
483 pattern buffer, and one byte with the number of inner groups,
484 just like `start_memory'. (We need the number of inner
485 groups here because we don't have any easy way of finding the
486 corresponding start_memory when we're at a stop_memory.) */
489 /* Match a duplicate of something remembered. Followed by one
490 byte containing the register number. */
493 /* Fail unless at beginning of line. */
496 /* Fail unless at end of line. */
499 /* Succeeds if at beginning of buffer (if emacs) or at beginning
500 of string to be matched (if not). */
503 /* Analogously, for end of buffer/string. */
506 /* Followed by two byte relative address to which to jump. */
509 /* Same as jump, but marks the end of an alternative. */
512 /* Followed by two-byte relative address of place to resume at
513 in case of failure. */
514 /* ifdef MBS_SUPPORT, the size of address is 1. */
517 /* Like on_failure_jump, but pushes a placeholder instead of the
518 current string position when executed. */
519 on_failure_keep_string_jump
,
521 /* Throw away latest failure point and then jump to following
522 two-byte relative address. */
523 /* ifdef MBS_SUPPORT, the size of address is 1. */
526 /* Change to pop_failure_jump if know won't have to backtrack to
527 match; otherwise change to jump. This is used to jump
528 back to the beginning of a repeat. If what follows this jump
529 clearly won't match what the repeat does, such that we can be
530 sure that there is no use backtracking out of repetitions
531 already matched, then we change it to a pop_failure_jump.
532 Followed by two-byte address. */
533 /* ifdef MBS_SUPPORT, the size of address is 1. */
536 /* Jump to following two-byte address, and push a dummy failure
537 point. This failure point will be thrown away if an attempt
538 is made to use it for a failure. A `+' construct makes this
539 before the first repeat. Also used as an intermediary kind
540 of jump when compiling an alternative. */
541 /* ifdef MBS_SUPPORT, the size of address is 1. */
544 /* Push a dummy failure point and continue. Used at the end of
548 /* Followed by two-byte relative address and two-byte number n.
549 After matching N times, jump to the address upon failure. */
550 /* ifdef MBS_SUPPORT, the size of address is 1. */
553 /* Followed by two-byte relative address, and two-byte number n.
554 Jump to the address N times, then fail. */
555 /* ifdef MBS_SUPPORT, the size of address is 1. */
558 /* Set the following two-byte relative address to the
559 subsequent two-byte number. The address *includes* the two
561 /* ifdef MBS_SUPPORT, the size of address is 1. */
564 wordchar
, /* Matches any word-constituent character. */
565 notwordchar
, /* Matches any char that is not a word-constituent. */
567 wordbeg
, /* Succeeds if at word beginning. */
568 wordend
, /* Succeeds if at word end. */
570 wordbound
, /* Succeeds if at a word boundary. */
571 notwordbound
/* Succeeds if not at a word boundary. */
574 ,before_dot
, /* Succeeds if before point. */
575 at_dot
, /* Succeeds if at point. */
576 after_dot
, /* Succeeds if after point. */
578 /* Matches any character whose syntax is specified. Followed by
579 a byte which contains a syntax code, e.g., Sword. */
582 /* Matches any character whose syntax is not that specified. */
587 /* Common operations on the compiled pattern. */
589 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
590 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
593 # define STORE_NUMBER(destination, number) \
595 *(destination) = (US_CHAR_TYPE)(number); \
598 # define STORE_NUMBER(destination, number) \
600 (destination)[0] = (number) & 0377; \
601 (destination)[1] = (number) >> 8; \
603 #endif /* MBS_SUPPORT */
605 /* Same as STORE_NUMBER, except increment DESTINATION to
606 the byte after where the number is stored. Therefore, DESTINATION
607 must be an lvalue. */
608 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
610 #define STORE_NUMBER_AND_INCR(destination, number) \
612 STORE_NUMBER (destination, number); \
613 (destination) += OFFSET_ADDRESS_SIZE; \
616 /* Put into DESTINATION a number stored in two contiguous bytes starting
618 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
621 # define EXTRACT_NUMBER(destination, source) \
623 (destination) = *(source); \
626 # define EXTRACT_NUMBER(destination, source) \
628 (destination) = *(source) & 0377; \
629 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
634 static void extract_number
_RE_ARGS ((int *dest
, US_CHAR_TYPE
*source
));
636 extract_number (dest
, source
)
638 US_CHAR_TYPE
*source
;
643 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
644 *dest
= *source
& 0377;
649 # ifndef EXTRACT_MACROS /* To debug the macros. */
650 # undef EXTRACT_NUMBER
651 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
652 # endif /* not EXTRACT_MACROS */
656 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
657 SOURCE must be an lvalue. */
659 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
661 EXTRACT_NUMBER (destination, source); \
662 (source) += OFFSET_ADDRESS_SIZE; \
666 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
667 US_CHAR_TYPE
**source
));
669 extract_number_and_incr (destination
, source
)
671 US_CHAR_TYPE
**source
;
673 extract_number (destination
, *source
);
674 *source
+= OFFSET_ADDRESS_SIZE
;
677 # ifndef EXTRACT_MACROS
678 # undef EXTRACT_NUMBER_AND_INCR
679 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
680 extract_number_and_incr (&dest, &src)
681 # endif /* not EXTRACT_MACROS */
685 /* If DEBUG is defined, Regex prints many voluminous messages about what
686 it is doing (if the variable `debug' is nonzero). If linked with the
687 main program in `iregex.c', you can enter patterns and strings
688 interactively. And if linked with the main program in `main.c' and
689 the other test files, you can run the already-written tests. */
693 /* We use standard I/O for debugging. */
696 /* It is useful to test things that ``must'' be true when debugging. */
701 # define DEBUG_STATEMENT(e) e
702 # define DEBUG_PRINT1(x) if (debug) printf (x)
703 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
704 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
705 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
706 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
707 if (debug) print_partial_compiled_pattern (s, e)
708 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
709 if (debug) print_double_string (w, s1, sz1, s2, sz2)
712 /* Print the fastmap in human-readable form. */
715 print_fastmap (fastmap
)
718 unsigned was_a_range
= 0;
721 while (i
< (1 << BYTEWIDTH
))
727 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
743 /* Print a compiled pattern string in human-readable form, starting at
744 the START pointer into it and ending just before the pointer END. */
747 print_partial_compiled_pattern (start
, end
)
753 US_CHAR_TYPE
*p
= start
;
754 US_CHAR_TYPE
*pend
= end
;
762 /* Loop over pattern commands. */
766 printf ("%td:\t", p
- start
);
768 printf ("%ld:\t", (long int) (p
- start
));
771 switch ((re_opcode_t
) *p
++)
779 printf ("/exactn/%d", mcnt
);
791 printf ("/exactn_bin/%d", mcnt
);
794 printf("/%lx", (long int) *p
++);
798 #endif /* MBS_SUPPORT */
802 printf ("/start_memory/%d/%ld", mcnt
, (long int) *p
++);
807 printf ("/stop_memory/%d/%ld", mcnt
, (long int) *p
++);
811 printf ("/duplicate/%ld", (long int) *p
++);
824 printf ("/charset [%s",
825 (re_opcode_t
) *(workp
- 1) == charset_not
? "^" : "");
827 length
= *workp
++; /* the length of char_classes */
828 for (i
=0 ; i
<length
; i
++)
829 printf("[:%lx:]", (long int) *p
++);
830 length
= *workp
++; /* the length of collating_symbol */
831 for (i
=0 ; i
<length
;)
835 PUT_CHAR((i
++,*p
++));
839 length
= *workp
++; /* the length of equivalence_class */
840 for (i
=0 ; i
<length
;)
844 PUT_CHAR((i
++,*p
++));
848 length
= *workp
++; /* the length of char_range */
849 for (i
=0 ; i
<length
; i
++)
851 wchar_t range_start
= *p
++;
852 wchar_t range_end
= *p
++;
854 printf("%c-%c", (char) range_start
, (char) range_end
);
856 printf("%C-%C", (wint_t) range_start
, (wint_t) range_end
);
858 length
= *workp
++; /* the length of char */
859 for (i
=0 ; i
<length
; i
++)
863 printf("%C", (wint_t) *p
++);
866 register int c
, last
= -100;
867 register int in_range
= 0;
869 printf ("/charset [%s",
870 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
872 assert (p
+ *p
< pend
);
874 for (c
= 0; c
< 256; c
++)
876 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
878 /* Are we starting a range? */
879 if (last
+ 1 == c
&& ! in_range
)
884 /* Have we broken a range? */
885 else if (last
+ 1 != c
&& in_range
)
903 #endif /* MBS_SUPPORT */
915 case on_failure_jump
:
916 extract_number_and_incr (&mcnt
, &p
);
918 printf ("/on_failure_jump to %td", p
+ mcnt
- start
);
920 printf ("/on_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
924 case on_failure_keep_string_jump
:
925 extract_number_and_incr (&mcnt
, &p
);
927 printf ("/on_failure_keep_string_jump to %td", p
+ mcnt
- start
);
929 printf ("/on_failure_keep_string_jump to %ld",
930 (long int) (p
+ mcnt
- start
));
934 case dummy_failure_jump
:
935 extract_number_and_incr (&mcnt
, &p
);
937 printf ("/dummy_failure_jump to %td", p
+ mcnt
- start
);
939 printf ("/dummy_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
943 case push_dummy_failure
:
944 printf ("/push_dummy_failure");
948 extract_number_and_incr (&mcnt
, &p
);
950 printf ("/maybe_pop_jump to %td", p
+ mcnt
- start
);
952 printf ("/maybe_pop_jump to %ld", (long int) (p
+ mcnt
- start
));
956 case pop_failure_jump
:
957 extract_number_and_incr (&mcnt
, &p
);
959 printf ("/pop_failure_jump to %td", p
+ mcnt
- start
);
961 printf ("/pop_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
966 extract_number_and_incr (&mcnt
, &p
);
968 printf ("/jump_past_alt to %td", p
+ mcnt
- start
);
970 printf ("/jump_past_alt to %ld", (long int) (p
+ mcnt
- start
));
975 extract_number_and_incr (&mcnt
, &p
);
977 printf ("/jump to %td", p
+ mcnt
- start
);
979 printf ("/jump to %ld", (long int) (p
+ mcnt
- start
));
984 extract_number_and_incr (&mcnt
, &p
);
986 extract_number_and_incr (&mcnt2
, &p
);
988 printf ("/succeed_n to %td, %d times", p1
- start
, mcnt2
);
990 printf ("/succeed_n to %ld, %d times",
991 (long int) (p1
- start
), mcnt2
);
996 extract_number_and_incr (&mcnt
, &p
);
998 extract_number_and_incr (&mcnt2
, &p
);
999 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
1003 extract_number_and_incr (&mcnt
, &p
);
1005 extract_number_and_incr (&mcnt2
, &p
);
1007 printf ("/set_number_at location %td to %d", p1
- start
, mcnt2
);
1009 printf ("/set_number_at location %ld to %d",
1010 (long int) (p1
- start
), mcnt2
);
1015 printf ("/wordbound");
1019 printf ("/notwordbound");
1023 printf ("/wordbeg");
1027 printf ("/wordend");
1032 printf ("/before_dot");
1040 printf ("/after_dot");
1044 printf ("/syntaxspec");
1046 printf ("/%d", mcnt
);
1050 printf ("/notsyntaxspec");
1052 printf ("/%d", mcnt
);
1057 printf ("/wordchar");
1061 printf ("/notwordchar");
1073 printf ("?%ld", (long int) *(p
-1));
1080 printf ("%td:\tend of pattern.\n", p
- start
);
1082 printf ("%ld:\tend of pattern.\n", (long int) (p
- start
));
1088 print_compiled_pattern (bufp
)
1089 struct re_pattern_buffer
*bufp
;
1091 US_CHAR_TYPE
*buffer
= (US_CHAR_TYPE
*) bufp
->buffer
;
1093 print_partial_compiled_pattern (buffer
, buffer
1094 + bufp
->used
/ sizeof(US_CHAR_TYPE
));
1095 printf ("%ld bytes used/%ld bytes allocated.\n",
1096 bufp
->used
, bufp
->allocated
);
1098 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1100 printf ("fastmap: ");
1101 print_fastmap (bufp
->fastmap
);
1105 printf ("re_nsub: %Zd\t", bufp
->re_nsub
);
1107 printf ("re_nsub: %ld\t", (long int) bufp
->re_nsub
);
1109 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1110 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1111 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1112 printf ("no_sub: %d\t", bufp
->no_sub
);
1113 printf ("not_bol: %d\t", bufp
->not_bol
);
1114 printf ("not_eol: %d\t", bufp
->not_eol
);
1115 printf ("syntax: %lx\n", bufp
->syntax
);
1116 /* Perhaps we should print the translate table? */
1121 print_double_string (where
, string1
, size1
, string2
, size2
)
1122 const CHAR_TYPE
*where
;
1123 const CHAR_TYPE
*string1
;
1124 const CHAR_TYPE
*string2
;
1134 if (FIRST_STRING_P (where
))
1136 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1137 PUT_CHAR (string1
[this_char
]);
1142 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1143 PUT_CHAR (string2
[this_char
]);
1154 #else /* not DEBUG */
1159 # define DEBUG_STATEMENT(e)
1160 # define DEBUG_PRINT1(x)
1161 # define DEBUG_PRINT2(x1, x2)
1162 # define DEBUG_PRINT3(x1, x2, x3)
1163 # define DEBUG_PRINT4(x1, x2, x3, x4)
1164 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1165 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1167 #endif /* not DEBUG */
1170 /* This convert a multibyte string to a wide character string.
1171 And write their correspondances to offset_buffer(see below)
1172 and write whether each wchar_t is binary data to is_binary.
1173 This assume invalid multibyte sequences as binary data.
1174 We assume offset_buffer and is_binary is already allocated
1177 static size_t convert_mbs_to_wcs (CHAR_TYPE
*dest
, const unsigned char* src
,
1178 size_t len
, int *offset_buffer
,
1181 convert_mbs_to_wcs (dest
, src
, len
, offset_buffer
, is_binary
)
1183 const unsigned char* src
;
1184 size_t len
; /* the length of multibyte string. */
1186 /* It hold correspondances between src(char string) and
1187 dest(wchar_t string) for optimization.
1189 dest = {'X', 'Y', 'Z'}
1190 (each "xxx", "y" and "zz" represent one multibyte character
1191 corresponding to 'X', 'Y' and 'Z'.)
1192 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1198 wchar_t *pdest
= dest
;
1199 const unsigned char *psrc
= src
;
1200 size_t wc_count
= 0;
1202 if (MB_CUR_MAX
== 1)
1203 { /* We don't need conversion. */
1204 for ( ; wc_count
< len
; ++wc_count
)
1207 is_binary
[wc_count
] = FALSE
;
1208 offset_buffer
[wc_count
] = wc_count
;
1210 offset_buffer
[wc_count
] = wc_count
;
1214 /* We need conversion. */
1217 size_t mb_remain
= len
;
1218 size_t mb_count
= 0;
1220 /* Initialize the conversion state. */
1221 memset (&mbs
, 0, sizeof (mbstate_t));
1223 offset_buffer
[0] = 0;
1224 for( ; mb_remain
> 0 ; ++wc_count
, ++pdest
, mb_remain
-= consumed
,
1227 consumed
= mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1230 /* failed to convert. maybe src contains binary data.
1231 So we consume 1 byte manualy. */
1235 is_binary
[wc_count
] = TRUE
;
1238 is_binary
[wc_count
] = FALSE
;
1239 /* In sjis encoding, we use yen sign as escape character in
1240 place of reverse solidus. So we convert 0x5c(yen sign in
1241 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1242 solidus in UCS2). */
1243 if (consumed
== 1 && (int) *psrc
== 0x5c && (int) *pdest
== 0xa5)
1244 *pdest
= (wchar_t) *psrc
;
1246 offset_buffer
[wc_count
+ 1] = mb_count
+= consumed
;
1253 #endif /* MBS_SUPPORT */
1255 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1256 also be assigned to arbitrarily: each pattern buffer stores its own
1257 syntax, so it can be changed between regex compilations. */
1258 /* This has no initializer because initialized variables in Emacs
1259 become read-only after dumping. */
1260 reg_syntax_t re_syntax_options
;
1263 /* Specify the precise syntax of regexps for compilation. This provides
1264 for compatibility for various utilities which historically have
1265 different, incompatible syntaxes.
1267 The argument SYNTAX is a bit mask comprised of the various bits
1268 defined in regex.h. We return the old syntax. */
1271 re_set_syntax (syntax
)
1272 reg_syntax_t syntax
;
1274 reg_syntax_t ret
= re_syntax_options
;
1276 re_syntax_options
= syntax
;
1278 if (syntax
& RE_DEBUG
)
1280 else if (debug
) /* was on but now is not */
1286 weak_alias (__re_set_syntax
, re_set_syntax
)
1289 /* This table gives an error message for each of the error codes listed
1290 in regex.h. Obviously the order here has to be same as there.
1291 POSIX doesn't require that we do anything for REG_NOERROR,
1292 but why not be nice? */
1294 static const char re_error_msgid
[] =
1296 #define REG_NOERROR_IDX 0
1297 gettext_noop ("Success") /* REG_NOERROR */
1299 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1300 gettext_noop ("No match") /* REG_NOMATCH */
1302 #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1303 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1305 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1306 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1308 #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1309 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1311 #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1312 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1314 #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1315 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1317 #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1318 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1320 #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1321 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1323 #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1324 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1326 #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1327 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1329 #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1330 gettext_noop ("Invalid range end") /* REG_ERANGE */
1332 #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1333 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1335 #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1336 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1338 #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1339 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1341 #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1342 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1344 #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1345 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1348 static const size_t re_error_msgid_idx
[] =
1369 /* Avoiding alloca during matching, to placate r_alloc. */
1371 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1372 searching and matching functions should not call alloca. On some
1373 systems, alloca is implemented in terms of malloc, and if we're
1374 using the relocating allocator routines, then malloc could cause a
1375 relocation, which might (if the strings being searched are in the
1376 ralloc heap) shift the data out from underneath the regexp
1379 Here's another reason to avoid allocation: Emacs
1380 processes input from X in a signal handler; processing X input may
1381 call malloc; if input arrives while a matching routine is calling
1382 malloc, then we're scrod. But Emacs can't just block input while
1383 calling matching routines; then we don't notice interrupts when
1384 they come in. So, Emacs blocks input around all regexp calls
1385 except the matching calls, which it leaves unprotected, in the
1386 faith that they will not malloc. */
1388 /* Normally, this is fine. */
1389 #define MATCH_MAY_ALLOCATE
1391 /* When using GNU C, we are not REALLY using the C alloca, no matter
1392 what config.h may say. So don't take precautions for it. */
1397 /* The match routines may not allocate if (1) they would do it with malloc
1398 and (2) it's not safe for them to use malloc.
1399 Note that if REL_ALLOC is defined, matching would not use malloc for the
1400 failure stack, but we would still use it for the register vectors;
1401 so REL_ALLOC should not affect this. */
1402 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1403 # undef MATCH_MAY_ALLOCATE
1407 /* Failure stack declarations and macros; both re_compile_fastmap and
1408 re_match_2 use a failure stack. These have to be macros because of
1409 REGEX_ALLOCATE_STACK. */
1412 /* Number of failure points for which to initially allocate space
1413 when matching. If this number is exceeded, we allocate more
1414 space, so it is not a hard limit. */
1415 #ifndef INIT_FAILURE_ALLOC
1416 # define INIT_FAILURE_ALLOC 5
1419 /* Roughly the maximum number of failure points on the stack. Would be
1420 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1421 This is a variable only so users of regex can assign to it; we never
1422 change it ourselves. */
1426 # if defined MATCH_MAY_ALLOCATE
1427 /* 4400 was enough to cause a crash on Alpha OSF/1,
1428 whose default stack limit is 2mb. */
1429 long int re_max_failures
= 4000;
1431 long int re_max_failures
= 2000;
1434 union fail_stack_elt
1436 US_CHAR_TYPE
*pointer
;
1440 typedef union fail_stack_elt fail_stack_elt_t
;
1444 fail_stack_elt_t
*stack
;
1445 unsigned long int size
;
1446 unsigned long int avail
; /* Offset of next open position. */
1449 #else /* not INT_IS_16BIT */
1451 # if defined MATCH_MAY_ALLOCATE
1452 /* 4400 was enough to cause a crash on Alpha OSF/1,
1453 whose default stack limit is 2mb. */
1454 int re_max_failures
= 4000;
1456 int re_max_failures
= 2000;
1459 union fail_stack_elt
1461 US_CHAR_TYPE
*pointer
;
1465 typedef union fail_stack_elt fail_stack_elt_t
;
1469 fail_stack_elt_t
*stack
;
1471 unsigned avail
; /* Offset of next open position. */
1474 #endif /* INT_IS_16BIT */
1476 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1477 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1478 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1481 /* Define macros to initialize and free the failure stack.
1482 Do `return -2' if the alloc fails. */
1484 #ifdef MATCH_MAY_ALLOCATE
1485 # define INIT_FAIL_STACK() \
1487 fail_stack.stack = (fail_stack_elt_t *) \
1488 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1490 if (fail_stack.stack == NULL) \
1493 fail_stack.size = INIT_FAILURE_ALLOC; \
1494 fail_stack.avail = 0; \
1497 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1499 # define INIT_FAIL_STACK() \
1501 fail_stack.avail = 0; \
1504 # define RESET_FAIL_STACK()
1508 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1510 Return 1 if succeeds, and 0 if either ran out of memory
1511 allocating space for it or it was already too large.
1513 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1515 #define DOUBLE_FAIL_STACK(fail_stack) \
1516 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1518 : ((fail_stack).stack = (fail_stack_elt_t *) \
1519 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1520 (fail_stack).size * sizeof (fail_stack_elt_t), \
1521 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1523 (fail_stack).stack == NULL \
1525 : ((fail_stack).size <<= 1, \
1529 /* Push pointer POINTER on FAIL_STACK.
1530 Return 1 if was able to do so and 0 if ran out of memory allocating
1532 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1533 ((FAIL_STACK_FULL () \
1534 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1536 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1539 /* Push a pointer value onto the failure stack.
1540 Assumes the variable `fail_stack'. Probably should only
1541 be called from within `PUSH_FAILURE_POINT'. */
1542 #define PUSH_FAILURE_POINTER(item) \
1543 fail_stack.stack[fail_stack.avail++].pointer = (US_CHAR_TYPE *) (item)
1545 /* This pushes an integer-valued item onto the failure stack.
1546 Assumes the variable `fail_stack'. Probably should only
1547 be called from within `PUSH_FAILURE_POINT'. */
1548 #define PUSH_FAILURE_INT(item) \
1549 fail_stack.stack[fail_stack.avail++].integer = (item)
1551 /* Push a fail_stack_elt_t value onto the failure stack.
1552 Assumes the variable `fail_stack'. Probably should only
1553 be called from within `PUSH_FAILURE_POINT'. */
1554 #define PUSH_FAILURE_ELT(item) \
1555 fail_stack.stack[fail_stack.avail++] = (item)
1557 /* These three POP... operations complement the three PUSH... operations.
1558 All assume that `fail_stack' is nonempty. */
1559 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1560 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1561 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1563 /* Used to omit pushing failure point id's when we're not debugging. */
1565 # define DEBUG_PUSH PUSH_FAILURE_INT
1566 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1568 # define DEBUG_PUSH(item)
1569 # define DEBUG_POP(item_addr)
1573 /* Push the information about the state we will need
1574 if we ever fail back to it.
1576 Requires variables fail_stack, regstart, regend, reg_info, and
1577 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1580 Does `return FAILURE_CODE' if runs out of memory. */
1582 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1584 char *destination; \
1585 /* Must be int, so when we don't save any registers, the arithmetic \
1586 of 0 + -1 isn't done as unsigned. */ \
1587 /* Can't be int, since there is not a shred of a guarantee that int \
1588 is wide enough to hold a value of something to which pointer can \
1590 active_reg_t this_reg; \
1592 DEBUG_STATEMENT (failure_id++); \
1593 DEBUG_STATEMENT (nfailure_points_pushed++); \
1594 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1595 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1596 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1598 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1599 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1601 /* Ensure we have enough space allocated for what we will push. */ \
1602 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1604 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1605 return failure_code; \
1607 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1608 (fail_stack).size); \
1609 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1612 /* Push the info, starting with the registers. */ \
1613 DEBUG_PRINT1 ("\n"); \
1616 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1619 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1620 DEBUG_STATEMENT (num_regs_pushed++); \
1622 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1623 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1625 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1626 PUSH_FAILURE_POINTER (regend[this_reg]); \
1628 DEBUG_PRINT2 (" info: %p\n ", \
1629 reg_info[this_reg].word.pointer); \
1630 DEBUG_PRINT2 (" match_null=%d", \
1631 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1632 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1633 DEBUG_PRINT2 (" matched_something=%d", \
1634 MATCHED_SOMETHING (reg_info[this_reg])); \
1635 DEBUG_PRINT2 (" ever_matched=%d", \
1636 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1637 DEBUG_PRINT1 ("\n"); \
1638 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1641 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1642 PUSH_FAILURE_INT (lowest_active_reg); \
1644 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1645 PUSH_FAILURE_INT (highest_active_reg); \
1647 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1648 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1649 PUSH_FAILURE_POINTER (pattern_place); \
1651 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1652 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1654 DEBUG_PRINT1 ("'\n"); \
1655 PUSH_FAILURE_POINTER (string_place); \
1657 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1658 DEBUG_PUSH (failure_id); \
1661 /* This is the number of items that are pushed and popped on the stack
1662 for each register. */
1663 #define NUM_REG_ITEMS 3
1665 /* Individual items aside from the registers. */
1667 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1669 # define NUM_NONREG_ITEMS 4
1672 /* We push at most this many items on the stack. */
1673 /* We used to use (num_regs - 1), which is the number of registers
1674 this regexp will save; but that was changed to 5
1675 to avoid stack overflow for a regexp with lots of parens. */
1676 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1678 /* We actually push this many items. */
1679 #define NUM_FAILURE_ITEMS \
1681 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1685 /* How many items can still be added to the stack without overflowing it. */
1686 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1689 /* Pops what PUSH_FAIL_STACK pushes.
1691 We restore into the parameters, all of which should be lvalues:
1692 STR -- the saved data position.
1693 PAT -- the saved pattern position.
1694 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1695 REGSTART, REGEND -- arrays of string positions.
1696 REG_INFO -- array of information about each subexpression.
1698 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1699 `pend', `string1', `size1', `string2', and `size2'. */
1700 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1702 DEBUG_STATEMENT (unsigned failure_id;) \
1703 active_reg_t this_reg; \
1704 const US_CHAR_TYPE *string_temp; \
1706 assert (!FAIL_STACK_EMPTY ()); \
1708 /* Remove failure points and point to how many regs pushed. */ \
1709 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1710 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1711 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1713 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1715 DEBUG_POP (&failure_id); \
1716 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1718 /* If the saved string location is NULL, it came from an \
1719 on_failure_keep_string_jump opcode, and we want to throw away the \
1720 saved NULL, thus retaining our current position in the string. */ \
1721 string_temp = POP_FAILURE_POINTER (); \
1722 if (string_temp != NULL) \
1723 str = (const CHAR_TYPE *) string_temp; \
1725 DEBUG_PRINT2 (" Popping string %p: `", str); \
1726 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1727 DEBUG_PRINT1 ("'\n"); \
1729 pat = (US_CHAR_TYPE *) POP_FAILURE_POINTER (); \
1730 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1731 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1733 /* Restore register info. */ \
1734 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1735 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1737 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1738 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1741 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1743 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1745 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1746 DEBUG_PRINT2 (" info: %p\n", \
1747 reg_info[this_reg].word.pointer); \
1749 regend[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER (); \
1750 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1752 regstart[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER ();\
1753 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1757 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1759 reg_info[this_reg].word.integer = 0; \
1760 regend[this_reg] = 0; \
1761 regstart[this_reg] = 0; \
1763 highest_active_reg = high_reg; \
1766 set_regs_matched_done = 0; \
1767 DEBUG_STATEMENT (nfailure_points_popped++); \
1768 } /* POP_FAILURE_POINT */
1771 /* Structure for per-register (a.k.a. per-group) information.
1772 Other register information, such as the
1773 starting and ending positions (which are addresses), and the list of
1774 inner groups (which is a bits list) are maintained in separate
1777 We are making a (strictly speaking) nonportable assumption here: that
1778 the compiler will pack our bit fields into something that fits into
1779 the type of `word', i.e., is something that fits into one item on the
1783 /* Declarations and macros for re_match_2. */
1787 fail_stack_elt_t word
;
1790 /* This field is one if this group can match the empty string,
1791 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1792 #define MATCH_NULL_UNSET_VALUE 3
1793 unsigned match_null_string_p
: 2;
1794 unsigned is_active
: 1;
1795 unsigned matched_something
: 1;
1796 unsigned ever_matched_something
: 1;
1798 } register_info_type
;
1800 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1801 #define IS_ACTIVE(R) ((R).bits.is_active)
1802 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1803 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1806 /* Call this when have matched a real character; it sets `matched' flags
1807 for the subexpressions which we are currently inside. Also records
1808 that those subexprs have matched. */
1809 #define SET_REGS_MATCHED() \
1812 if (!set_regs_matched_done) \
1815 set_regs_matched_done = 1; \
1816 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1818 MATCHED_SOMETHING (reg_info[r]) \
1819 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1826 /* Registers are set to a sentinel when they haven't yet matched. */
1827 static CHAR_TYPE reg_unset_dummy
;
1828 #define REG_UNSET_VALUE (®_unset_dummy)
1829 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1831 /* Subroutine declarations and macros for regex_compile. */
1833 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1834 reg_syntax_t syntax
,
1835 struct re_pattern_buffer
*bufp
));
1836 static void store_op1
_RE_ARGS ((re_opcode_t op
, US_CHAR_TYPE
*loc
, int arg
));
1837 static void store_op2
_RE_ARGS ((re_opcode_t op
, US_CHAR_TYPE
*loc
,
1838 int arg1
, int arg2
));
1839 static void insert_op1
_RE_ARGS ((re_opcode_t op
, US_CHAR_TYPE
*loc
,
1840 int arg
, US_CHAR_TYPE
*end
));
1841 static void insert_op2
_RE_ARGS ((re_opcode_t op
, US_CHAR_TYPE
*loc
,
1842 int arg1
, int arg2
, US_CHAR_TYPE
*end
));
1843 static boolean at_begline_loc_p
_RE_ARGS ((const CHAR_TYPE
*pattern
,
1845 reg_syntax_t syntax
));
1846 static boolean at_endline_loc_p
_RE_ARGS ((const CHAR_TYPE
*p
,
1847 const CHAR_TYPE
*pend
,
1848 reg_syntax_t syntax
));
1850 static reg_errcode_t compile_range
_RE_ARGS ((CHAR_TYPE range_start
,
1851 const CHAR_TYPE
**p_ptr
,
1852 const CHAR_TYPE
*pend
,
1854 reg_syntax_t syntax
,
1856 CHAR_TYPE
*char_set
));
1857 static void insert_space
_RE_ARGS ((int num
, CHAR_TYPE
*loc
, CHAR_TYPE
*end
));
1859 static reg_errcode_t compile_range
_RE_ARGS ((unsigned int range_start
,
1860 const CHAR_TYPE
**p_ptr
,
1861 const CHAR_TYPE
*pend
,
1863 reg_syntax_t syntax
,
1865 #endif /* MBS_SUPPORT */
1867 /* Fetch the next character in the uncompiled pattern---translating it
1868 if necessary. Also cast from a signed character in the constant
1869 string passed to us by the user to an unsigned char that we can use
1870 as an array index (in, e.g., `translate'). */
1871 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1872 because it is impossible to allocate 4GB array for some encodings
1873 which have 4 byte character_set like UCS4. */
1876 # define PATFETCH(c) \
1877 do {if (p == pend) return REG_EEND; \
1878 c = (US_CHAR_TYPE) *p++; \
1879 if (translate && (c <= 0xff)) c = (US_CHAR_TYPE) translate[c]; \
1882 # define PATFETCH(c) \
1883 do {if (p == pend) return REG_EEND; \
1884 c = (unsigned char) *p++; \
1885 if (translate) c = (unsigned char) translate[c]; \
1887 # endif /* MBS_SUPPORT */
1890 /* Fetch the next character in the uncompiled pattern, with no
1892 #define PATFETCH_RAW(c) \
1893 do {if (p == pend) return REG_EEND; \
1894 c = (US_CHAR_TYPE) *p++; \
1897 /* Go backwards one character in the pattern. */
1898 #define PATUNFETCH p--
1901 /* If `translate' is non-null, return translate[D], else just D. We
1902 cast the subscript to translate because some data is declared as
1903 `char *', to avoid warnings when a string constant is passed. But
1904 when we use a character as a subscript we must make it unsigned. */
1905 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1906 because it is impossible to allocate 4GB array for some encodings
1907 which have 4 byte character_set like UCS4. */
1910 # define TRANSLATE(d) \
1911 ((translate && ((US_CHAR_TYPE) (d)) <= 0xff) \
1912 ? (char) translate[(unsigned char) (d)] : (d))
1914 # define TRANSLATE(d) \
1915 (translate ? (char) translate[(unsigned char) (d)] : (d))
1916 # endif /* MBS_SUPPORT */
1920 /* Macros for outputting the compiled pattern into `buffer'. */
1922 /* If the buffer isn't allocated when it comes in, use this. */
1923 #define INIT_BUF_SIZE (32 * sizeof(US_CHAR_TYPE))
1925 /* Make sure we have at least N more bytes of space in buffer. */
1927 # define GET_BUFFER_SPACE(n) \
1928 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1929 + (n)*sizeof(CHAR_TYPE)) > bufp->allocated) \
1932 # define GET_BUFFER_SPACE(n) \
1933 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1935 #endif /* MBS_SUPPORT */
1937 /* Make sure we have one more byte of buffer space and then add C to it. */
1938 #define BUF_PUSH(c) \
1940 GET_BUFFER_SPACE (1); \
1941 *b++ = (US_CHAR_TYPE) (c); \
1945 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1946 #define BUF_PUSH_2(c1, c2) \
1948 GET_BUFFER_SPACE (2); \
1949 *b++ = (US_CHAR_TYPE) (c1); \
1950 *b++ = (US_CHAR_TYPE) (c2); \
1954 /* As with BUF_PUSH_2, except for three bytes. */
1955 #define BUF_PUSH_3(c1, c2, c3) \
1957 GET_BUFFER_SPACE (3); \
1958 *b++ = (US_CHAR_TYPE) (c1); \
1959 *b++ = (US_CHAR_TYPE) (c2); \
1960 *b++ = (US_CHAR_TYPE) (c3); \
1963 /* Store a jump with opcode OP at LOC to location TO. We store a
1964 relative address offset by the three bytes the jump itself occupies. */
1965 #define STORE_JUMP(op, loc, to) \
1966 store_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1968 /* Likewise, for a two-argument jump. */
1969 #define STORE_JUMP2(op, loc, to, arg) \
1970 store_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1972 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1973 #define INSERT_JUMP(op, loc, to) \
1974 insert_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1976 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1977 #define INSERT_JUMP2(op, loc, to, arg) \
1978 insert_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1982 /* This is not an arbitrary limit: the arguments which represent offsets
1983 into the pattern are two bytes long. So if 2^16 bytes turns out to
1984 be too small, many things would have to change. */
1985 /* Any other compiler which, like MSC, has allocation limit below 2^16
1986 bytes will have to use approach similar to what was done below for
1987 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1988 reallocating to 0 bytes. Such thing is not going to work too well.
1989 You have been warned!! */
1990 #if defined _MSC_VER && !defined WIN32
1991 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1992 The REALLOC define eliminates a flurry of conversion warnings,
1993 but is not required. */
1994 # define MAX_BUF_SIZE 65500L
1995 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1997 # define MAX_BUF_SIZE (1L << 16)
1998 # define REALLOC(p,s) realloc ((p), (s))
2001 /* Extend the buffer by twice its current size via realloc and
2002 reset the pointers that pointed into the old block to point to the
2003 correct places in the new one. If extending the buffer results in it
2004 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2005 #if __BOUNDED_POINTERS__
2006 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2007 # define MOVE_BUFFER_POINTER(P) \
2008 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2009 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2012 SET_HIGH_BOUND (b); \
2013 SET_HIGH_BOUND (begalt); \
2014 if (fixup_alt_jump) \
2015 SET_HIGH_BOUND (fixup_alt_jump); \
2017 SET_HIGH_BOUND (laststart); \
2018 if (pending_exact) \
2019 SET_HIGH_BOUND (pending_exact); \
2022 # define MOVE_BUFFER_POINTER(P) (P) += incr
2023 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2027 # define EXTEND_BUFFER() \
2029 US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR; \
2031 if (bufp->allocated + sizeof(US_CHAR_TYPE) > MAX_BUF_SIZE) \
2033 bufp->allocated <<= 1; \
2034 if (bufp->allocated > MAX_BUF_SIZE) \
2035 bufp->allocated = MAX_BUF_SIZE; \
2036 /* How many characters the new buffer can have? */ \
2037 wchar_count = bufp->allocated / sizeof(US_CHAR_TYPE); \
2038 if (wchar_count == 0) wchar_count = 1; \
2039 /* Truncate the buffer to CHAR_TYPE align. */ \
2040 bufp->allocated = wchar_count * sizeof(US_CHAR_TYPE); \
2041 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, US_CHAR_TYPE); \
2042 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2043 if (COMPILED_BUFFER_VAR == NULL) \
2044 return REG_ESPACE; \
2045 /* If the buffer moved, move all the pointers into it. */ \
2046 if (old_buffer != COMPILED_BUFFER_VAR) \
2048 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2049 MOVE_BUFFER_POINTER (b); \
2050 MOVE_BUFFER_POINTER (begalt); \
2051 if (fixup_alt_jump) \
2052 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2054 MOVE_BUFFER_POINTER (laststart); \
2055 if (pending_exact) \
2056 MOVE_BUFFER_POINTER (pending_exact); \
2058 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2061 # define EXTEND_BUFFER() \
2063 US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR; \
2064 if (bufp->allocated == MAX_BUF_SIZE) \
2066 bufp->allocated <<= 1; \
2067 if (bufp->allocated > MAX_BUF_SIZE) \
2068 bufp->allocated = MAX_BUF_SIZE; \
2069 bufp->buffer = (US_CHAR_TYPE *) REALLOC (COMPILED_BUFFER_VAR, \
2071 if (COMPILED_BUFFER_VAR == NULL) \
2072 return REG_ESPACE; \
2073 /* If the buffer moved, move all the pointers into it. */ \
2074 if (old_buffer != COMPILED_BUFFER_VAR) \
2076 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2077 MOVE_BUFFER_POINTER (b); \
2078 MOVE_BUFFER_POINTER (begalt); \
2079 if (fixup_alt_jump) \
2080 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2082 MOVE_BUFFER_POINTER (laststart); \
2083 if (pending_exact) \
2084 MOVE_BUFFER_POINTER (pending_exact); \
2086 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2088 #endif /* MBS_SUPPORT */
2090 /* Since we have one byte reserved for the register number argument to
2091 {start,stop}_memory, the maximum number of groups we can report
2092 things about is what fits in that byte. */
2093 #define MAX_REGNUM 255
2095 /* But patterns can have more than `MAX_REGNUM' registers. We just
2096 ignore the excess. */
2097 typedef unsigned regnum_t
;
2100 /* Macros for the compile stack. */
2102 /* Since offsets can go either forwards or backwards, this type needs to
2103 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2104 /* int may be not enough when sizeof(int) == 2. */
2105 typedef long pattern_offset_t
;
2109 pattern_offset_t begalt_offset
;
2110 pattern_offset_t fixup_alt_jump
;
2111 pattern_offset_t inner_group_offset
;
2112 pattern_offset_t laststart_offset
;
2114 } compile_stack_elt_t
;
2119 compile_stack_elt_t
*stack
;
2121 unsigned avail
; /* Offset of next open position. */
2122 } compile_stack_type
;
2125 #define INIT_COMPILE_STACK_SIZE 32
2127 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2128 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2130 /* The next available element. */
2131 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2134 /* Set the bit for character C in a list. */
2135 #define SET_LIST_BIT(c) \
2136 (b[((unsigned char) (c)) / BYTEWIDTH] \
2137 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2140 /* Get the next unsigned number in the uncompiled pattern. */
2141 #define GET_UNSIGNED_NUMBER(num) \
2146 if (c < '0' || c > '9') \
2148 if (num <= RE_DUP_MAX) \
2152 num = num * 10 + c - '0'; \
2157 #if defined _LIBC || WIDE_CHAR_SUPPORT
2158 /* The GNU C library provides support for user-defined character classes
2159 and the functions from ISO C amendement 1. */
2160 # ifdef CHARCLASS_NAME_MAX
2161 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2163 /* This shouldn't happen but some implementation might still have this
2164 problem. Use a reasonable default value. */
2165 # define CHAR_CLASS_MAX_LENGTH 256
2169 # define IS_CHAR_CLASS(string) __wctype (string)
2171 # define IS_CHAR_CLASS(string) wctype (string)
2174 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2176 # define IS_CHAR_CLASS(string) \
2177 (STREQ (string, "alpha") || STREQ (string, "upper") \
2178 || STREQ (string, "lower") || STREQ (string, "digit") \
2179 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2180 || STREQ (string, "space") || STREQ (string, "print") \
2181 || STREQ (string, "punct") || STREQ (string, "graph") \
2182 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2185 #ifndef MATCH_MAY_ALLOCATE
2187 /* If we cannot allocate large objects within re_match_2_internal,
2188 we make the fail stack and register vectors global.
2189 The fail stack, we grow to the maximum size when a regexp
2191 The register vectors, we adjust in size each time we
2192 compile a regexp, according to the number of registers it needs. */
2194 static fail_stack_type fail_stack
;
2196 /* Size with which the following vectors are currently allocated.
2197 That is so we can make them bigger as needed,
2198 but never make them smaller. */
2199 static int regs_allocated_size
;
2201 static const char ** regstart
, ** regend
;
2202 static const char ** old_regstart
, ** old_regend
;
2203 static const char **best_regstart
, **best_regend
;
2204 static register_info_type
*reg_info
;
2205 static const char **reg_dummy
;
2206 static register_info_type
*reg_info_dummy
;
2208 /* Make the register vectors big enough for NUM_REGS registers,
2209 but don't make them smaller. */
2212 regex_grow_registers (num_regs
)
2215 if (num_regs
> regs_allocated_size
)
2217 RETALLOC_IF (regstart
, num_regs
, const char *);
2218 RETALLOC_IF (regend
, num_regs
, const char *);
2219 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2220 RETALLOC_IF (old_regend
, num_regs
, const char *);
2221 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2222 RETALLOC_IF (best_regend
, num_regs
, const char *);
2223 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
2224 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2225 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
2227 regs_allocated_size
= num_regs
;
2231 #endif /* not MATCH_MAY_ALLOCATE */
2233 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2237 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2238 Returns one of error codes defined in `regex.h', or zero for success.
2240 Assumes the `allocated' (and perhaps `buffer') and `translate'
2241 fields are set in BUFP on entry.
2243 If it succeeds, results are put in BUFP (if it returns an error, the
2244 contents of BUFP are undefined):
2245 `buffer' is the compiled pattern;
2246 `syntax' is set to SYNTAX;
2247 `used' is set to the length of the compiled pattern;
2248 `fastmap_accurate' is zero;
2249 `re_nsub' is the number of subexpressions in PATTERN;
2250 `not_bol' and `not_eol' are zero;
2252 The `fastmap' and `newline_anchor' fields are neither
2253 examined nor set. */
2255 /* Return, freeing storage we allocated. */
2257 # define FREE_STACK_RETURN(value) \
2258 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2260 # define FREE_STACK_RETURN(value) \
2261 return (free (compile_stack.stack), value)
2262 #endif /* MBS_SUPPORT */
2264 static reg_errcode_t
2266 regex_compile (cpattern
, csize
, syntax
, bufp
)
2267 const char *cpattern
;
2270 regex_compile (pattern
, size
, syntax
, bufp
)
2271 const char *pattern
;
2273 #endif /* MBS_SUPPORT */
2274 reg_syntax_t syntax
;
2275 struct re_pattern_buffer
*bufp
;
2277 /* We fetch characters from PATTERN here. Even though PATTERN is
2278 `char *' (i.e., signed), we declare these variables as unsigned, so
2279 they can be reliably used as array indices. */
2280 register US_CHAR_TYPE c
, c1
;
2283 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2284 CHAR_TYPE
*pattern
, *COMPILED_BUFFER_VAR
;
2286 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
2287 int *mbs_offset
= NULL
;
2288 /* It hold whether each wchar_t is binary data or not. */
2289 char *is_binary
= NULL
;
2290 /* A flag whether exactn is handling binary data or not. */
2291 char is_exactn_bin
= FALSE
;
2292 #endif /* MBS_SUPPORT */
2294 /* A random temporary spot in PATTERN. */
2295 const CHAR_TYPE
*p1
;
2297 /* Points to the end of the buffer, where we should append. */
2298 register US_CHAR_TYPE
*b
;
2300 /* Keeps track of unclosed groups. */
2301 compile_stack_type compile_stack
;
2303 /* Points to the current (ending) position in the pattern. */
2306 const CHAR_TYPE
*pend
;
2308 const CHAR_TYPE
*p
= pattern
;
2309 const CHAR_TYPE
*pend
= pattern
+ size
;
2310 #endif /* MBS_SUPPORT */
2312 /* How to translate the characters in the pattern. */
2313 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2315 /* Address of the count-byte of the most recently inserted `exactn'
2316 command. This makes it possible to tell if a new exact-match
2317 character can be added to that command or if the character requires
2318 a new `exactn' command. */
2319 US_CHAR_TYPE
*pending_exact
= 0;
2321 /* Address of start of the most recently finished expression.
2322 This tells, e.g., postfix * where to find the start of its
2323 operand. Reset at the beginning of groups and alternatives. */
2324 US_CHAR_TYPE
*laststart
= 0;
2326 /* Address of beginning of regexp, or inside of last group. */
2327 US_CHAR_TYPE
*begalt
;
2329 /* Address of the place where a forward jump should go to the end of
2330 the containing expression. Each alternative of an `or' -- except the
2331 last -- ends with a forward jump of this sort. */
2332 US_CHAR_TYPE
*fixup_alt_jump
= 0;
2334 /* Counts open-groups as they are encountered. Remembered for the
2335 matching close-group on the compile stack, so the same register
2336 number is put in the stop_memory as the start_memory. */
2337 regnum_t regnum
= 0;
2340 /* Initialize the wchar_t PATTERN and offset_buffer. */
2341 p
= pend
= pattern
= TALLOC(csize
+ 1, CHAR_TYPE
);
2342 mbs_offset
= TALLOC(csize
+ 1, int);
2343 is_binary
= TALLOC(csize
+ 1, char);
2344 if (pattern
== NULL
|| mbs_offset
== NULL
|| is_binary
== NULL
)
2351 pattern
[csize
] = L
'\0'; /* sentinel */
2352 size
= convert_mbs_to_wcs(pattern
, cpattern
, csize
, mbs_offset
, is_binary
);
2364 DEBUG_PRINT1 ("\nCompiling pattern: ");
2367 unsigned debug_count
;
2369 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2370 PUT_CHAR (pattern
[debug_count
]);
2375 /* Initialize the compile stack. */
2376 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2377 if (compile_stack
.stack
== NULL
)
2387 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2388 compile_stack
.avail
= 0;
2390 /* Initialize the pattern buffer. */
2391 bufp
->syntax
= syntax
;
2392 bufp
->fastmap_accurate
= 0;
2393 bufp
->not_bol
= bufp
->not_eol
= 0;
2395 /* Set `used' to zero, so that if we return an error, the pattern
2396 printer (for debugging) will think there's no pattern. We reset it
2400 /* Always count groups, whether or not bufp->no_sub is set. */
2403 #if !defined emacs && !defined SYNTAX_TABLE
2404 /* Initialize the syntax table. */
2405 init_syntax_once ();
2408 if (bufp
->allocated
== 0)
2411 { /* If zero allocated, but buffer is non-null, try to realloc
2412 enough space. This loses if buffer's address is bogus, but
2413 that is the user's responsibility. */
2415 /* Free bufp->buffer and allocate an array for wchar_t pattern
2418 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/sizeof(US_CHAR_TYPE
),
2421 RETALLOC (COMPILED_BUFFER_VAR
, INIT_BUF_SIZE
, US_CHAR_TYPE
);
2422 #endif /* MBS_SUPPORT */
2425 { /* Caller did not allocate a buffer. Do it for them. */
2426 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/ sizeof(US_CHAR_TYPE
),
2430 if (!COMPILED_BUFFER_VAR
) FREE_STACK_RETURN (REG_ESPACE
);
2432 bufp
->buffer
= (char*)COMPILED_BUFFER_VAR
;
2433 #endif /* MBS_SUPPORT */
2434 bufp
->allocated
= INIT_BUF_SIZE
;
2438 COMPILED_BUFFER_VAR
= (US_CHAR_TYPE
*) bufp
->buffer
;
2441 begalt
= b
= COMPILED_BUFFER_VAR
;
2443 /* Loop through the uncompiled pattern until we're at the end. */
2452 if ( /* If at start of pattern, it's an operator. */
2454 /* If context independent, it's an operator. */
2455 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2456 /* Otherwise, depends on what's come before. */
2457 || at_begline_loc_p (pattern
, p
, syntax
))
2467 if ( /* If at end of pattern, it's an operator. */
2469 /* If context independent, it's an operator. */
2470 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2471 /* Otherwise, depends on what's next. */
2472 || at_endline_loc_p (p
, pend
, syntax
))
2482 if ((syntax
& RE_BK_PLUS_QM
)
2483 || (syntax
& RE_LIMITED_OPS
))
2487 /* If there is no previous pattern... */
2490 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2491 FREE_STACK_RETURN (REG_BADRPT
);
2492 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2497 /* Are we optimizing this jump? */
2498 boolean keep_string_p
= false;
2500 /* 1 means zero (many) matches is allowed. */
2501 char zero_times_ok
= 0, many_times_ok
= 0;
2503 /* If there is a sequence of repetition chars, collapse it
2504 down to just one (the right one). We can't combine
2505 interval operators with these because of, e.g., `a{2}*',
2506 which should only match an even number of `a's. */
2510 zero_times_ok
|= c
!= '+';
2511 many_times_ok
|= c
!= '?';
2519 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2522 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2524 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2527 if (!(c1
== '+' || c1
== '?'))
2542 /* If we get here, we found another repeat character. */
2545 /* Star, etc. applied to an empty pattern is equivalent
2546 to an empty pattern. */
2550 /* Now we know whether or not zero matches is allowed
2551 and also whether or not two or more matches is allowed. */
2553 { /* More than one repetition is allowed, so put in at the
2554 end a backward relative jump from `b' to before the next
2555 jump we're going to put in below (which jumps from
2556 laststart to after this jump).
2558 But if we are at the `*' in the exact sequence `.*\n',
2559 insert an unconditional jump backwards to the .,
2560 instead of the beginning of the loop. This way we only
2561 push a failure point once, instead of every time
2562 through the loop. */
2563 assert (p
- 1 > pattern
);
2565 /* Allocate the space for the jump. */
2566 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2568 /* We know we are not at the first character of the pattern,
2569 because laststart was nonzero. And we've already
2570 incremented `p', by the way, to be the character after
2571 the `*'. Do we have to do something analogous here
2572 for null bytes, because of RE_DOT_NOT_NULL? */
2573 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2575 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2576 && !(syntax
& RE_DOT_NEWLINE
))
2577 { /* We have .*\n. */
2578 STORE_JUMP (jump
, b
, laststart
);
2579 keep_string_p
= true;
2582 /* Anything else. */
2583 STORE_JUMP (maybe_pop_jump
, b
, laststart
-
2584 (1 + OFFSET_ADDRESS_SIZE
));
2586 /* We've added more stuff to the buffer. */
2587 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2590 /* On failure, jump from laststart to b + 3, which will be the
2591 end of the buffer after this jump is inserted. */
2592 /* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2594 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2595 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2597 laststart
, b
+ 1 + OFFSET_ADDRESS_SIZE
);
2599 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2603 /* At least one repetition is required, so insert a
2604 `dummy_failure_jump' before the initial
2605 `on_failure_jump' instruction of the loop. This
2606 effects a skip over that instruction the first time
2607 we hit that loop. */
2608 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2609 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+
2610 2 + 2 * OFFSET_ADDRESS_SIZE
);
2611 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2625 boolean had_char_class
= false;
2627 CHAR_TYPE range_start
= 0xffffffff;
2629 unsigned int range_start
= 0xffffffff;
2631 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2634 /* We assume a charset(_not) structure as a wchar_t array.
2635 charset[0] = (re_opcode_t) charset(_not)
2636 charset[1] = l (= length of char_classes)
2637 charset[2] = m (= length of collating_symbols)
2638 charset[3] = n (= length of equivalence_classes)
2639 charset[4] = o (= length of char_ranges)
2640 charset[5] = p (= length of chars)
2642 charset[6] = char_class (wctype_t)
2643 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2645 charset[l+5] = char_class (wctype_t)
2647 charset[l+6] = collating_symbol (wchar_t)
2649 charset[l+m+5] = collating_symbol (wchar_t)
2650 ifdef _LIBC we use the index if
2651 _NL_COLLATE_SYMB_EXTRAMB instead of
2654 charset[l+m+6] = equivalence_classes (wchar_t)
2656 charset[l+m+n+5] = equivalence_classes (wchar_t)
2657 ifdef _LIBC we use the index in
2658 _NL_COLLATE_WEIGHT instead of
2661 charset[l+m+n+6] = range_start
2662 charset[l+m+n+7] = range_end
2664 charset[l+m+n+2o+4] = range_start
2665 charset[l+m+n+2o+5] = range_end
2666 ifdef _LIBC we use the value looked up
2667 in _NL_COLLATE_COLLSEQ instead of
2670 charset[l+m+n+2o+6] = char
2672 charset[l+m+n+2o+p+5] = char
2676 /* We need at least 6 spaces: the opcode, the length of
2677 char_classes, the length of collating_symbols, the length of
2678 equivalence_classes, the length of char_ranges, the length of
2680 GET_BUFFER_SPACE (6);
2682 /* Save b as laststart. And We use laststart as the pointer
2683 to the first element of the charset here.
2684 In other words, laststart[i] indicates charset[i]. */
2687 /* We test `*p == '^' twice, instead of using an if
2688 statement, so we only need one BUF_PUSH. */
2689 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2693 /* Push the length of char_classes, the length of
2694 collating_symbols, the length of equivalence_classes, the
2695 length of char_ranges and the length of chars. */
2696 BUF_PUSH_3 (0, 0, 0);
2699 /* Remember the first position in the bracket expression. */
2702 /* charset_not matches newline according to a syntax bit. */
2703 if ((re_opcode_t
) b
[-6] == charset_not
2704 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2707 laststart
[5]++; /* Update the length of characters */
2710 /* Read in characters and ranges, setting map bits. */
2713 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2717 /* \ might escape characters inside [...] and [^...]. */
2718 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2720 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2724 laststart
[5]++; /* Update the length of chars */
2729 /* Could be the end of the bracket expression. If it's
2730 not (i.e., when the bracket expression is `[]' so
2731 far), the ']' character bit gets set way below. */
2732 if (c
== ']' && p
!= p1
+ 1)
2735 /* Look ahead to see if it's a range when the last thing
2736 was a character class. */
2737 if (had_char_class
&& c
== '-' && *p
!= ']')
2738 FREE_STACK_RETURN (REG_ERANGE
);
2740 /* Look ahead to see if it's a range when the last thing
2741 was a character: if this is a hyphen not at the
2742 beginning or the end of a list, then it's the range
2745 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2746 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2750 /* Allocate the space for range_start and range_end. */
2751 GET_BUFFER_SPACE (2);
2752 /* Update the pointer to indicate end of buffer. */
2754 ret
= compile_range (range_start
, &p
, pend
, translate
,
2755 syntax
, b
, laststart
);
2756 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2757 range_start
= 0xffffffff;
2759 else if (p
[0] == '-' && p
[1] != ']')
2760 { /* This handles ranges made up of characters only. */
2763 /* Move past the `-'. */
2765 /* Allocate the space for range_start and range_end. */
2766 GET_BUFFER_SPACE (2);
2767 /* Update the pointer to indicate end of buffer. */
2769 ret
= compile_range (c
, &p
, pend
, translate
, syntax
, b
,
2771 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2772 range_start
= 0xffffffff;
2775 /* See if we're at the beginning of a possible character
2777 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2778 { /* Leave room for the null. */
2779 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2784 /* If pattern is `[[:'. */
2785 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2790 if ((c
== ':' && *p
== ']') || p
== pend
)
2792 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2795 /* This is in any case an invalid class name. */
2800 /* If isn't a word bracketed by `[:' and `:]':
2801 undo the ending character, the letters, and leave
2802 the leading `:' and `[' (but store them as character). */
2803 if (c
== ':' && *p
== ']')
2808 /* Query the character class as wctype_t. */
2809 wt
= IS_CHAR_CLASS (str
);
2811 FREE_STACK_RETURN (REG_ECTYPE
);
2813 /* Throw away the ] at the end of the character
2817 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2819 /* Allocate the space for character class. */
2820 GET_BUFFER_SPACE(CHAR_CLASS_SIZE
);
2821 /* Update the pointer to indicate end of buffer. */
2822 b
+= CHAR_CLASS_SIZE
;
2823 /* Move data which follow character classes
2824 not to violate the data. */
2825 insert_space(CHAR_CLASS_SIZE
,
2826 laststart
+ 6 + laststart
[1],
2828 alignedp
= ((uintptr_t)(laststart
+ 6 + laststart
[1])
2829 + __alignof__(wctype_t) - 1)
2830 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2831 /* Store the character class. */
2832 *((wctype_t*)alignedp
) = wt
;
2833 /* Update length of char_classes */
2834 laststart
[1] += CHAR_CLASS_SIZE
;
2836 had_char_class
= true;
2845 laststart
[5] += 2; /* Update the length of characters */
2847 had_char_class
= false;
2850 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && (*p
== '='
2853 CHAR_TYPE str
[128]; /* Should be large enough. */
2854 CHAR_TYPE delim
= *p
; /* '=' or '.' */
2857 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
2862 /* If pattern is `[[=' or '[[.'. */
2863 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2868 if ((c
== delim
&& *p
== ']') || p
== pend
)
2870 if (c1
< sizeof (str
) - 1)
2873 /* This is in any case an invalid class name. */
2878 if (c
== delim
&& *p
== ']' && str
[0] != '\0')
2880 unsigned int i
, offset
;
2881 /* If we have no collation data we use the default
2882 collation in which each character is in a class
2883 by itself. It also means that ASCII is the
2884 character set and therefore we cannot have character
2885 with more than one byte in the multibyte
2888 /* If not defined _LIBC, we push the name and
2889 `\0' for the sake of matching performance. */
2890 int datasize
= c1
+ 1;
2898 FREE_STACK_RETURN (REG_ECOLLATE
);
2903 const int32_t *table
;
2904 const int32_t *weights
;
2905 const int32_t *extra
;
2906 const int32_t *indirect
;
2909 /* This #include defines a local function! */
2910 # include <locale/weightwc.h>
2914 /* We push the index for equivalence class. */
2917 table
= (const int32_t *)
2918 _NL_CURRENT (LC_COLLATE
,
2919 _NL_COLLATE_TABLEWC
);
2920 weights
= (const int32_t *)
2921 _NL_CURRENT (LC_COLLATE
,
2922 _NL_COLLATE_WEIGHTWC
);
2923 extra
= (const int32_t *)
2924 _NL_CURRENT (LC_COLLATE
,
2925 _NL_COLLATE_EXTRAWC
);
2926 indirect
= (const int32_t *)
2927 _NL_CURRENT (LC_COLLATE
,
2928 _NL_COLLATE_INDIRECTWC
);
2930 idx
= findidx ((const wint_t**)&cp
);
2931 if (idx
== 0 || cp
< (wint_t*) str
+ c1
)
2932 /* This is no valid character. */
2933 FREE_STACK_RETURN (REG_ECOLLATE
);
2935 str
[0] = (wchar_t)idx
;
2937 else /* delim == '.' */
2939 /* We push collation sequence value
2940 for collating symbol. */
2942 const int32_t *symb_table
;
2943 const unsigned char *extra
;
2950 /* We have to convert the name to a single-byte
2951 string. This is possible since the names
2952 consist of ASCII characters and the internal
2953 representation is UCS4. */
2954 for (i
= 0; i
< c1
; ++i
)
2955 char_str
[i
] = str
[i
];
2958 _NL_CURRENT_WORD (LC_COLLATE
,
2959 _NL_COLLATE_SYMB_HASH_SIZEMB
);
2960 symb_table
= (const int32_t *)
2961 _NL_CURRENT (LC_COLLATE
,
2962 _NL_COLLATE_SYMB_TABLEMB
);
2963 extra
= (const unsigned char *)
2964 _NL_CURRENT (LC_COLLATE
,
2965 _NL_COLLATE_SYMB_EXTRAMB
);
2967 /* Locate the character in the hashing table. */
2968 hash
= elem_hash (char_str
, c1
);
2971 elem
= hash
% table_size
;
2972 second
= hash
% (table_size
- 2);
2973 while (symb_table
[2 * elem
] != 0)
2975 /* First compare the hashing value. */
2976 if (symb_table
[2 * elem
] == hash
2977 && c1
== extra
[symb_table
[2 * elem
+ 1]]
2979 &extra
[symb_table
[2 * elem
+ 1]
2982 /* Yep, this is the entry. */
2983 idx
= symb_table
[2 * elem
+ 1];
2984 idx
+= 1 + extra
[idx
];
2992 if (symb_table
[2 * elem
] != 0)
2994 /* Compute the index of the byte sequence
2996 idx
+= 1 + extra
[idx
];
2997 /* Adjust for the alignment. */
2998 idx
= (idx
+ 3) & ~4;
3000 str
[0] = (wchar_t) idx
+ 4;
3002 else if (symb_table
[2 * elem
] == 0 && c1
== 1)
3004 /* No valid character. Match it as a
3005 single byte character. */
3006 had_char_class
= false;
3008 /* Update the length of characters */
3010 range_start
= str
[0];
3012 /* Throw away the ] at the end of the
3013 collating symbol. */
3015 /* exit from the switch block. */
3019 FREE_STACK_RETURN (REG_ECOLLATE
);
3024 /* Throw away the ] at the end of the equivalence
3025 class (or collating symbol). */
3028 /* Allocate the space for the equivalence class
3029 (or collating symbol) (and '\0' if needed). */
3030 GET_BUFFER_SPACE(datasize
);
3031 /* Update the pointer to indicate end of buffer. */
3035 { /* equivalence class */
3036 /* Calculate the offset of char_ranges,
3037 which is next to equivalence_classes. */
3038 offset
= laststart
[1] + laststart
[2]
3041 insert_space(datasize
, laststart
+ offset
, b
- 1);
3043 /* Write the equivalence_class and \0. */
3044 for (i
= 0 ; i
< datasize
; i
++)
3045 laststart
[offset
+ i
] = str
[i
];
3047 /* Update the length of equivalence_classes. */
3048 laststart
[3] += datasize
;
3049 had_char_class
= true;
3051 else /* delim == '.' */
3052 { /* collating symbol */
3053 /* Calculate the offset of the equivalence_classes,
3054 which is next to collating_symbols. */
3055 offset
= laststart
[1] + laststart
[2] + 6;
3056 /* Insert space and write the collationg_symbol
3058 insert_space(datasize
, laststart
+ offset
, b
-1);
3059 for (i
= 0 ; i
< datasize
; i
++)
3060 laststart
[offset
+ i
] = str
[i
];
3062 /* In re_match_2_internal if range_start < -1, we
3063 assume -range_start is the offset of the
3064 collating symbol which is specified as
3065 the character of the range start. So we assign
3066 -(laststart[1] + laststart[2] + 6) to
3068 range_start
= -(laststart
[1] + laststart
[2] + 6);
3069 /* Update the length of collating_symbol. */
3070 laststart
[2] += datasize
;
3071 had_char_class
= false;
3081 laststart
[5] += 2; /* Update the length of characters */
3082 range_start
= delim
;
3083 had_char_class
= false;
3088 had_char_class
= false;
3090 laststart
[5]++; /* Update the length of characters */
3095 #else /* not MBS_SUPPORT */
3096 /* Ensure that we have enough space to push a charset: the
3097 opcode, the length count, and the bitset; 34 bytes in all. */
3098 GET_BUFFER_SPACE (34);
3102 /* We test `*p == '^' twice, instead of using an if
3103 statement, so we only need one BUF_PUSH. */
3104 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
3108 /* Remember the first position in the bracket expression. */
3111 /* Push the number of bytes in the bitmap. */
3112 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
3114 /* Clear the whole map. */
3115 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
3117 /* charset_not matches newline according to a syntax bit. */
3118 if ((re_opcode_t
) b
[-2] == charset_not
3119 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
3120 SET_LIST_BIT ('\n');
3122 /* Read in characters and ranges, setting map bits. */
3125 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3129 /* \ might escape characters inside [...] and [^...]. */
3130 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
3132 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3140 /* Could be the end of the bracket expression. If it's
3141 not (i.e., when the bracket expression is `[]' so
3142 far), the ']' character bit gets set way below. */
3143 if (c
== ']' && p
!= p1
+ 1)
3146 /* Look ahead to see if it's a range when the last thing
3147 was a character class. */
3148 if (had_char_class
&& c
== '-' && *p
!= ']')
3149 FREE_STACK_RETURN (REG_ERANGE
);
3151 /* Look ahead to see if it's a range when the last thing
3152 was a character: if this is a hyphen not at the
3153 beginning or the end of a list, then it's the range
3156 && !(p
- 2 >= pattern
&& p
[-2] == '[')
3157 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
3161 = compile_range (range_start
, &p
, pend
, translate
,
3163 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3164 range_start
= 0xffffffff;
3167 else if (p
[0] == '-' && p
[1] != ']')
3168 { /* This handles ranges made up of characters only. */
3171 /* Move past the `-'. */
3174 ret
= compile_range (c
, &p
, pend
, translate
, syntax
, b
);
3175 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3176 range_start
= 0xffffffff;
3179 /* See if we're at the beginning of a possible character
3182 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3183 { /* Leave room for the null. */
3184 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3189 /* If pattern is `[[:'. */
3190 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3195 if ((c
== ':' && *p
== ']') || p
== pend
)
3197 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3200 /* This is in any case an invalid class name. */
3205 /* If isn't a word bracketed by `[:' and `:]':
3206 undo the ending character, the letters, and leave
3207 the leading `:' and `[' (but set bits for them). */
3208 if (c
== ':' && *p
== ']')
3210 # if defined _LIBC || WIDE_CHAR_SUPPORT
3211 boolean is_lower
= STREQ (str
, "lower");
3212 boolean is_upper
= STREQ (str
, "upper");
3216 wt
= IS_CHAR_CLASS (str
);
3218 FREE_STACK_RETURN (REG_ECTYPE
);
3220 /* Throw away the ] at the end of the character
3224 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3226 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
3229 if (__iswctype (__btowc (ch
), wt
))
3232 if (iswctype (btowc (ch
), wt
))
3236 if (translate
&& (is_upper
|| is_lower
)
3237 && (ISUPPER (ch
) || ISLOWER (ch
)))
3241 had_char_class
= true;
3244 boolean is_alnum
= STREQ (str
, "alnum");
3245 boolean is_alpha
= STREQ (str
, "alpha");
3246 boolean is_blank
= STREQ (str
, "blank");
3247 boolean is_cntrl
= STREQ (str
, "cntrl");
3248 boolean is_digit
= STREQ (str
, "digit");
3249 boolean is_graph
= STREQ (str
, "graph");
3250 boolean is_lower
= STREQ (str
, "lower");
3251 boolean is_print
= STREQ (str
, "print");
3252 boolean is_punct
= STREQ (str
, "punct");
3253 boolean is_space
= STREQ (str
, "space");
3254 boolean is_upper
= STREQ (str
, "upper");
3255 boolean is_xdigit
= STREQ (str
, "xdigit");
3257 if (!IS_CHAR_CLASS (str
))
3258 FREE_STACK_RETURN (REG_ECTYPE
);
3260 /* Throw away the ] at the end of the character
3264 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3266 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
3268 /* This was split into 3 if's to
3269 avoid an arbitrary limit in some compiler. */
3270 if ( (is_alnum
&& ISALNUM (ch
))
3271 || (is_alpha
&& ISALPHA (ch
))
3272 || (is_blank
&& ISBLANK (ch
))
3273 || (is_cntrl
&& ISCNTRL (ch
)))
3275 if ( (is_digit
&& ISDIGIT (ch
))
3276 || (is_graph
&& ISGRAPH (ch
))
3277 || (is_lower
&& ISLOWER (ch
))
3278 || (is_print
&& ISPRINT (ch
)))
3280 if ( (is_punct
&& ISPUNCT (ch
))
3281 || (is_space
&& ISSPACE (ch
))
3282 || (is_upper
&& ISUPPER (ch
))
3283 || (is_xdigit
&& ISXDIGIT (ch
)))
3285 if ( translate
&& (is_upper
|| is_lower
)
3286 && (ISUPPER (ch
) || ISLOWER (ch
)))
3289 had_char_class
= true;
3290 # endif /* libc || wctype.h */
3300 had_char_class
= false;
3303 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '=')
3305 unsigned char str
[MB_LEN_MAX
+ 1];
3308 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3314 /* If pattern is `[[='. */
3315 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3320 if ((c
== '=' && *p
== ']') || p
== pend
)
3322 if (c1
< MB_LEN_MAX
)
3325 /* This is in any case an invalid class name. */
3330 if (c
== '=' && *p
== ']' && str
[0] != '\0')
3332 /* If we have no collation data we use the default
3333 collation in which each character is in a class
3334 by itself. It also means that ASCII is the
3335 character set and therefore we cannot have character
3336 with more than one byte in the multibyte
3343 FREE_STACK_RETURN (REG_ECOLLATE
);
3345 /* Throw away the ] at the end of the equivalence
3349 /* Set the bit for the character. */
3350 SET_LIST_BIT (str
[0]);
3355 /* Try to match the byte sequence in `str' against
3356 those known to the collate implementation.
3357 First find out whether the bytes in `str' are
3358 actually from exactly one character. */
3359 const int32_t *table
;
3360 const unsigned char *weights
;
3361 const unsigned char *extra
;
3362 const int32_t *indirect
;
3364 const unsigned char *cp
= str
;
3367 /* This #include defines a local function! */
3368 # include <locale/weight.h>
3370 table
= (const int32_t *)
3371 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEMB
);
3372 weights
= (const unsigned char *)
3373 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTMB
);
3374 extra
= (const unsigned char *)
3375 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAMB
);
3376 indirect
= (const int32_t *)
3377 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTMB
);
3379 idx
= findidx (&cp
);
3380 if (idx
== 0 || cp
< str
+ c1
)
3381 /* This is no valid character. */
3382 FREE_STACK_RETURN (REG_ECOLLATE
);
3384 /* Throw away the ] at the end of the equivalence
3388 /* Now we have to go throught the whole table
3389 and find all characters which have the same
3392 XXX Note that this is not entirely correct.
3393 we would have to match multibyte sequences
3394 but this is not possible with the current
3396 for (ch
= 1; ch
< 256; ++ch
)
3397 /* XXX This test would have to be changed if we
3398 would allow matching multibyte sequences. */
3401 int32_t idx2
= table
[ch
];
3402 size_t len
= weights
[idx2
];
3404 /* Test whether the lenghts match. */
3405 if (weights
[idx
] == len
)
3407 /* They do. New compare the bytes of
3412 && (weights
[idx
+ 1 + cnt
]
3413 == weights
[idx2
+ 1 + cnt
]))
3417 /* They match. Mark the character as
3424 had_char_class
= true;
3434 had_char_class
= false;
3437 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '.')
3439 unsigned char str
[128]; /* Should be large enough. */
3442 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3448 /* If pattern is `[[.'. */
3449 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3454 if ((c
== '.' && *p
== ']') || p
== pend
)
3456 if (c1
< sizeof (str
))
3459 /* This is in any case an invalid class name. */
3464 if (c
== '.' && *p
== ']' && str
[0] != '\0')
3466 /* If we have no collation data we use the default
3467 collation in which each character is the name
3468 for its own class which contains only the one
3469 character. It also means that ASCII is the
3470 character set and therefore we cannot have character
3471 with more than one byte in the multibyte
3478 FREE_STACK_RETURN (REG_ECOLLATE
);
3480 /* Throw away the ] at the end of the equivalence
3484 /* Set the bit for the character. */
3485 SET_LIST_BIT (str
[0]);
3486 range_start
= ((const unsigned char *) str
)[0];
3491 /* Try to match the byte sequence in `str' against
3492 those known to the collate implementation.
3493 First find out whether the bytes in `str' are
3494 actually from exactly one character. */
3496 const int32_t *symb_table
;
3497 const unsigned char *extra
;
3504 _NL_CURRENT_WORD (LC_COLLATE
,
3505 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3506 symb_table
= (const int32_t *)
3507 _NL_CURRENT (LC_COLLATE
,
3508 _NL_COLLATE_SYMB_TABLEMB
);
3509 extra
= (const unsigned char *)
3510 _NL_CURRENT (LC_COLLATE
,
3511 _NL_COLLATE_SYMB_EXTRAMB
);
3513 /* Locate the character in the hashing table. */
3514 hash
= elem_hash (str
, c1
);
3517 elem
= hash
% table_size
;
3518 second
= hash
% (table_size
- 2);
3519 while (symb_table
[2 * elem
] != 0)
3521 /* First compare the hashing value. */
3522 if (symb_table
[2 * elem
] == hash
3523 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3525 &extra
[symb_table
[2 * elem
+ 1]
3529 /* Yep, this is the entry. */
3530 idx
= symb_table
[2 * elem
+ 1];
3531 idx
+= 1 + extra
[idx
];
3539 if (symb_table
[2 * elem
] == 0)
3540 /* This is no valid character. */
3541 FREE_STACK_RETURN (REG_ECOLLATE
);
3543 /* Throw away the ] at the end of the equivalence
3547 /* Now add the multibyte character(s) we found
3550 XXX Note that this is not entirely correct.
3551 we would have to match multibyte sequences
3552 but this is not possible with the current
3553 implementation. Also, we have to match
3554 collating symbols, which expand to more than
3555 one file, as a whole and not allow the
3556 individual bytes. */
3559 range_start
= extra
[idx
];
3562 SET_LIST_BIT (extra
[idx
]);
3567 had_char_class
= false;
3577 had_char_class
= false;
3582 had_char_class
= false;
3588 /* Discard any (non)matching list bytes that are all 0 at the
3589 end of the map. Decrease the map-length byte too. */
3590 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3593 #endif /* MBS_SUPPORT */
3599 if (syntax
& RE_NO_BK_PARENS
)
3606 if (syntax
& RE_NO_BK_PARENS
)
3613 if (syntax
& RE_NEWLINE_ALT
)
3620 if (syntax
& RE_NO_BK_VBAR
)
3627 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3628 goto handle_interval
;
3634 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3636 /* Do not translate the character after the \, so that we can
3637 distinguish, e.g., \B from \b, even if we normally would
3638 translate, e.g., B to b. */
3644 if (syntax
& RE_NO_BK_PARENS
)
3645 goto normal_backslash
;
3651 if (COMPILE_STACK_FULL
)
3653 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3654 compile_stack_elt_t
);
3655 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3657 compile_stack
.size
<<= 1;
3660 /* These are the values to restore when we hit end of this
3661 group. They are all relative offsets, so that if the
3662 whole pattern moves because of realloc, they will still
3664 COMPILE_STACK_TOP
.begalt_offset
= begalt
- COMPILED_BUFFER_VAR
;
3665 COMPILE_STACK_TOP
.fixup_alt_jump
3666 = fixup_alt_jump
? fixup_alt_jump
- COMPILED_BUFFER_VAR
+ 1 : 0;
3667 COMPILE_STACK_TOP
.laststart_offset
= b
- COMPILED_BUFFER_VAR
;
3668 COMPILE_STACK_TOP
.regnum
= regnum
;
3670 /* We will eventually replace the 0 with the number of
3671 groups inner to this one. But do not push a
3672 start_memory for groups beyond the last one we can
3673 represent in the compiled pattern. */
3674 if (regnum
<= MAX_REGNUM
)
3676 COMPILE_STACK_TOP
.inner_group_offset
= b
3677 - COMPILED_BUFFER_VAR
+ 2;
3678 BUF_PUSH_3 (start_memory
, regnum
, 0);
3681 compile_stack
.avail
++;
3686 /* If we've reached MAX_REGNUM groups, then this open
3687 won't actually generate any code, so we'll have to
3688 clear pending_exact explicitly. */
3694 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3696 if (COMPILE_STACK_EMPTY
)
3698 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3699 goto normal_backslash
;
3701 FREE_STACK_RETURN (REG_ERPAREN
);
3706 { /* Push a dummy failure point at the end of the
3707 alternative for a possible future
3708 `pop_failure_jump' to pop. See comments at
3709 `push_dummy_failure' in `re_match_2'. */
3710 BUF_PUSH (push_dummy_failure
);
3712 /* We allocated space for this jump when we assigned
3713 to `fixup_alt_jump', in the `handle_alt' case below. */
3714 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
3717 /* See similar code for backslashed left paren above. */
3718 if (COMPILE_STACK_EMPTY
)
3720 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3723 FREE_STACK_RETURN (REG_ERPAREN
);
3726 /* Since we just checked for an empty stack above, this
3727 ``can't happen''. */
3728 assert (compile_stack
.avail
!= 0);
3730 /* We don't just want to restore into `regnum', because
3731 later groups should continue to be numbered higher,
3732 as in `(ab)c(de)' -- the second group is #2. */
3733 regnum_t this_group_regnum
;
3735 compile_stack
.avail
--;
3736 begalt
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.begalt_offset
;
3738 = COMPILE_STACK_TOP
.fixup_alt_jump
3739 ? COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3741 laststart
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.laststart_offset
;
3742 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3743 /* If we've reached MAX_REGNUM groups, then this open
3744 won't actually generate any code, so we'll have to
3745 clear pending_exact explicitly. */
3748 /* We're at the end of the group, so now we know how many
3749 groups were inside this one. */
3750 if (this_group_regnum
<= MAX_REGNUM
)
3752 US_CHAR_TYPE
*inner_group_loc
3753 = COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.inner_group_offset
;
3755 *inner_group_loc
= regnum
- this_group_regnum
;
3756 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
3757 regnum
- this_group_regnum
);
3763 case '|': /* `\|'. */
3764 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3765 goto normal_backslash
;
3767 if (syntax
& RE_LIMITED_OPS
)
3770 /* Insert before the previous alternative a jump which
3771 jumps to this alternative if the former fails. */
3772 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3773 INSERT_JUMP (on_failure_jump
, begalt
,
3774 b
+ 2 + 2 * OFFSET_ADDRESS_SIZE
);
3776 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3778 /* The alternative before this one has a jump after it
3779 which gets executed if it gets matched. Adjust that
3780 jump so it will jump to this alternative's analogous
3781 jump (put in below, which in turn will jump to the next
3782 (if any) alternative's such jump, etc.). The last such
3783 jump jumps to the correct final destination. A picture:
3789 If we are at `b', then fixup_alt_jump right now points to a
3790 three-byte space after `a'. We'll put in the jump, set
3791 fixup_alt_jump to right after `b', and leave behind three
3792 bytes which we'll fill in when we get to after `c'. */
3795 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
3797 /* Mark and leave space for a jump after this alternative,
3798 to be filled in later either by next alternative or
3799 when know we're at the end of a series of alternatives. */
3801 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3802 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3810 /* If \{ is a literal. */
3811 if (!(syntax
& RE_INTERVALS
)
3812 /* If we're at `\{' and it's not the open-interval
3814 || (syntax
& RE_NO_BK_BRACES
))
3815 goto normal_backslash
;
3819 /* If got here, then the syntax allows intervals. */
3821 /* At least (most) this many matches must be made. */
3822 int lower_bound
= -1, upper_bound
= -1;
3824 /* Place in the uncompiled pattern (i.e., just after
3825 the '{') to go back to if the interval is invalid. */
3826 const CHAR_TYPE
*beg_interval
= p
;
3829 goto invalid_interval
;
3831 GET_UNSIGNED_NUMBER (lower_bound
);
3835 GET_UNSIGNED_NUMBER (upper_bound
);
3836 if (upper_bound
< 0)
3837 upper_bound
= RE_DUP_MAX
;
3840 /* Interval such as `{1}' => match exactly once. */
3841 upper_bound
= lower_bound
;
3843 if (! (0 <= lower_bound
&& lower_bound
<= upper_bound
))
3844 goto invalid_interval
;
3846 if (!(syntax
& RE_NO_BK_BRACES
))
3848 if (c
!= '\\' || p
== pend
)
3849 goto invalid_interval
;
3854 goto invalid_interval
;
3856 /* If it's invalid to have no preceding re. */
3859 if (syntax
& RE_CONTEXT_INVALID_OPS
3860 && !(syntax
& RE_INVALID_INTERVAL_ORD
))
3861 FREE_STACK_RETURN (REG_BADRPT
);
3862 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3865 goto unfetch_interval
;
3868 /* We just parsed a valid interval. */
3870 if (RE_DUP_MAX
< upper_bound
)
3871 FREE_STACK_RETURN (REG_BADBR
);
3873 /* If the upper bound is zero, don't want to succeed at
3874 all; jump from `laststart' to `b + 3', which will be
3875 the end of the buffer after we insert the jump. */
3876 /* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE'
3877 instead of 'b + 3'. */
3878 if (upper_bound
== 0)
3880 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3881 INSERT_JUMP (jump
, laststart
, b
+ 1
3882 + OFFSET_ADDRESS_SIZE
);
3883 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3886 /* Otherwise, we have a nontrivial interval. When
3887 we're all done, the pattern will look like:
3888 set_number_at <jump count> <upper bound>
3889 set_number_at <succeed_n count> <lower bound>
3890 succeed_n <after jump addr> <succeed_n count>
3892 jump_n <succeed_n addr> <jump count>
3893 (The upper bound and `jump_n' are omitted if
3894 `upper_bound' is 1, though.) */
3896 { /* If the upper bound is > 1, we need to insert
3897 more at the end of the loop. */
3898 unsigned nbytes
= 2 + 4 * OFFSET_ADDRESS_SIZE
+
3899 (upper_bound
> 1) * (2 + 4 * OFFSET_ADDRESS_SIZE
);
3901 GET_BUFFER_SPACE (nbytes
);
3903 /* Initialize lower bound of the `succeed_n', even
3904 though it will be set during matching by its
3905 attendant `set_number_at' (inserted next),
3906 because `re_compile_fastmap' needs to know.
3907 Jump to the `jump_n' we might insert below. */
3908 INSERT_JUMP2 (succeed_n
, laststart
,
3909 b
+ 1 + 2 * OFFSET_ADDRESS_SIZE
3910 + (upper_bound
> 1) * (1 + 2 * OFFSET_ADDRESS_SIZE
)
3912 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3914 /* Code to initialize the lower bound. Insert
3915 before the `succeed_n'. The `5' is the last two
3916 bytes of this `set_number_at', plus 3 bytes of
3917 the following `succeed_n'. */
3918 /* ifdef MBS_SUPPORT, The '1+2*OFFSET_ADDRESS_SIZE'
3919 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3920 of the following `succeed_n'. */
3921 insert_op2 (set_number_at
, laststart
, 1
3922 + 2 * OFFSET_ADDRESS_SIZE
, lower_bound
, b
);
3923 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3925 if (upper_bound
> 1)
3926 { /* More than one repetition is allowed, so
3927 append a backward jump to the `succeed_n'
3928 that starts this interval.
3930 When we've reached this during matching,
3931 we'll have matched the interval once, so
3932 jump back only `upper_bound - 1' times. */
3933 STORE_JUMP2 (jump_n
, b
, laststart
3934 + 2 * OFFSET_ADDRESS_SIZE
+ 1,
3936 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3938 /* The location we want to set is the second
3939 parameter of the `jump_n'; that is `b-2' as
3940 an absolute address. `laststart' will be
3941 the `set_number_at' we're about to insert;
3942 `laststart+3' the number to set, the source
3943 for the relative address. But we are
3944 inserting into the middle of the pattern --
3945 so everything is getting moved up by 5.
3946 Conclusion: (b - 2) - (laststart + 3) + 5,
3947 i.e., b - laststart.
3949 We insert this at the beginning of the loop
3950 so that if we fail during matching, we'll
3951 reinitialize the bounds. */
3952 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3953 upper_bound
- 1, b
);
3954 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3961 if (!(syntax
& RE_INVALID_INTERVAL_ORD
))
3962 FREE_STACK_RETURN (p
== pend
? REG_EBRACE
: REG_BADBR
);
3964 /* Match the characters as literals. */
3967 if (syntax
& RE_NO_BK_BRACES
)
3970 goto normal_backslash
;
3974 /* There is no way to specify the before_dot and after_dot
3975 operators. rms says this is ok. --karl */
3983 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3989 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3995 if (syntax
& RE_NO_GNU_OPS
)
3998 BUF_PUSH (wordchar
);
4003 if (syntax
& RE_NO_GNU_OPS
)
4006 BUF_PUSH (notwordchar
);
4011 if (syntax
& RE_NO_GNU_OPS
)
4017 if (syntax
& RE_NO_GNU_OPS
)
4023 if (syntax
& RE_NO_GNU_OPS
)
4025 BUF_PUSH (wordbound
);
4029 if (syntax
& RE_NO_GNU_OPS
)
4031 BUF_PUSH (notwordbound
);
4035 if (syntax
& RE_NO_GNU_OPS
)
4041 if (syntax
& RE_NO_GNU_OPS
)
4046 case '1': case '2': case '3': case '4': case '5':
4047 case '6': case '7': case '8': case '9':
4048 if (syntax
& RE_NO_BK_REFS
)
4054 FREE_STACK_RETURN (REG_ESUBREG
);
4056 /* Can't back reference to a subexpression if inside of it. */
4057 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
4061 BUF_PUSH_2 (duplicate
, c1
);
4067 if (syntax
& RE_BK_PLUS_QM
)
4070 goto normal_backslash
;
4074 /* You might think it would be useful for \ to mean
4075 not to translate; but if we don't translate it
4076 it will never match anything. */
4084 /* Expects the character in `c'. */
4086 /* If no exactn currently being built. */
4089 /* If last exactn handle binary(or character) and
4090 new exactn handle character(or binary). */
4091 || is_exactn_bin
!= is_binary
[p
- 1 - pattern
]
4092 #endif /* MBS_SUPPORT */
4094 /* If last exactn not at current position. */
4095 || pending_exact
+ *pending_exact
+ 1 != b
4097 /* We have only one byte following the exactn for the count. */
4098 || *pending_exact
== (1 << BYTEWIDTH
) - 1
4100 /* If followed by a repetition operator. */
4101 || *p
== '*' || *p
== '^'
4102 || ((syntax
& RE_BK_PLUS_QM
)
4103 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
4104 : (*p
== '+' || *p
== '?'))
4105 || ((syntax
& RE_INTERVALS
)
4106 && ((syntax
& RE_NO_BK_BRACES
)
4108 : (p
[0] == '\\' && p
[1] == '{'))))
4110 /* Start building a new exactn. */
4115 /* Is this exactn binary data or character? */
4116 is_exactn_bin
= is_binary
[p
- 1 - pattern
];
4118 BUF_PUSH_2 (exactn_bin
, 0);
4120 BUF_PUSH_2 (exactn
, 0);
4122 BUF_PUSH_2 (exactn
, 0);
4123 #endif /* MBS_SUPPORT */
4124 pending_exact
= b
- 1;
4131 } /* while p != pend */
4134 /* Through the pattern now. */
4137 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
4139 if (!COMPILE_STACK_EMPTY
)
4140 FREE_STACK_RETURN (REG_EPAREN
);
4142 /* If we don't want backtracking, force success
4143 the first time we reach the end of the compiled pattern. */
4144 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
4152 free (compile_stack
.stack
);
4154 /* We have succeeded; set the length of the buffer. */
4156 bufp
->used
= (uintptr_t) b
- (uintptr_t) COMPILED_BUFFER_VAR
;
4158 bufp
->used
= b
- bufp
->buffer
;
4164 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4165 print_compiled_pattern (bufp
);
4169 #ifndef MATCH_MAY_ALLOCATE
4170 /* Initialize the failure stack to the largest possible stack. This
4171 isn't necessary unless we're trying to avoid calling alloca in
4172 the search and match routines. */
4174 int num_regs
= bufp
->re_nsub
+ 1;
4176 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4177 is strictly greater than re_max_failures, the largest possible stack
4178 is 2 * re_max_failures failure points. */
4179 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
4181 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
4184 if (! fail_stack
.stack
)
4186 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
4187 * sizeof (fail_stack_elt_t
));
4190 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
4192 * sizeof (fail_stack_elt_t
)));
4193 # else /* not emacs */
4194 if (! fail_stack
.stack
)
4196 = (fail_stack_elt_t
*) malloc (fail_stack
.size
4197 * sizeof (fail_stack_elt_t
));
4200 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
4202 * sizeof (fail_stack_elt_t
)));
4203 # endif /* not emacs */
4206 regex_grow_registers (num_regs
);
4208 #endif /* not MATCH_MAY_ALLOCATE */
4211 } /* regex_compile */
4213 /* Subroutines for `regex_compile'. */
4215 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4216 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t. */
4219 store_op1 (op
, loc
, arg
)
4224 *loc
= (US_CHAR_TYPE
) op
;
4225 STORE_NUMBER (loc
+ 1, arg
);
4229 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4230 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t. */
4233 store_op2 (op
, loc
, arg1
, arg2
)
4238 *loc
= (US_CHAR_TYPE
) op
;
4239 STORE_NUMBER (loc
+ 1, arg1
);
4240 STORE_NUMBER (loc
+ 1 + OFFSET_ADDRESS_SIZE
, arg2
);
4244 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4245 for OP followed by two-byte integer parameter ARG. */
4246 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t. */
4249 insert_op1 (op
, loc
, arg
, end
)
4255 register US_CHAR_TYPE
*pfrom
= end
;
4256 register US_CHAR_TYPE
*pto
= end
+ 1 + OFFSET_ADDRESS_SIZE
;
4258 while (pfrom
!= loc
)
4261 store_op1 (op
, loc
, arg
);
4265 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4266 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t. */
4269 insert_op2 (op
, loc
, arg1
, arg2
, end
)
4275 register US_CHAR_TYPE
*pfrom
= end
;
4276 register US_CHAR_TYPE
*pto
= end
+ 1 + 2 * OFFSET_ADDRESS_SIZE
;
4278 while (pfrom
!= loc
)
4281 store_op2 (op
, loc
, arg1
, arg2
);
4285 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4286 after an alternative or a begin-subexpression. We assume there is at
4287 least one character before the ^. */
4290 at_begline_loc_p (pattern
, p
, syntax
)
4291 const CHAR_TYPE
*pattern
, *p
;
4292 reg_syntax_t syntax
;
4294 const CHAR_TYPE
*prev
= p
- 2;
4295 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
4298 /* After a subexpression? */
4299 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
4300 /* After an alternative? */
4301 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
4305 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4306 at least one character after the $, i.e., `P < PEND'. */
4309 at_endline_loc_p (p
, pend
, syntax
)
4310 const CHAR_TYPE
*p
, *pend
;
4311 reg_syntax_t syntax
;
4313 const CHAR_TYPE
*next
= p
;
4314 boolean next_backslash
= *next
== '\\';
4315 const CHAR_TYPE
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
4318 /* Before a subexpression? */
4319 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
4320 : next_backslash
&& next_next
&& *next_next
== ')')
4321 /* Before an alternative? */
4322 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
4323 : next_backslash
&& next_next
&& *next_next
== '|');
4327 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4328 false if it's not. */
4331 group_in_compile_stack (compile_stack
, regnum
)
4332 compile_stack_type compile_stack
;
4337 for (this_element
= compile_stack
.avail
- 1;
4340 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4347 /* This insert space, which size is "num", into the pattern at "loc".
4348 "end" must point the end of the allocated buffer. */
4350 insert_space (num
, loc
, end
)
4355 register CHAR_TYPE
*pto
= end
;
4356 register CHAR_TYPE
*pfrom
= end
- num
;
4358 while (pfrom
>= loc
)
4361 #endif /* MBS_SUPPORT */
4364 static reg_errcode_t
4365 compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
,
4367 CHAR_TYPE range_start_char
;
4368 const CHAR_TYPE
**p_ptr
, *pend
;
4369 CHAR_TYPE
*char_set
, *b
;
4370 RE_TRANSLATE_TYPE translate
;
4371 reg_syntax_t syntax
;
4373 const CHAR_TYPE
*p
= *p_ptr
;
4374 CHAR_TYPE range_start
, range_end
;
4378 uint32_t start_val
, end_val
;
4384 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
4387 const char *collseq
= (const char *) _NL_CURRENT(LC_COLLATE
,
4388 _NL_COLLATE_COLLSEQWC
);
4389 const unsigned char *extra
= (const unsigned char *)
4390 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
4392 if (range_start_char
< -1)
4394 /* range_start is a collating symbol. */
4396 /* Retreive the index and get collation sequence value. */
4397 wextra
= (int32_t*)(extra
+ char_set
[-range_start_char
]);
4398 start_val
= wextra
[1 + *wextra
];
4401 start_val
= collseq_table_lookup(collseq
, TRANSLATE(range_start_char
));
4403 end_val
= collseq_table_lookup (collseq
, TRANSLATE (p
[0]));
4405 /* Report an error if the range is empty and the syntax prohibits
4407 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4408 && (start_val
> end_val
))? REG_ERANGE
: REG_NOERROR
;
4410 /* Insert space to the end of the char_ranges. */
4411 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4412 *(b
- char_set
[5] - 2) = (wchar_t)start_val
;
4413 *(b
- char_set
[5] - 1) = (wchar_t)end_val
;
4414 char_set
[4]++; /* ranges_index */
4419 range_start
= (range_start_char
>= 0)? TRANSLATE (range_start_char
):
4421 range_end
= TRANSLATE (p
[0]);
4422 /* Report an error if the range is empty and the syntax prohibits
4424 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4425 && (range_start
> range_end
))? REG_ERANGE
: REG_NOERROR
;
4427 /* Insert space to the end of the char_ranges. */
4428 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4429 *(b
- char_set
[5] - 2) = range_start
;
4430 *(b
- char_set
[5] - 1) = range_end
;
4431 char_set
[4]++; /* ranges_index */
4433 /* Have to increment the pointer into the pattern string, so the
4434 caller isn't still at the ending character. */
4440 /* Read the ending character of a range (in a bracket expression) from the
4441 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4442 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4443 Then we set the translation of all bits between the starting and
4444 ending characters (inclusive) in the compiled pattern B.
4446 Return an error code.
4448 We use these short variable names so we can use the same macros as
4449 `regex_compile' itself. */
4451 static reg_errcode_t
4452 compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
)
4453 unsigned int range_start_char
;
4454 const char **p_ptr
, *pend
;
4455 RE_TRANSLATE_TYPE translate
;
4456 reg_syntax_t syntax
;
4460 const char *p
= *p_ptr
;
4463 const unsigned char *collseq
;
4464 unsigned int start_colseq
;
4465 unsigned int end_colseq
;
4473 /* Have to increment the pointer into the pattern string, so the
4474 caller isn't still at the ending character. */
4477 /* Report an error if the range is empty and the syntax prohibits this. */
4478 ret
= syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
4481 collseq
= (const unsigned char *) _NL_CURRENT (LC_COLLATE
,
4482 _NL_COLLATE_COLLSEQMB
);
4484 start_colseq
= collseq
[(unsigned char) TRANSLATE (range_start_char
)];
4485 end_colseq
= collseq
[(unsigned char) TRANSLATE (p
[0])];
4486 for (this_char
= 0; this_char
<= (unsigned char) -1; ++this_char
)
4488 unsigned int this_colseq
= collseq
[(unsigned char) TRANSLATE (this_char
)];
4490 if (start_colseq
<= this_colseq
&& this_colseq
<= end_colseq
)
4492 SET_LIST_BIT (TRANSLATE (this_char
));
4497 /* Here we see why `this_char' has to be larger than an `unsigned
4498 char' -- we would otherwise go into an infinite loop, since all
4499 characters <= 0xff. */
4500 range_start_char
= TRANSLATE (range_start_char
);
4501 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4502 and some compilers cast it to int implicitly, so following for_loop
4503 may fall to (almost) infinite loop.
4504 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4505 To avoid this, we cast p[0] to unsigned int and truncate it. */
4506 end_char
= ((unsigned)TRANSLATE(p
[0]) & ((1 << BYTEWIDTH
) - 1));
4508 for (this_char
= range_start_char
; this_char
<= end_char
; ++this_char
)
4510 SET_LIST_BIT (TRANSLATE (this_char
));
4517 #endif /* MBS_SUPPORT */
4519 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4520 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4521 characters can start a string that matches the pattern. This fastmap
4522 is used by re_search to skip quickly over impossible starting points.
4524 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4525 area as BUFP->fastmap.
4527 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4530 Returns 0 if we succeed, -2 if an internal error. */
4533 /* local function for re_compile_fastmap.
4534 truncate wchar_t character to char. */
4535 static unsigned char truncate_wchar (CHAR_TYPE c
);
4537 static unsigned char
4541 unsigned char buf
[MB_LEN_MAX
];
4542 int retval
= wctomb(buf
, c
);
4543 return retval
> 0 ? buf
[0] : (unsigned char)c
;
4545 #endif /* MBS_SUPPORT */
4548 re_compile_fastmap (bufp
)
4549 struct re_pattern_buffer
*bufp
;
4552 #ifdef MATCH_MAY_ALLOCATE
4553 fail_stack_type fail_stack
;
4555 #ifndef REGEX_MALLOC
4559 register char *fastmap
= bufp
->fastmap
;
4562 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4563 pattern to (char*) in regex_compile. */
4564 US_CHAR_TYPE
*pattern
= (US_CHAR_TYPE
*)bufp
->buffer
;
4565 register US_CHAR_TYPE
*pend
= (US_CHAR_TYPE
*) (bufp
->buffer
+ bufp
->used
);
4567 US_CHAR_TYPE
*pattern
= bufp
->buffer
;
4568 register US_CHAR_TYPE
*pend
= pattern
+ bufp
->used
;
4569 #endif /* MBS_SUPPORT */
4570 US_CHAR_TYPE
*p
= pattern
;
4573 /* This holds the pointer to the failure stack, when
4574 it is allocated relocatably. */
4575 fail_stack_elt_t
*failure_stack_ptr
;
4578 /* Assume that each path through the pattern can be null until
4579 proven otherwise. We set this false at the bottom of switch
4580 statement, to which we get only if a particular path doesn't
4581 match the empty string. */
4582 boolean path_can_be_null
= true;
4584 /* We aren't doing a `succeed_n' to begin with. */
4585 boolean succeed_n_p
= false;
4587 assert (fastmap
!= NULL
&& p
!= NULL
);
4590 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4591 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4592 bufp
->can_be_null
= 0;
4596 if (p
== pend
|| *p
== succeed
)
4598 /* We have reached the (effective) end of pattern. */
4599 if (!FAIL_STACK_EMPTY ())
4601 bufp
->can_be_null
|= path_can_be_null
;
4603 /* Reset for next path. */
4604 path_can_be_null
= true;
4606 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
4614 /* We should never be about to go beyond the end of the pattern. */
4617 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4620 /* I guess the idea here is to simply not bother with a fastmap
4621 if a backreference is used, since it's too hard to figure out
4622 the fastmap for the corresponding group. Setting
4623 `can_be_null' stops `re_search_2' from using the fastmap, so
4624 that is all we do. */
4626 bufp
->can_be_null
= 1;
4630 /* Following are the cases which match a character. These end
4635 fastmap
[truncate_wchar(p
[1])] = 1;
4644 #endif /* MBS_SUPPORT */
4648 /* It is hard to distinguish fastmap from (multi byte) characters
4649 which depends on current locale. */
4654 bufp
->can_be_null
= 1;
4658 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4659 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
4665 /* Chars beyond end of map must be allowed. */
4666 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
4669 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4670 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
4676 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4677 if (SYNTAX (j
) == Sword
)
4683 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4684 if (SYNTAX (j
) != Sword
)
4691 int fastmap_newline
= fastmap
['\n'];
4693 /* `.' matches anything ... */
4694 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4697 /* ... except perhaps newline. */
4698 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
4699 fastmap
['\n'] = fastmap_newline
;
4701 /* Return if we have already set `can_be_null'; if we have,
4702 then the fastmap is irrelevant. Something's wrong here. */
4703 else if (bufp
->can_be_null
)
4706 /* Otherwise, have to check alternative paths. */
4713 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4714 if (SYNTAX (j
) == (enum syntaxcode
) k
)
4721 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4722 if (SYNTAX (j
) != (enum syntaxcode
) k
)
4727 /* All cases after this match the empty string. These end with
4747 case push_dummy_failure
:
4752 case pop_failure_jump
:
4753 case maybe_pop_jump
:
4756 case dummy_failure_jump
:
4757 EXTRACT_NUMBER_AND_INCR (j
, p
);
4762 /* Jump backward implies we just went through the body of a
4763 loop and matched nothing. Opcode jumped to should be
4764 `on_failure_jump' or `succeed_n'. Just treat it like an
4765 ordinary jump. For a * loop, it has pushed its failure
4766 point already; if so, discard that as redundant. */
4767 if ((re_opcode_t
) *p
!= on_failure_jump
4768 && (re_opcode_t
) *p
!= succeed_n
)
4772 EXTRACT_NUMBER_AND_INCR (j
, p
);
4775 /* If what's on the stack is where we are now, pop it. */
4776 if (!FAIL_STACK_EMPTY ()
4777 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
4783 case on_failure_jump
:
4784 case on_failure_keep_string_jump
:
4785 handle_on_failure_jump
:
4786 EXTRACT_NUMBER_AND_INCR (j
, p
);
4788 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4789 end of the pattern. We don't want to push such a point,
4790 since when we restore it above, entering the switch will
4791 increment `p' past the end of the pattern. We don't need
4792 to push such a point since we obviously won't find any more
4793 fastmap entries beyond `pend'. Such a pattern can match
4794 the null string, though. */
4797 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
4799 RESET_FAIL_STACK ();
4804 bufp
->can_be_null
= 1;
4808 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
4809 succeed_n_p
= false;
4816 /* Get to the number of times to succeed. */
4817 p
+= OFFSET_ADDRESS_SIZE
;
4819 /* Increment p past the n for when k != 0. */
4820 EXTRACT_NUMBER_AND_INCR (k
, p
);
4823 p
-= 2 * OFFSET_ADDRESS_SIZE
;
4824 succeed_n_p
= true; /* Spaghetti code alert. */
4825 goto handle_on_failure_jump
;
4831 p
+= 2 * OFFSET_ADDRESS_SIZE
;
4842 abort (); /* We have listed all the cases. */
4845 /* Getting here means we have found the possible starting
4846 characters for one path of the pattern -- and that the empty
4847 string does not match. We need not follow this path further.
4848 Instead, look at the next alternative (remembered on the
4849 stack), or quit if no more. The test at the top of the loop
4850 does these things. */
4851 path_can_be_null
= false;
4855 /* Set `can_be_null' for the last path (also the first path, if the
4856 pattern is empty). */
4857 bufp
->can_be_null
|= path_can_be_null
;
4860 RESET_FAIL_STACK ();
4862 } /* re_compile_fastmap */
4864 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
4867 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4868 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4869 this memory for recording register information. STARTS and ENDS
4870 must be allocated using the malloc library routine, and must each
4871 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4873 If NUM_REGS == 0, then subsequent matches should allocate their own
4876 Unless this function is called, the first search or match using
4877 PATTERN_BUFFER will allocate its own register data, without
4878 freeing the old data. */
4881 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4882 struct re_pattern_buffer
*bufp
;
4883 struct re_registers
*regs
;
4885 regoff_t
*starts
, *ends
;
4889 bufp
->regs_allocated
= REGS_REALLOCATE
;
4890 regs
->num_regs
= num_regs
;
4891 regs
->start
= starts
;
4896 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4898 regs
->start
= regs
->end
= (regoff_t
*) 0;
4902 weak_alias (__re_set_registers
, re_set_registers
)
4905 /* Searching routines. */
4907 /* Like re_search_2, below, but only one string is specified, and
4908 doesn't let you say where to stop matching. */
4911 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4912 struct re_pattern_buffer
*bufp
;
4914 int size
, startpos
, range
;
4915 struct re_registers
*regs
;
4917 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4921 weak_alias (__re_search
, re_search
)
4925 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4926 virtual concatenation of STRING1 and STRING2, starting first at index
4927 STARTPOS, then at STARTPOS + 1, and so on.
4929 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4931 RANGE is how far to scan while trying to match. RANGE = 0 means try
4932 only at STARTPOS; in general, the last start tried is STARTPOS +
4935 In REGS, return the indices of the virtual concatenation of STRING1
4936 and STRING2 that matched the entire BUFP->buffer and its contained
4939 Do not consider matching one past the index STOP in the virtual
4940 concatenation of STRING1 and STRING2.
4942 We return either the position in the strings at which the match was
4943 found, -1 if no match, or -2 if error (such as failure
4947 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
4948 struct re_pattern_buffer
*bufp
;
4949 const char *string1
, *string2
;
4953 struct re_registers
*regs
;
4957 register char *fastmap
= bufp
->fastmap
;
4958 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4959 int total_size
= size1
+ size2
;
4960 int endpos
= startpos
+ range
;
4962 /* Check for out-of-range STARTPOS. */
4963 if (startpos
< 0 || startpos
> total_size
)
4966 /* Fix up RANGE if it might eventually take us outside
4967 the virtual concatenation of STRING1 and STRING2.
4968 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4970 range
= 0 - startpos
;
4971 else if (endpos
> total_size
)
4972 range
= total_size
- startpos
;
4974 /* If the search isn't to be a backwards one, don't waste time in a
4975 search for a pattern that must be anchored. */
4976 if (bufp
->used
> 0 && range
> 0
4977 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
4978 /* `begline' is like `begbuf' if it cannot match at newlines. */
4979 || ((re_opcode_t
) bufp
->buffer
[0] == begline
4980 && !bufp
->newline_anchor
)))
4989 /* In a forward search for something that starts with \=.
4990 don't keep searching past point. */
4991 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4993 range
= PT
- startpos
;
4999 /* Update the fastmap now if not correct already. */
5000 if (fastmap
&& !bufp
->fastmap_accurate
)
5001 if (re_compile_fastmap (bufp
) == -2)
5004 /* Loop through the string, looking for a place to start matching. */
5007 /* If a fastmap is supplied, skip quickly over characters that
5008 cannot be the start of a match. If the pattern can match the
5009 null string, however, we don't need to skip characters; we want
5010 the first null string. */
5011 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
5013 if (range
> 0) /* Searching forwards. */
5015 register const char *d
;
5016 register int lim
= 0;
5019 if (startpos
< size1
&& startpos
+ range
>= size1
)
5020 lim
= range
- (size1
- startpos
);
5022 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
5024 /* Written out as an if-else to avoid testing `translate'
5028 && !fastmap
[(unsigned char)
5029 translate
[(unsigned char) *d
++]])
5032 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
5035 startpos
+= irange
- range
;
5037 else /* Searching backwards. */
5039 register CHAR_TYPE c
= (size1
== 0 || startpos
>= size1
5040 ? string2
[startpos
- size1
]
5041 : string1
[startpos
]);
5043 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
5048 /* If can't match the null string, and that's all we have left, fail. */
5049 if (range
>= 0 && startpos
== total_size
&& fastmap
5050 && !bufp
->can_be_null
)
5053 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5054 startpos
, regs
, stop
);
5055 #ifndef REGEX_MALLOC
5084 weak_alias (__re_search_2
, re_search_2
)
5088 /* This converts PTR, a pointer into one of the search wchar_t strings
5089 `string1' and `string2' into an multibyte string offset from the
5090 beginning of that string. We use mbs_offset to optimize.
5091 See convert_mbs_to_wcs. */
5092 # define POINTER_TO_OFFSET(ptr) \
5093 (FIRST_STRING_P (ptr) \
5094 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5095 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5098 /* This converts PTR, a pointer into one of the search strings `string1'
5099 and `string2' into an offset from the beginning of that string. */
5100 # define POINTER_TO_OFFSET(ptr) \
5101 (FIRST_STRING_P (ptr) \
5102 ? ((regoff_t) ((ptr) - string1)) \
5103 : ((regoff_t) ((ptr) - string2 + size1)))
5104 #endif /* MBS_SUPPORT */
5106 /* Macros for dealing with the split strings in re_match_2. */
5108 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5110 /* Call before fetching a character with *d. This switches over to
5111 string2 if necessary. */
5112 #define PREFETCH() \
5115 /* End of string2 => fail. */ \
5116 if (dend == end_match_2) \
5118 /* End of string1 => advance to string2. */ \
5120 dend = end_match_2; \
5124 /* Test if at very beginning or at very end of the virtual concatenation
5125 of `string1' and `string2'. If only one string, it's `string2'. */
5126 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5127 #define AT_STRINGS_END(d) ((d) == end2)
5130 /* Test if D points to a character which is word-constituent. We have
5131 two special cases to check for: if past the end of string1, look at
5132 the first character in string2; and if before the beginning of
5133 string2, look at the last character in string1. */
5135 /* Use internationalized API instead of SYNTAX. */
5136 # define WORDCHAR_P(d) \
5137 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5138 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0)
5140 # define WORDCHAR_P(d) \
5141 (SYNTAX ((d) == end1 ? *string2 \
5142 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5144 #endif /* MBS_SUPPORT */
5146 /* Disabled due to a compiler bug -- see comment at case wordbound */
5148 /* Test if the character before D and the one at D differ with respect
5149 to being word-constituent. */
5150 #define AT_WORD_BOUNDARY(d) \
5151 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5152 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5155 /* Free everything we malloc. */
5156 #ifdef MATCH_MAY_ALLOCATE
5157 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5159 # define FREE_VARIABLES() \
5161 REGEX_FREE_STACK (fail_stack.stack); \
5162 FREE_VAR (regstart); \
5163 FREE_VAR (regend); \
5164 FREE_VAR (old_regstart); \
5165 FREE_VAR (old_regend); \
5166 FREE_VAR (best_regstart); \
5167 FREE_VAR (best_regend); \
5168 FREE_VAR (reg_info); \
5169 FREE_VAR (reg_dummy); \
5170 FREE_VAR (reg_info_dummy); \
5171 FREE_VAR (string1); \
5172 FREE_VAR (string2); \
5173 FREE_VAR (mbs_offset1); \
5174 FREE_VAR (mbs_offset2); \
5176 # else /* not MBS_SUPPORT */
5177 # define FREE_VARIABLES() \
5179 REGEX_FREE_STACK (fail_stack.stack); \
5180 FREE_VAR (regstart); \
5181 FREE_VAR (regend); \
5182 FREE_VAR (old_regstart); \
5183 FREE_VAR (old_regend); \
5184 FREE_VAR (best_regstart); \
5185 FREE_VAR (best_regend); \
5186 FREE_VAR (reg_info); \
5187 FREE_VAR (reg_dummy); \
5188 FREE_VAR (reg_info_dummy); \
5190 # endif /* MBS_SUPPORT */
5192 # define FREE_VAR(var) if (var) free (var); var = NULL
5194 # define FREE_VARIABLES() \
5196 FREE_VAR (string1); \
5197 FREE_VAR (string2); \
5198 FREE_VAR (mbs_offset1); \
5199 FREE_VAR (mbs_offset2); \
5202 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5203 # endif /* MBS_SUPPORT */
5204 #endif /* not MATCH_MAY_ALLOCATE */
5206 /* These values must meet several constraints. They must not be valid
5207 register values; since we have a limit of 255 registers (because
5208 we use only one byte in the pattern for the register number), we can
5209 use numbers larger than 255. They must differ by 1, because of
5210 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5211 be larger than the value for the highest register, so we do not try
5212 to actually save any registers when none are active. */
5213 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5214 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5216 /* Matching routines. */
5218 #ifndef emacs /* Emacs never uses this. */
5219 /* re_match is like re_match_2 except it takes only a single string. */
5222 re_match (bufp
, string
, size
, pos
, regs
)
5223 struct re_pattern_buffer
*bufp
;
5226 struct re_registers
*regs
;
5228 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5230 # ifndef REGEX_MALLOC
5238 weak_alias (__re_match
, re_match
)
5240 #endif /* not emacs */
5242 static boolean group_match_null_string_p
_RE_ARGS ((US_CHAR_TYPE
**p
,
5244 register_info_type
*reg_info
));
5245 static boolean alt_match_null_string_p
_RE_ARGS ((US_CHAR_TYPE
*p
,
5247 register_info_type
*reg_info
));
5248 static boolean common_op_match_null_string_p
_RE_ARGS ((US_CHAR_TYPE
**p
,
5250 register_info_type
*reg_info
));
5251 static int bcmp_translate
_RE_ARGS ((const CHAR_TYPE
*s1
, const CHAR_TYPE
*s2
,
5252 int len
, char *translate
));
5254 /* re_match_2 matches the compiled pattern in BUFP against the
5255 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5256 and SIZE2, respectively). We start matching at POS, and stop
5259 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5260 store offsets for the substring each group matched in REGS. See the
5261 documentation for exactly how many groups we fill.
5263 We return -1 if no match, -2 if an internal error (such as the
5264 failure stack overflowing). Otherwise, we return the length of the
5265 matched substring. */
5268 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5269 struct re_pattern_buffer
*bufp
;
5270 const char *string1
, *string2
;
5273 struct re_registers
*regs
;
5276 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5278 #ifndef REGEX_MALLOC
5286 weak_alias (__re_match_2
, re_match_2
)
5291 static int count_mbs_length
PARAMS ((int *, int));
5293 /* This check the substring (from 0, to length) of the multibyte string,
5294 to which offset_buffer correspond. And count how many wchar_t_characters
5295 the substring occupy. We use offset_buffer to optimization.
5296 See convert_mbs_to_wcs. */
5299 count_mbs_length(offset_buffer
, length
)
5305 /* Check whether the size is valid. */
5309 if (offset_buffer
== NULL
)
5312 for (wcs_size
= 0 ; offset_buffer
[wcs_size
] != -1 ; wcs_size
++)
5314 if (offset_buffer
[wcs_size
] == length
)
5316 if (offset_buffer
[wcs_size
] > length
)
5317 /* It is a fragment of a wide character. */
5321 /* We reached at the sentinel. */
5324 #endif /* MBS_SUPPORT */
5326 /* This is a separate function so that we can force an alloca cleanup
5330 re_match_2_internal (bufp
, cstring1
, csize1
, cstring2
, csize2
, pos
, regs
, stop
)
5331 struct re_pattern_buffer
*bufp
;
5332 const char *cstring1
, *cstring2
;
5335 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5336 struct re_pattern_buffer
*bufp
;
5337 const char *string1
, *string2
;
5341 struct re_registers
*regs
;
5344 /* General temporaries. */
5348 /* We need wchar_t* buffers correspond to string1, string2. */
5349 CHAR_TYPE
*string1
= NULL
, *string2
= NULL
;
5350 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5351 int size1
= 0, size2
= 0;
5352 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5353 int *mbs_offset1
= NULL
, *mbs_offset2
= NULL
;
5354 /* They hold whether each wchar_t is binary data or not. */
5355 char *is_binary
= NULL
;
5356 #endif /* MBS_SUPPORT */
5358 /* Just past the end of the corresponding string. */
5359 const CHAR_TYPE
*end1
, *end2
;
5361 /* Pointers into string1 and string2, just past the last characters in
5362 each to consider matching. */
5363 const CHAR_TYPE
*end_match_1
, *end_match_2
;
5365 /* Where we are in the data, and the end of the current string. */
5366 const CHAR_TYPE
*d
, *dend
;
5368 /* Where we are in the pattern, and the end of the pattern. */
5370 US_CHAR_TYPE
*pattern
, *p
;
5371 register US_CHAR_TYPE
*pend
;
5373 US_CHAR_TYPE
*p
= bufp
->buffer
;
5374 register US_CHAR_TYPE
*pend
= p
+ bufp
->used
;
5375 #endif /* MBS_SUPPORT */
5377 /* Mark the opcode just after a start_memory, so we can test for an
5378 empty subpattern when we get to the stop_memory. */
5379 US_CHAR_TYPE
*just_past_start_mem
= 0;
5381 /* We use this to map every character in the string. */
5382 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5384 /* Failure point stack. Each place that can handle a failure further
5385 down the line pushes a failure point on this stack. It consists of
5386 restart, regend, and reg_info for all registers corresponding to
5387 the subexpressions we're currently inside, plus the number of such
5388 registers, and, finally, two char *'s. The first char * is where
5389 to resume scanning the pattern; the second one is where to resume
5390 scanning the strings. If the latter is zero, the failure point is
5391 a ``dummy''; if a failure happens and the failure point is a dummy,
5392 it gets discarded and the next next one is tried. */
5393 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5394 fail_stack_type fail_stack
;
5397 static unsigned failure_id
;
5398 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5402 /* This holds the pointer to the failure stack, when
5403 it is allocated relocatably. */
5404 fail_stack_elt_t
*failure_stack_ptr
;
5407 /* We fill all the registers internally, independent of what we
5408 return, for use in backreferences. The number here includes
5409 an element for register zero. */
5410 size_t num_regs
= bufp
->re_nsub
+ 1;
5412 /* The currently active registers. */
5413 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
5414 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
5416 /* Information on the contents of registers. These are pointers into
5417 the input strings; they record just what was matched (on this
5418 attempt) by a subexpression part of the pattern, that is, the
5419 regnum-th regstart pointer points to where in the pattern we began
5420 matching and the regnum-th regend points to right after where we
5421 stopped matching the regnum-th subexpression. (The zeroth register
5422 keeps track of what the whole pattern matches.) */
5423 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5424 const CHAR_TYPE
**regstart
, **regend
;
5427 /* If a group that's operated upon by a repetition operator fails to
5428 match anything, then the register for its start will need to be
5429 restored because it will have been set to wherever in the string we
5430 are when we last see its open-group operator. Similarly for a
5432 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5433 const CHAR_TYPE
**old_regstart
, **old_regend
;
5436 /* The is_active field of reg_info helps us keep track of which (possibly
5437 nested) subexpressions we are currently in. The matched_something
5438 field of reg_info[reg_num] helps us tell whether or not we have
5439 matched any of the pattern so far this time through the reg_num-th
5440 subexpression. These two fields get reset each time through any
5441 loop their register is in. */
5442 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5443 register_info_type
*reg_info
;
5446 /* The following record the register info as found in the above
5447 variables when we find a match better than any we've seen before.
5448 This happens as we backtrack through the failure points, which in
5449 turn happens only if we have not yet matched the entire string. */
5450 unsigned best_regs_set
= false;
5451 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5452 const CHAR_TYPE
**best_regstart
, **best_regend
;
5455 /* Logically, this is `best_regend[0]'. But we don't want to have to
5456 allocate space for that if we're not allocating space for anything
5457 else (see below). Also, we never need info about register 0 for
5458 any of the other register vectors, and it seems rather a kludge to
5459 treat `best_regend' differently than the rest. So we keep track of
5460 the end of the best match so far in a separate variable. We
5461 initialize this to NULL so that when we backtrack the first time
5462 and need to test it, it's not garbage. */
5463 const CHAR_TYPE
*match_end
= NULL
;
5465 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5466 int set_regs_matched_done
= 0;
5468 /* Used when we pop values we don't care about. */
5469 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5470 const CHAR_TYPE
**reg_dummy
;
5471 register_info_type
*reg_info_dummy
;
5475 /* Counts the total number of registers pushed. */
5476 unsigned num_regs_pushed
= 0;
5479 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5483 #ifdef MATCH_MAY_ALLOCATE
5484 /* Do not bother to initialize all the register variables if there are
5485 no groups in the pattern, as it takes a fair amount of time. If
5486 there are groups, we include space for register 0 (the whole
5487 pattern), even though we never use it, since it simplifies the
5488 array indexing. We should fix this. */
5491 regstart
= REGEX_TALLOC (num_regs
, const CHAR_TYPE
*);
5492 regend
= REGEX_TALLOC (num_regs
, const CHAR_TYPE
*);
5493 old_regstart
= REGEX_TALLOC (num_regs
, const CHAR_TYPE
*);
5494 old_regend
= REGEX_TALLOC (num_regs
, const CHAR_TYPE
*);
5495 best_regstart
= REGEX_TALLOC (num_regs
, const CHAR_TYPE
*);
5496 best_regend
= REGEX_TALLOC (num_regs
, const CHAR_TYPE
*);
5497 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
5498 reg_dummy
= REGEX_TALLOC (num_regs
, const CHAR_TYPE
*);
5499 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
5501 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
5502 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
5510 /* We must initialize all our variables to NULL, so that
5511 `FREE_VARIABLES' doesn't try to free them. */
5512 regstart
= regend
= old_regstart
= old_regend
= best_regstart
5513 = best_regend
= reg_dummy
= NULL
;
5514 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
5516 #endif /* MATCH_MAY_ALLOCATE */
5518 /* The starting position is bogus. */
5520 if (pos
< 0 || pos
> csize1
+ csize2
)
5522 if (pos
< 0 || pos
> size1
+ size2
)
5530 /* Allocate wchar_t array for string1 and string2 and
5531 fill them with converted string. */
5534 string1
= REGEX_TALLOC (csize1
+ 1, CHAR_TYPE
);
5535 mbs_offset1
= REGEX_TALLOC (csize1
+ 1, int);
5536 is_binary
= REGEX_TALLOC (csize1
+ 1, char);
5537 if (!string1
|| !mbs_offset1
|| !is_binary
)
5540 FREE_VAR (mbs_offset1
);
5541 FREE_VAR (is_binary
);
5544 size1
= convert_mbs_to_wcs(string1
, cstring1
, csize1
,
5545 mbs_offset1
, is_binary
);
5546 string1
[size1
] = L
'\0'; /* for a sentinel */
5547 FREE_VAR (is_binary
);
5551 string2
= REGEX_TALLOC (csize2
+ 1, CHAR_TYPE
);
5552 mbs_offset2
= REGEX_TALLOC (csize2
+ 1, int);
5553 is_binary
= REGEX_TALLOC (csize2
+ 1, char);
5554 if (!string2
|| !mbs_offset2
|| !is_binary
)
5557 FREE_VAR (mbs_offset1
);
5559 FREE_VAR (mbs_offset2
);
5560 FREE_VAR (is_binary
);
5563 size2
= convert_mbs_to_wcs(string2
, cstring2
, csize2
,
5564 mbs_offset2
, is_binary
);
5565 string2
[size2
] = L
'\0'; /* for a sentinel */
5566 FREE_VAR (is_binary
);
5569 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5570 pattern to (char*) in regex_compile. */
5571 p
= pattern
= (CHAR_TYPE
*)bufp
->buffer
;
5572 pend
= (CHAR_TYPE
*)(bufp
->buffer
+ bufp
->used
);
5574 #endif /* MBS_SUPPORT */
5576 /* Initialize subexpression text positions to -1 to mark ones that no
5577 start_memory/stop_memory has been seen for. Also initialize the
5578 register information struct. */
5579 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5581 regstart
[mcnt
] = regend
[mcnt
]
5582 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
5584 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
5585 IS_ACTIVE (reg_info
[mcnt
]) = 0;
5586 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5587 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5590 /* We move `string1' into `string2' if the latter's empty -- but not if
5591 `string1' is null. */
5592 if (size2
== 0 && string1
!= NULL
)
5599 mbs_offset2
= mbs_offset1
;
5605 end1
= string1
+ size1
;
5606 end2
= string2
+ size2
;
5608 /* Compute where to stop matching, within the two strings. */
5612 mcnt
= count_mbs_length(mbs_offset1
, stop
);
5613 end_match_1
= string1
+ mcnt
;
5614 end_match_2
= string2
;
5618 if (stop
> csize1
+ csize2
)
5619 stop
= csize1
+ csize2
;
5621 mcnt
= count_mbs_length(mbs_offset2
, stop
-csize1
);
5622 end_match_2
= string2
+ mcnt
;
5625 { /* count_mbs_length return error. */
5632 end_match_1
= string1
+ stop
;
5633 end_match_2
= string2
;
5638 end_match_2
= string2
+ stop
- size1
;
5640 #endif /* MBS_SUPPORT */
5642 /* `p' scans through the pattern as `d' scans through the data.
5643 `dend' is the end of the input string that `d' points within. `d'
5644 is advanced into the following input string whenever necessary, but
5645 this happens before fetching; therefore, at the beginning of the
5646 loop, `d' can be pointing at the end of a string, but it cannot
5649 if (size1
> 0 && pos
<= csize1
)
5651 mcnt
= count_mbs_length(mbs_offset1
, pos
);
5657 mcnt
= count_mbs_length(mbs_offset2
, pos
-csize1
);
5663 { /* count_mbs_length return error. */
5668 if (size1
> 0 && pos
<= size1
)
5675 d
= string2
+ pos
- size1
;
5678 #endif /* MBS_SUPPORT */
5680 DEBUG_PRINT1 ("The compiled pattern is:\n");
5681 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5682 DEBUG_PRINT1 ("The string to match is: `");
5683 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5684 DEBUG_PRINT1 ("'\n");
5686 /* This loops over pattern commands. It exits by returning from the
5687 function if the match is complete, or it drops through if the match
5688 fails at this starting point in the input data. */
5692 DEBUG_PRINT2 ("\n%p: ", p
);
5694 DEBUG_PRINT2 ("\n0x%x: ", p
);
5698 { /* End of pattern means we might have succeeded. */
5699 DEBUG_PRINT1 ("end of pattern ... ");
5701 /* If we haven't matched the entire string, and we want the
5702 longest match, try backtracking. */
5703 if (d
!= end_match_2
)
5705 /* 1 if this match ends in the same string (string1 or string2)
5706 as the best previous match. */
5707 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5708 == MATCHING_IN_FIRST_STRING
);
5709 /* 1 if this match is the best seen so far. */
5710 boolean best_match_p
;
5712 /* AIX compiler got confused when this was combined
5713 with the previous declaration. */
5715 best_match_p
= d
> match_end
;
5717 best_match_p
= !MATCHING_IN_FIRST_STRING
;
5719 DEBUG_PRINT1 ("backtracking.\n");
5721 if (!FAIL_STACK_EMPTY ())
5722 { /* More failure points to try. */
5724 /* If exceeds best match so far, save it. */
5725 if (!best_regs_set
|| best_match_p
)
5727 best_regs_set
= true;
5730 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5732 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5734 best_regstart
[mcnt
] = regstart
[mcnt
];
5735 best_regend
[mcnt
] = regend
[mcnt
];
5741 /* If no failure points, don't restore garbage. And if
5742 last match is real best match, don't restore second
5744 else if (best_regs_set
&& !best_match_p
)
5747 /* Restore best match. It may happen that `dend ==
5748 end_match_1' while the restored d is in string2.
5749 For example, the pattern `x.*y.*z' against the
5750 strings `x-' and `y-z-', if the two strings are
5751 not consecutive in memory. */
5752 DEBUG_PRINT1 ("Restoring best registers.\n");
5755 dend
= ((d
>= string1
&& d
<= end1
)
5756 ? end_match_1
: end_match_2
);
5758 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5760 regstart
[mcnt
] = best_regstart
[mcnt
];
5761 regend
[mcnt
] = best_regend
[mcnt
];
5764 } /* d != end_match_2 */
5767 DEBUG_PRINT1 ("Accepting match.\n");
5768 /* If caller wants register contents data back, do it. */
5769 if (regs
&& !bufp
->no_sub
)
5771 /* Have the register data arrays been allocated? */
5772 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5773 { /* No. So allocate them with malloc. We need one
5774 extra element beyond `num_regs' for the `-1' marker
5776 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5777 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5778 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5779 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5784 bufp
->regs_allocated
= REGS_REALLOCATE
;
5786 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5787 { /* Yes. If we need more elements than were already
5788 allocated, reallocate them. If we need fewer, just
5790 if (regs
->num_regs
< num_regs
+ 1)
5792 regs
->num_regs
= num_regs
+ 1;
5793 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5794 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5795 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5804 /* These braces fend off a "empty body in an else-statement"
5805 warning under GCC when assert expands to nothing. */
5806 assert (bufp
->regs_allocated
== REGS_FIXED
);
5809 /* Convert the pointer data in `regstart' and `regend' to
5810 indices. Register zero has to be set differently,
5811 since we haven't kept track of any info for it. */
5812 if (regs
->num_regs
> 0)
5814 regs
->start
[0] = pos
;
5816 if (MATCHING_IN_FIRST_STRING
)
5817 regs
->end
[0] = mbs_offset1
!= NULL
?
5818 mbs_offset1
[d
-string1
] : 0;
5820 regs
->end
[0] = csize1
+ (mbs_offset2
!= NULL
?
5821 mbs_offset2
[d
-string2
] : 0);
5823 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
5824 ? ((regoff_t
) (d
- string1
))
5825 : ((regoff_t
) (d
- string2
+ size1
)));
5826 #endif /* MBS_SUPPORT */
5829 /* Go through the first `min (num_regs, regs->num_regs)'
5830 registers, since that is all we initialized. */
5831 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
5834 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
5835 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
5839 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
5841 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
5845 /* If the regs structure we return has more elements than
5846 were in the pattern, set the extra elements to -1. If
5847 we (re)allocated the registers, this is the case,
5848 because we always allocate enough to have at least one
5850 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
5851 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
5852 } /* regs && !bufp->no_sub */
5854 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5855 nfailure_points_pushed
, nfailure_points_popped
,
5856 nfailure_points_pushed
- nfailure_points_popped
);
5857 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5860 if (MATCHING_IN_FIRST_STRING
)
5861 mcnt
= mbs_offset1
!= NULL
? mbs_offset1
[d
-string1
] : 0;
5863 mcnt
= (mbs_offset2
!= NULL
? mbs_offset2
[d
-string2
] : 0) +
5867 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
5870 #endif /* MBS_SUPPORT */
5872 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5878 /* Otherwise match next pattern command. */
5879 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5881 /* Ignore these. Used to ignore the n of succeed_n's which
5882 currently have n == 0. */
5884 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5888 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5891 /* Match the next n pattern characters exactly. The following
5892 byte in the pattern defines n, and the n bytes after that
5893 are the characters to match. */
5899 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5901 /* This is written out as an if-else so we don't waste time
5902 testing `translate' inside the loop. */
5911 if ((US_CHAR_TYPE
) translate
[(unsigned char) *d
++]
5912 != (US_CHAR_TYPE
) *p
++)
5917 if (*d
++ != (CHAR_TYPE
) *p
++)
5921 if ((US_CHAR_TYPE
) translate
[(unsigned char) *d
++]
5922 != (US_CHAR_TYPE
) *p
++)
5924 #endif /* MBS_SUPPORT */
5933 if (*d
++ != (CHAR_TYPE
) *p
++) goto fail
;
5937 SET_REGS_MATCHED ();
5941 /* Match any character except possibly a newline or a null. */
5943 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5947 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
5948 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
5951 SET_REGS_MATCHED ();
5952 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d
);
5960 register US_CHAR_TYPE c
;
5962 unsigned int i
, char_class_length
, coll_symbol_length
,
5963 equiv_class_length
, ranges_length
, chars_length
, length
;
5964 CHAR_TYPE
*workp
, *workp2
, *charset_top
;
5965 #define WORK_BUFFER_SIZE 128
5966 CHAR_TYPE str_buf
[WORK_BUFFER_SIZE
];
5970 #endif /* MBS_SUPPORT */
5971 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5973 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5975 c
= TRANSLATE (*d
); /* The character to match. */
5978 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
5980 charset_top
= p
- 1;
5981 char_class_length
= *p
++;
5982 coll_symbol_length
= *p
++;
5983 equiv_class_length
= *p
++;
5984 ranges_length
= *p
++;
5985 chars_length
= *p
++;
5986 /* p points charset[6], so the address of the next instruction
5987 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
5988 where l=length of char_classes, m=length of collating_symbol,
5989 n=equivalence_class, o=length of char_range,
5990 p'=length of character. */
5992 /* Update p to indicate the next instruction. */
5993 p
+= char_class_length
+ coll_symbol_length
+ equiv_class_length
+
5994 2*ranges_length
+ chars_length
;
5996 /* match with char_class? */
5997 for (i
= 0; i
< char_class_length
; i
+= CHAR_CLASS_SIZE
)
6000 uintptr_t alignedp
= ((uintptr_t)workp
6001 + __alignof__(wctype_t) - 1)
6002 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6003 wctype
= *((wctype_t*)alignedp
);
6004 workp
+= CHAR_CLASS_SIZE
;
6005 if (iswctype((wint_t)c
, wctype
))
6006 goto char_set_matched
;
6009 /* match with collating_symbol? */
6013 const unsigned char *extra
= (const unsigned char *)
6014 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
6016 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;
6020 wextra
= (int32_t*)(extra
+ *workp
++);
6021 for (i
= 0; i
< *wextra
; ++i
)
6022 if (TRANSLATE(d
[i
]) != wextra
[1 + i
])
6027 /* Update d, however d will be incremented at
6028 char_set_matched:, we decrement d here. */
6030 goto char_set_matched
;
6034 else /* (nrules == 0) */
6036 /* If we can't look up collation data, we use wcscoll
6039 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;)
6041 const CHAR_TYPE
*backup_d
= d
, *backup_dend
= dend
;
6042 length
= wcslen(workp
);
6044 /* If wcscoll(the collating symbol, whole string) > 0,
6045 any substring of the string never match with the
6046 collating symbol. */
6047 if (wcscoll(workp
, d
) > 0)
6049 workp
+= length
+ 1;
6053 /* First, we compare the collating symbol with
6054 the first character of the string.
6055 If it don't match, we add the next character to
6056 the compare buffer in turn. */
6057 for (i
= 0 ; i
< WORK_BUFFER_SIZE
-1 ; i
++, d
++)
6062 if (dend
== end_match_2
)
6068 /* add next character to the compare buffer. */
6069 str_buf
[i
] = TRANSLATE(*d
);
6070 str_buf
[i
+1] = '\0';
6072 match
= wcscoll(workp
, str_buf
);
6074 goto char_set_matched
;
6077 /* (str_buf > workp) indicate (str_buf + X > workp),
6078 because for all X (str_buf + X > str_buf).
6079 So we don't need continue this loop. */
6082 /* Otherwise(str_buf < workp),
6083 (str_buf+next_character) may equals (workp).
6084 So we continue this loop. */
6089 workp
+= length
+ 1;
6092 /* match with equivalence_class? */
6096 const CHAR_TYPE
*backup_d
= d
, *backup_dend
= dend
;
6097 /* Try to match the equivalence class against
6098 those known to the collate implementation. */
6099 const int32_t *table
;
6100 const int32_t *weights
;
6101 const int32_t *extra
;
6102 const int32_t *indirect
;
6107 /* This #include defines a local function! */
6108 # include <locale/weightwc.h>
6110 table
= (const int32_t *)
6111 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEWC
);
6112 weights
= (const wint_t *)
6113 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTWC
);
6114 extra
= (const wint_t *)
6115 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAWC
);
6116 indirect
= (const int32_t *)
6117 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTWC
);
6119 /* Write 1 collating element to str_buf, and
6123 for (i
= 0 ; idx2
== 0 && i
< WORK_BUFFER_SIZE
- 1; i
++)
6125 cp
= (wint_t*)str_buf
;
6128 if (dend
== end_match_2
)
6133 str_buf
[i
] = TRANSLATE(*(d
+i
));
6134 str_buf
[i
+1] = '\0'; /* sentinel */
6135 idx2
= findidx ((const wint_t**)&cp
);
6138 /* Update d, however d will be incremented at
6139 char_set_matched:, we decrement d here. */
6140 d
= backup_d
+ ((wchar_t*)cp
- (wchar_t*)str_buf
- 1);
6143 if (dend
== end_match_2
)
6152 len
= weights
[idx2
];
6154 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;
6157 idx
= (int32_t)*workp
;
6158 /* We already checked idx != 0 in regex_compile. */
6160 if (idx2
!= 0 && len
== weights
[idx
])
6163 while (cnt
< len
&& (weights
[idx
+ 1 + cnt
]
6164 == weights
[idx2
+ 1 + cnt
]))
6168 goto char_set_matched
;
6175 else /* (nrules == 0) */
6177 /* If we can't look up collation data, we use wcscoll
6180 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;)
6182 const CHAR_TYPE
*backup_d
= d
, *backup_dend
= dend
;
6183 length
= wcslen(workp
);
6185 /* If wcscoll(the collating symbol, whole string) > 0,
6186 any substring of the string never match with the
6187 collating symbol. */
6188 if (wcscoll(workp
, d
) > 0)
6190 workp
+= length
+ 1;
6194 /* First, we compare the equivalence class with
6195 the first character of the string.
6196 If it don't match, we add the next character to
6197 the compare buffer in turn. */
6198 for (i
= 0 ; i
< WORK_BUFFER_SIZE
- 1 ; i
++, d
++)
6203 if (dend
== end_match_2
)
6209 /* add next character to the compare buffer. */
6210 str_buf
[i
] = TRANSLATE(*d
);
6211 str_buf
[i
+1] = '\0';
6213 match
= wcscoll(workp
, str_buf
);
6216 goto char_set_matched
;
6219 /* (str_buf > workp) indicate (str_buf + X > workp),
6220 because for all X (str_buf + X > str_buf).
6221 So we don't need continue this loop. */
6224 /* Otherwise(str_buf < workp),
6225 (str_buf+next_character) may equals (workp).
6226 So we continue this loop. */
6231 workp
+= length
+ 1;
6235 /* match with char_range? */
6239 uint32_t collseqval
;
6240 const char *collseq
= (const char *)
6241 _NL_CURRENT(LC_COLLATE
, _NL_COLLATE_COLLSEQWC
);
6243 collseqval
= collseq_table_lookup (collseq
, c
);
6245 for (; workp
< p
- chars_length
;)
6247 uint32_t start_val
, end_val
;
6249 /* We already compute the collation sequence value
6250 of the characters (or collating symbols). */
6251 start_val
= (uint32_t) *workp
++; /* range_start */
6252 end_val
= (uint32_t) *workp
++; /* range_end */
6254 if (start_val
<= collseqval
&& collseqval
<= end_val
)
6255 goto char_set_matched
;
6261 /* We set range_start_char at str_buf[0], range_end_char
6262 at str_buf[4], and compared char at str_buf[2]. */
6267 for (; workp
< p
- chars_length
;)
6269 wchar_t *range_start_char
, *range_end_char
;
6271 /* match if (range_start_char <= c <= range_end_char). */
6273 /* If range_start(or end) < 0, we assume -range_start(end)
6274 is the offset of the collating symbol which is specified
6275 as the character of the range start(end). */
6279 range_start_char
= charset_top
- (*workp
++);
6282 str_buf
[0] = *workp
++;
6283 range_start_char
= str_buf
;
6288 range_end_char
= charset_top
- (*workp
++);
6291 str_buf
[4] = *workp
++;
6292 range_end_char
= str_buf
+ 4;
6295 if (wcscoll(range_start_char
, str_buf
+2) <= 0 &&
6296 wcscoll(str_buf
+2, range_end_char
) <= 0)
6298 goto char_set_matched
;
6302 /* match with char? */
6303 for (; workp
< p
; workp
++)
6305 goto char_set_matched
;
6312 /* Cast to `unsigned' instead of `unsigned char' in case the
6313 bit list is a full 32 bytes long. */
6314 if (c
< (unsigned) (*p
* BYTEWIDTH
)
6315 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6320 if (!not) goto fail
;
6321 #undef WORK_BUFFER_SIZE
6322 #endif /* MBS_SUPPORT */
6323 SET_REGS_MATCHED ();
6329 /* The beginning of a group is represented by start_memory.
6330 The arguments are the register number in the next byte, and the
6331 number of groups inner to this one in the next. The text
6332 matched within the group is recorded (in the internal
6333 registers data structure) under the register number. */
6335 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6336 (long int) *p
, (long int) p
[1]);
6338 /* Find out if this group can match the empty string. */
6339 p1
= p
; /* To send to group_match_null_string_p. */
6341 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
6342 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6343 = group_match_null_string_p (&p1
, pend
, reg_info
);
6345 /* Save the position in the string where we were the last time
6346 we were at this open-group operator in case the group is
6347 operated upon by a repetition operator, e.g., with `(a*)*b'
6348 against `ab'; then we want to ignore where we are now in
6349 the string in case this attempt to match fails. */
6350 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6351 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
6353 DEBUG_PRINT2 (" old_regstart: %d\n",
6354 POINTER_TO_OFFSET (old_regstart
[*p
]));
6357 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
6359 IS_ACTIVE (reg_info
[*p
]) = 1;
6360 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6362 /* Clear this whenever we change the register activity status. */
6363 set_regs_matched_done
= 0;
6365 /* This is the new highest active register. */
6366 highest_active_reg
= *p
;
6368 /* If nothing was active before, this is the new lowest active
6370 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6371 lowest_active_reg
= *p
;
6373 /* Move past the register number and inner group count. */
6375 just_past_start_mem
= p
;
6380 /* The stop_memory opcode represents the end of a group. Its
6381 arguments are the same as start_memory's: the register
6382 number, and the number of inner groups. */
6384 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6385 (long int) *p
, (long int) p
[1]);
6387 /* We need to save the string position the last time we were at
6388 this close-group operator in case the group is operated
6389 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6390 against `aba'; then we want to ignore where we are now in
6391 the string in case this attempt to match fails. */
6392 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6393 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
6395 DEBUG_PRINT2 (" old_regend: %d\n",
6396 POINTER_TO_OFFSET (old_regend
[*p
]));
6399 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
6401 /* This register isn't active anymore. */
6402 IS_ACTIVE (reg_info
[*p
]) = 0;
6404 /* Clear this whenever we change the register activity status. */
6405 set_regs_matched_done
= 0;
6407 /* If this was the only register active, nothing is active
6409 if (lowest_active_reg
== highest_active_reg
)
6411 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6412 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6415 { /* We must scan for the new highest active register, since
6416 it isn't necessarily one less than now: consider
6417 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6418 new highest active register is 1. */
6419 US_CHAR_TYPE r
= *p
- 1;
6420 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
6423 /* If we end up at register zero, that means that we saved
6424 the registers as the result of an `on_failure_jump', not
6425 a `start_memory', and we jumped to past the innermost
6426 `stop_memory'. For example, in ((.)*) we save
6427 registers 1 and 2 as a result of the *, but when we pop
6428 back to the second ), we are at the stop_memory 1.
6429 Thus, nothing is active. */
6432 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6433 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6436 highest_active_reg
= r
;
6439 /* If just failed to match something this time around with a
6440 group that's operated on by a repetition operator, try to
6441 force exit from the ``loop'', and restore the register
6442 information for this group that we had before trying this
6444 if ((!MATCHED_SOMETHING (reg_info
[*p
])
6445 || just_past_start_mem
== p
- 1)
6448 boolean is_a_jump_n
= false;
6452 switch ((re_opcode_t
) *p1
++)
6456 case pop_failure_jump
:
6457 case maybe_pop_jump
:
6459 case dummy_failure_jump
:
6460 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6462 p1
+= OFFSET_ADDRESS_SIZE
;
6470 /* If the next operation is a jump backwards in the pattern
6471 to an on_failure_jump right before the start_memory
6472 corresponding to this stop_memory, exit from the loop
6473 by forcing a failure after pushing on the stack the
6474 on_failure_jump's jump in the pattern, and d. */
6475 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
6476 && (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == start_memory
6477 && p1
[2+OFFSET_ADDRESS_SIZE
] == *p
)
6479 /* If this group ever matched anything, then restore
6480 what its registers were before trying this last
6481 failed match, e.g., with `(a*)*b' against `ab' for
6482 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6483 against `aba' for regend[3].
6485 Also restore the registers for inner groups for,
6486 e.g., `((a*)(b*))*' against `aba' (register 3 would
6487 otherwise get trashed). */
6489 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
6493 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6495 /* Restore this and inner groups' (if any) registers. */
6496 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
6499 regstart
[r
] = old_regstart
[r
];
6501 /* xx why this test? */
6502 if (old_regend
[r
] >= regstart
[r
])
6503 regend
[r
] = old_regend
[r
];
6507 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6508 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
6514 /* Move past the register number and the inner group count. */
6519 /* \<digit> has been turned into a `duplicate' command which is
6520 followed by the numeric value of <digit> as the register number. */
6523 register const CHAR_TYPE
*d2
, *dend2
;
6524 int regno
= *p
++; /* Get which register to match against. */
6525 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
6527 /* Can't back reference a group which we've never matched. */
6528 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
6531 /* Where in input to try to start matching. */
6532 d2
= regstart
[regno
];
6534 /* Where to stop matching; if both the place to start and
6535 the place to stop matching are in the same string, then
6536 set to the place to stop, otherwise, for now have to use
6537 the end of the first string. */
6539 dend2
= ((FIRST_STRING_P (regstart
[regno
])
6540 == FIRST_STRING_P (regend
[regno
]))
6541 ? regend
[regno
] : end_match_1
);
6544 /* If necessary, advance to next segment in register
6548 if (dend2
== end_match_2
) break;
6549 if (dend2
== regend
[regno
]) break;
6551 /* End of string1 => advance to string2. */
6553 dend2
= regend
[regno
];
6555 /* At end of register contents => success */
6556 if (d2
== dend2
) break;
6558 /* If necessary, advance to next segment in data. */
6561 /* How many characters left in this segment to match. */
6564 /* Want how many consecutive characters we can match in
6565 one shot, so, if necessary, adjust the count. */
6566 if (mcnt
> dend2
- d2
)
6569 /* Compare that many; failure if mismatch, else move
6572 ? bcmp_translate (d
, d2
, mcnt
, translate
)
6573 : memcmp (d
, d2
, mcnt
*sizeof(US_CHAR_TYPE
)))
6575 d
+= mcnt
, d2
+= mcnt
;
6577 /* Do this because we've match some characters. */
6578 SET_REGS_MATCHED ();
6584 /* begline matches the empty string at the beginning of the string
6585 (unless `not_bol' is set in `bufp'), and, if
6586 `newline_anchor' is set, after newlines. */
6588 DEBUG_PRINT1 ("EXECUTING begline.\n");
6590 if (AT_STRINGS_BEG (d
))
6592 if (!bufp
->not_bol
) break;
6594 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
6598 /* In all other cases, we fail. */
6602 /* endline is the dual of begline. */
6604 DEBUG_PRINT1 ("EXECUTING endline.\n");
6606 if (AT_STRINGS_END (d
))
6608 if (!bufp
->not_eol
) break;
6611 /* We have to ``prefetch'' the next character. */
6612 else if ((d
== end1
? *string2
: *d
) == '\n'
6613 && bufp
->newline_anchor
)
6620 /* Match at the very beginning of the data. */
6622 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6623 if (AT_STRINGS_BEG (d
))
6628 /* Match at the very end of the data. */
6630 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6631 if (AT_STRINGS_END (d
))
6636 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6637 pushes NULL as the value for the string on the stack. Then
6638 `pop_failure_point' will keep the current value for the
6639 string, instead of restoring it. To see why, consider
6640 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6641 then the . fails against the \n. But the next thing we want
6642 to do is match the \n against the \n; if we restored the
6643 string value, we would be back at the foo.
6645 Because this is used only in specific cases, we don't need to
6646 check all the things that `on_failure_jump' does, to make
6647 sure the right things get saved on the stack. Hence we don't
6648 share its code. The only reason to push anything on the
6649 stack at all is that otherwise we would have to change
6650 `anychar's code to do something besides goto fail in this
6651 case; that seems worse than this. */
6652 case on_failure_keep_string_jump
:
6653 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6655 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6657 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
6659 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
6662 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
6666 /* Uses of on_failure_jump:
6668 Each alternative starts with an on_failure_jump that points
6669 to the beginning of the next alternative. Each alternative
6670 except the last ends with a jump that in effect jumps past
6671 the rest of the alternatives. (They really jump to the
6672 ending jump of the following alternative, because tensioning
6673 these jumps is a hassle.)
6675 Repeats start with an on_failure_jump that points past both
6676 the repetition text and either the following jump or
6677 pop_failure_jump back to this on_failure_jump. */
6678 case on_failure_jump
:
6680 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6682 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6684 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
6686 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
6689 /* If this on_failure_jump comes right before a group (i.e.,
6690 the original * applied to a group), save the information
6691 for that group and all inner ones, so that if we fail back
6692 to this point, the group's information will be correct.
6693 For example, in \(a*\)*\1, we need the preceding group,
6694 and in \(zz\(a*\)b*\)\2, we need the inner group. */
6696 /* We can't use `p' to check ahead because we push
6697 a failure point to `p + mcnt' after we do this. */
6700 /* We need to skip no_op's before we look for the
6701 start_memory in case this on_failure_jump is happening as
6702 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6704 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
6707 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
6709 /* We have a new highest active register now. This will
6710 get reset at the start_memory we are about to get to,
6711 but we will have saved all the registers relevant to
6712 this repetition op, as described above. */
6713 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
6714 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6715 lowest_active_reg
= *(p1
+ 1);
6718 DEBUG_PRINT1 (":\n");
6719 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
6723 /* A smart repeat ends with `maybe_pop_jump'.
6724 We change it to either `pop_failure_jump' or `jump'. */
6725 case maybe_pop_jump
:
6726 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6727 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
6729 register US_CHAR_TYPE
*p2
= p
;
6731 /* Compare the beginning of the repeat with what in the
6732 pattern follows its end. If we can establish that there
6733 is nothing that they would both match, i.e., that we
6734 would have to backtrack because of (as in, e.g., `a*a')
6735 then we can change to pop_failure_jump, because we'll
6736 never have to backtrack.
6738 This is not true in the case of alternatives: in
6739 `(a|ab)*' we do need to backtrack to the `ab' alternative
6740 (e.g., if the string was `ab'). But instead of trying to
6741 detect that here, the alternative has put on a dummy
6742 failure point which is what we will end up popping. */
6744 /* Skip over open/close-group commands.
6745 If what follows this loop is a ...+ construct,
6746 look at what begins its body, since we will have to
6747 match at least one of that. */
6751 && ((re_opcode_t
) *p2
== stop_memory
6752 || (re_opcode_t
) *p2
== start_memory
))
6754 else if (p2
+ 2 + 2 * OFFSET_ADDRESS_SIZE
< pend
6755 && (re_opcode_t
) *p2
== dummy_failure_jump
)
6756 p2
+= 2 + 2 * OFFSET_ADDRESS_SIZE
;
6762 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
6763 to the `maybe_finalize_jump' of this case. Examine what
6766 /* If we're at the end of the pattern, we can change. */
6769 /* Consider what happens when matching ":\(.*\)"
6770 against ":/". I don't really understand this code
6772 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (US_CHAR_TYPE
)
6775 (" End of pattern: change to `pop_failure_jump'.\n");
6778 else if ((re_opcode_t
) *p2
== exactn
6780 || (re_opcode_t
) *p2
== exactn_bin
6782 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
6784 register US_CHAR_TYPE c
6785 = *p2
== (US_CHAR_TYPE
) endline
? '\n' : p2
[2];
6787 if (((re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn
6789 || (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn_bin
6791 ) && p1
[3+OFFSET_ADDRESS_SIZE
] != c
)
6793 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (US_CHAR_TYPE
)
6796 if (MB_CUR_MAX
!= 1)
6797 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
6799 (wint_t) p1
[3+OFFSET_ADDRESS_SIZE
]);
6802 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
6804 (char) p1
[3+OFFSET_ADDRESS_SIZE
]);
6808 else if ((re_opcode_t
) p1
[3] == charset
6809 || (re_opcode_t
) p1
[3] == charset_not
)
6811 int not = (re_opcode_t
) p1
[3] == charset_not
;
6813 if (c
< (unsigned) (p1
[4] * BYTEWIDTH
)
6814 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6817 /* `not' is equal to 1 if c would match, which means
6818 that we can't change to pop_failure_jump. */
6821 p
[-3] = (unsigned char) pop_failure_jump
;
6822 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
6825 #endif /* not MBS_SUPPORT */
6828 else if ((re_opcode_t
) *p2
== charset
)
6830 /* We win if the first character of the loop is not part
6832 if ((re_opcode_t
) p1
[3] == exactn
6833 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
6834 && (p2
[2 + p1
[5] / BYTEWIDTH
]
6835 & (1 << (p1
[5] % BYTEWIDTH
)))))
6837 p
[-3] = (unsigned char) pop_failure_jump
;
6838 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
6841 else if ((re_opcode_t
) p1
[3] == charset_not
)
6844 /* We win if the charset_not inside the loop
6845 lists every character listed in the charset after. */
6846 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
6847 if (! (p2
[2 + idx
] == 0
6848 || (idx
< (int) p1
[4]
6849 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
6854 p
[-3] = (unsigned char) pop_failure_jump
;
6855 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
6858 else if ((re_opcode_t
) p1
[3] == charset
)
6861 /* We win if the charset inside the loop
6862 has no overlap with the one after the loop. */
6864 idx
< (int) p2
[1] && idx
< (int) p1
[4];
6866 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
6869 if (idx
== p2
[1] || idx
== p1
[4])
6871 p
[-3] = (unsigned char) pop_failure_jump
;
6872 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
6876 #endif /* not MBS_SUPPORT */
6878 p
-= OFFSET_ADDRESS_SIZE
; /* Point at relative address again. */
6879 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
6881 p
[-1] = (US_CHAR_TYPE
) jump
;
6882 DEBUG_PRINT1 (" Match => jump.\n");
6883 goto unconditional_jump
;
6885 /* Note fall through. */
6888 /* The end of a simple repeat has a pop_failure_jump back to
6889 its matching on_failure_jump, where the latter will push a
6890 failure point. The pop_failure_jump takes off failure
6891 points put on by this pop_failure_jump's matching
6892 on_failure_jump; we got through the pattern to here from the
6893 matching on_failure_jump, so didn't fail. */
6894 case pop_failure_jump
:
6896 /* We need to pass separate storage for the lowest and
6897 highest registers, even though we don't care about the
6898 actual values. Otherwise, we will restore only one
6899 register from the stack, since lowest will == highest in
6900 `pop_failure_point'. */
6901 active_reg_t dummy_low_reg
, dummy_high_reg
;
6902 US_CHAR_TYPE
*pdummy
= NULL
;
6903 const CHAR_TYPE
*sdummy
= NULL
;
6905 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
6906 POP_FAILURE_POINT (sdummy
, pdummy
,
6907 dummy_low_reg
, dummy_high_reg
,
6908 reg_dummy
, reg_dummy
, reg_info_dummy
);
6910 /* Note fall through. */
6914 DEBUG_PRINT2 ("\n%p: ", p
);
6916 DEBUG_PRINT2 ("\n0x%x: ", p
);
6918 /* Note fall through. */
6920 /* Unconditionally jump (without popping any failure points). */
6922 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
6923 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
6924 p
+= mcnt
; /* Do the jump. */
6926 DEBUG_PRINT2 ("(to %p).\n", p
);
6928 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
6933 /* We need this opcode so we can detect where alternatives end
6934 in `group_match_null_string_p' et al. */
6936 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
6937 goto unconditional_jump
;
6940 /* Normally, the on_failure_jump pushes a failure point, which
6941 then gets popped at pop_failure_jump. We will end up at
6942 pop_failure_jump, also, and with a pattern of, say, `a+', we
6943 are skipping over the on_failure_jump, so we have to push
6944 something meaningless for pop_failure_jump to pop. */
6945 case dummy_failure_jump
:
6946 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
6947 /* It doesn't matter what we push for the string here. What
6948 the code at `fail' tests is the value for the pattern. */
6949 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
6950 goto unconditional_jump
;
6953 /* At the end of an alternative, we need to push a dummy failure
6954 point in case we are followed by a `pop_failure_jump', because
6955 we don't want the failure point for the alternative to be
6956 popped. For example, matching `(a|ab)*' against `aab'
6957 requires that we match the `ab' alternative. */
6958 case push_dummy_failure
:
6959 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
6960 /* See comments just above at `dummy_failure_jump' about the
6962 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
6965 /* Have to succeed matching what follows at least n times.
6966 After that, handle like `on_failure_jump'. */
6968 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
6969 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
6972 /* Originally, this is how many times we HAVE to succeed. */
6976 p
+= OFFSET_ADDRESS_SIZE
;
6977 STORE_NUMBER_AND_INCR (p
, mcnt
);
6979 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- OFFSET_ADDRESS_SIZE
6982 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- OFFSET_ADDRESS_SIZE
6989 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
6990 p
+ OFFSET_ADDRESS_SIZE
);
6992 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
6993 p
+ OFFSET_ADDRESS_SIZE
);
6997 p
[1] = (US_CHAR_TYPE
) no_op
;
6999 p
[2] = (US_CHAR_TYPE
) no_op
;
7000 p
[3] = (US_CHAR_TYPE
) no_op
;
7001 #endif /* MBS_SUPPORT */
7007 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7008 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
7010 /* Originally, this is how many times we CAN jump. */
7014 STORE_NUMBER (p
+ OFFSET_ADDRESS_SIZE
, mcnt
);
7017 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7020 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7023 goto unconditional_jump
;
7025 /* If don't have to jump any more, skip over the rest of command. */
7027 p
+= 2 * OFFSET_ADDRESS_SIZE
;
7032 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7034 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7036 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7038 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
7040 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
7042 STORE_NUMBER (p1
, mcnt
);
7047 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7048 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7049 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7050 macro and introducing temporary variables works around the bug. */
7053 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7054 if (AT_WORD_BOUNDARY (d
))
7059 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7060 if (AT_WORD_BOUNDARY (d
))
7066 boolean prevchar
, thischar
;
7068 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7069 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7072 prevchar
= WORDCHAR_P (d
- 1);
7073 thischar
= WORDCHAR_P (d
);
7074 if (prevchar
!= thischar
)
7081 boolean prevchar
, thischar
;
7083 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7084 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7087 prevchar
= WORDCHAR_P (d
- 1);
7088 thischar
= WORDCHAR_P (d
);
7089 if (prevchar
!= thischar
)
7096 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7097 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
7102 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7103 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
7104 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
7110 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7111 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
7116 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7117 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
7122 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7123 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
7128 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
7133 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7137 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7139 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
7141 SET_REGS_MATCHED ();
7145 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
7147 goto matchnotsyntax
;
7150 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7154 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7156 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
7158 SET_REGS_MATCHED ();
7161 #else /* not emacs */
7163 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7165 if (!WORDCHAR_P (d
))
7167 SET_REGS_MATCHED ();
7172 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7176 SET_REGS_MATCHED ();
7179 #endif /* not emacs */
7184 continue; /* Successfully executed one pattern command; keep going. */
7187 /* We goto here if a matching operation fails. */
7189 if (!FAIL_STACK_EMPTY ())
7190 { /* A restart point is known. Restore to that state. */
7191 DEBUG_PRINT1 ("\nFAIL:\n");
7192 POP_FAILURE_POINT (d
, p
,
7193 lowest_active_reg
, highest_active_reg
,
7194 regstart
, regend
, reg_info
);
7196 /* If this failure point is a dummy, try the next one. */
7200 /* If we failed to the end of the pattern, don't examine *p. */
7204 boolean is_a_jump_n
= false;
7206 /* If failed to a backwards jump that's part of a repetition
7207 loop, need to pop this failure point and use the next one. */
7208 switch ((re_opcode_t
) *p
)
7212 case maybe_pop_jump
:
7213 case pop_failure_jump
:
7216 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7219 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
7221 && (re_opcode_t
) *p1
== on_failure_jump
))
7229 if (d
>= string1
&& d
<= end1
)
7233 break; /* Matching at this starting point really fails. */
7237 goto restore_best_regs
;
7241 return -1; /* Failure to match. */
7244 /* Subroutine definitions for re_match_2. */
7247 /* We are passed P pointing to a register number after a start_memory.
7249 Return true if the pattern up to the corresponding stop_memory can
7250 match the empty string, and false otherwise.
7252 If we find the matching stop_memory, sets P to point to one past its number.
7253 Otherwise, sets P to an undefined byte less than or equal to END.
7255 We don't handle duplicates properly (yet). */
7258 group_match_null_string_p (p
, end
, reg_info
)
7259 US_CHAR_TYPE
**p
, *end
;
7260 register_info_type
*reg_info
;
7263 /* Point to after the args to the start_memory. */
7264 US_CHAR_TYPE
*p1
= *p
+ 2;
7268 /* Skip over opcodes that can match nothing, and return true or
7269 false, as appropriate, when we get to one that can't, or to the
7270 matching stop_memory. */
7272 switch ((re_opcode_t
) *p1
)
7274 /* Could be either a loop or a series of alternatives. */
7275 case on_failure_jump
:
7277 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7279 /* If the next operation is not a jump backwards in the
7284 /* Go through the on_failure_jumps of the alternatives,
7285 seeing if any of the alternatives cannot match nothing.
7286 The last alternative starts with only a jump,
7287 whereas the rest start with on_failure_jump and end
7288 with a jump, e.g., here is the pattern for `a|b|c':
7290 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7291 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7294 So, we have to first go through the first (n-1)
7295 alternatives and then deal with the last one separately. */
7298 /* Deal with the first (n-1) alternatives, which start
7299 with an on_failure_jump (see above) that jumps to right
7300 past a jump_past_alt. */
7302 while ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] ==
7305 /* `mcnt' holds how many bytes long the alternative
7306 is, including the ending `jump_past_alt' and
7309 if (!alt_match_null_string_p (p1
, p1
+ mcnt
-
7310 (1 + OFFSET_ADDRESS_SIZE
),
7314 /* Move to right after this alternative, including the
7318 /* Break if it's the beginning of an n-th alternative
7319 that doesn't begin with an on_failure_jump. */
7320 if ((re_opcode_t
) *p1
!= on_failure_jump
)
7323 /* Still have to check that it's not an n-th
7324 alternative that starts with an on_failure_jump. */
7326 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7327 if ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] !=
7330 /* Get to the beginning of the n-th alternative. */
7331 p1
-= 1 + OFFSET_ADDRESS_SIZE
;
7336 /* Deal with the last alternative: go back and get number
7337 of the `jump_past_alt' just before it. `mcnt' contains
7338 the length of the alternative. */
7339 EXTRACT_NUMBER (mcnt
, p1
- OFFSET_ADDRESS_SIZE
);
7341 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
7344 p1
+= mcnt
; /* Get past the n-th alternative. */
7350 assert (p1
[1] == **p
);
7356 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
7359 } /* while p1 < end */
7362 } /* group_match_null_string_p */
7365 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7366 It expects P to be the first byte of a single alternative and END one
7367 byte past the last. The alternative can contain groups. */
7370 alt_match_null_string_p (p
, end
, reg_info
)
7371 US_CHAR_TYPE
*p
, *end
;
7372 register_info_type
*reg_info
;
7375 US_CHAR_TYPE
*p1
= p
;
7379 /* Skip over opcodes that can match nothing, and break when we get
7380 to one that can't. */
7382 switch ((re_opcode_t
) *p1
)
7385 case on_failure_jump
:
7387 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7392 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
7395 } /* while p1 < end */
7398 } /* alt_match_null_string_p */
7401 /* Deals with the ops common to group_match_null_string_p and
7402 alt_match_null_string_p.
7404 Sets P to one after the op and its arguments, if any. */
7407 common_op_match_null_string_p (p
, end
, reg_info
)
7408 US_CHAR_TYPE
**p
, *end
;
7409 register_info_type
*reg_info
;
7414 US_CHAR_TYPE
*p1
= *p
;
7416 switch ((re_opcode_t
) *p1
++)
7436 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
7437 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
7439 /* Have to set this here in case we're checking a group which
7440 contains a group and a back reference to it. */
7442 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
7443 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
7449 /* If this is an optimized succeed_n for zero times, make the jump. */
7451 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7459 /* Get to the number of times to succeed. */
7460 p1
+= OFFSET_ADDRESS_SIZE
;
7461 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7465 p1
-= 2 * OFFSET_ADDRESS_SIZE
;
7466 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7474 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
7479 p1
+= 2 * OFFSET_ADDRESS_SIZE
;
7482 /* All other opcodes mean we cannot match the empty string. */
7488 } /* common_op_match_null_string_p */
7491 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7492 bytes; nonzero otherwise. */
7495 bcmp_translate (s1
, s2
, len
, translate
)
7496 const CHAR_TYPE
*s1
, *s2
;
7498 RE_TRANSLATE_TYPE translate
;
7500 register const US_CHAR_TYPE
*p1
= (const US_CHAR_TYPE
*) s1
;
7501 register const US_CHAR_TYPE
*p2
= (const US_CHAR_TYPE
*) s2
;
7505 if (((*p1
<=0xff)?translate
[*p1
++]:*p1
++)
7506 != ((*p2
<=0xff)?translate
[*p2
++]:*p2
++))
7509 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
7510 #endif /* MBS_SUPPORT */
7516 /* Entry points for GNU code. */
7518 /* re_compile_pattern is the GNU regular expression compiler: it
7519 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7520 Returns 0 if the pattern was valid, otherwise an error string.
7522 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7523 are set in BUFP on entry.
7525 We call regex_compile to do the actual compilation. */
7528 re_compile_pattern (pattern
, length
, bufp
)
7529 const char *pattern
;
7531 struct re_pattern_buffer
*bufp
;
7535 /* GNU code is written to assume at least RE_NREGS registers will be set
7536 (and at least one extra will be -1). */
7537 bufp
->regs_allocated
= REGS_UNALLOCATED
;
7539 /* And GNU code determines whether or not to get register information
7540 by passing null for the REGS argument to re_match, etc., not by
7544 /* Match anchors at newline. */
7545 bufp
->newline_anchor
= 1;
7547 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7551 return gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
7554 weak_alias (__re_compile_pattern
, re_compile_pattern
)
7557 /* Entry points compatible with 4.2 BSD regex library. We don't define
7558 them unless specifically requested. */
7560 #if defined _REGEX_RE_COMP || defined _LIBC
7562 /* BSD has one and only one pattern buffer. */
7563 static struct re_pattern_buffer re_comp_buf
;
7567 /* Make these definitions weak in libc, so POSIX programs can redefine
7568 these names if they don't use our functions, and still use
7569 regcomp/regexec below without link errors. */
7579 if (!re_comp_buf
.buffer
)
7580 return gettext ("No previous regular expression");
7584 if (!re_comp_buf
.buffer
)
7586 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
7587 if (re_comp_buf
.buffer
== NULL
)
7588 return (char *) gettext (re_error_msgid
7589 + re_error_msgid_idx
[(int) REG_ESPACE
]);
7590 re_comp_buf
.allocated
= 200;
7592 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7593 if (re_comp_buf
.fastmap
== NULL
)
7594 return (char *) gettext (re_error_msgid
7595 + re_error_msgid_idx
[(int) REG_ESPACE
]);
7598 /* Since `re_exec' always passes NULL for the `regs' argument, we
7599 don't need to initialize the pattern buffer fields which affect it. */
7601 /* Match anchors at newlines. */
7602 re_comp_buf
.newline_anchor
= 1;
7604 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7609 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7610 return (char *) gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
7621 const int len
= strlen (s
);
7623 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
7626 #endif /* _REGEX_RE_COMP */
7628 /* POSIX.2 functions. Don't define these for Emacs. */
7632 /* regcomp takes a regular expression as a string and compiles it.
7634 PREG is a regex_t *. We do not expect any fields to be initialized,
7635 since POSIX says we shouldn't. Thus, we set
7637 `buffer' to the compiled pattern;
7638 `used' to the length of the compiled pattern;
7639 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7640 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7641 RE_SYNTAX_POSIX_BASIC;
7642 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7643 `fastmap' to an allocated space for the fastmap;
7644 `fastmap_accurate' to zero;
7645 `re_nsub' to the number of subexpressions in PATTERN.
7647 PATTERN is the address of the pattern string.
7649 CFLAGS is a series of bits which affect compilation.
7651 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7652 use POSIX basic syntax.
7654 If REG_NEWLINE is set, then . and [^...] don't match newline.
7655 Also, regexec will try a match beginning after every newline.
7657 If REG_ICASE is set, then we considers upper- and lowercase
7658 versions of letters to be equivalent when matching.
7660 If REG_NOSUB is set, then when PREG is passed to regexec, that
7661 routine will report only success or failure, and nothing about the
7664 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
7665 the return codes and their meanings.) */
7668 regcomp (preg
, pattern
, cflags
)
7670 const char *pattern
;
7675 = (cflags
& REG_EXTENDED
) ?
7676 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
7678 /* regex_compile will allocate the space for the compiled pattern. */
7680 preg
->allocated
= 0;
7683 /* Try to allocate space for the fastmap. */
7684 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7686 if (cflags
& REG_ICASE
)
7691 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
7692 * sizeof (*(RE_TRANSLATE_TYPE
)0));
7693 if (preg
->translate
== NULL
)
7694 return (int) REG_ESPACE
;
7696 /* Map uppercase characters to corresponding lowercase ones. */
7697 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
7698 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
7701 preg
->translate
= NULL
;
7703 /* If REG_NEWLINE is set, newlines are treated differently. */
7704 if (cflags
& REG_NEWLINE
)
7705 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
7706 syntax
&= ~RE_DOT_NEWLINE
;
7707 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
7708 /* It also changes the matching behavior. */
7709 preg
->newline_anchor
= 1;
7712 preg
->newline_anchor
= 0;
7714 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
7716 /* POSIX says a null character in the pattern terminates it, so we
7717 can use strlen here in compiling the pattern. */
7718 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
7720 /* POSIX doesn't distinguish between an unmatched open-group and an
7721 unmatched close-group: both are REG_EPAREN. */
7722 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
7724 if (ret
== REG_NOERROR
&& preg
->fastmap
)
7726 /* Compute the fastmap now, since regexec cannot modify the pattern
7728 if (re_compile_fastmap (preg
) == -2)
7730 /* Some error occurred while computing the fastmap, just forget
7732 free (preg
->fastmap
);
7733 preg
->fastmap
= NULL
;
7740 weak_alias (__regcomp
, regcomp
)
7744 /* regexec searches for a given pattern, specified by PREG, in the
7747 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7748 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
7749 least NMATCH elements, and we set them to the offsets of the
7750 corresponding matched substrings.
7752 EFLAGS specifies `execution flags' which affect matching: if
7753 REG_NOTBOL is set, then ^ does not match at the beginning of the
7754 string; if REG_NOTEOL is set, then $ does not match at the end.
7756 We return 0 if we find a match and REG_NOMATCH if not. */
7759 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
7760 const regex_t
*preg
;
7763 regmatch_t pmatch
[];
7767 struct re_registers regs
;
7768 regex_t private_preg
;
7769 int len
= strlen (string
);
7770 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
7772 private_preg
= *preg
;
7774 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
7775 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
7777 /* The user has told us exactly how many registers to return
7778 information about, via `nmatch'. We have to pass that on to the
7779 matching routines. */
7780 private_preg
.regs_allocated
= REGS_FIXED
;
7784 regs
.num_regs
= nmatch
;
7785 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
7786 if (regs
.start
== NULL
)
7787 return (int) REG_NOMATCH
;
7788 regs
.end
= regs
.start
+ nmatch
;
7791 /* Perform the searching operation. */
7792 ret
= re_search (&private_preg
, string
, len
,
7793 /* start: */ 0, /* range: */ len
,
7794 want_reg_info
? ®s
: (struct re_registers
*) 0);
7796 /* Copy the register information to the POSIX structure. */
7803 for (r
= 0; r
< nmatch
; r
++)
7805 pmatch
[r
].rm_so
= regs
.start
[r
];
7806 pmatch
[r
].rm_eo
= regs
.end
[r
];
7810 /* If we needed the temporary register info, free the space now. */
7814 /* We want zero return to mean success, unlike `re_search'. */
7815 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
7818 weak_alias (__regexec
, regexec
)
7822 /* Returns a message corresponding to an error code, ERRCODE, returned
7823 from either regcomp or regexec. We don't use PREG here. */
7826 regerror (errcode
, preg
, errbuf
, errbuf_size
)
7828 const regex_t
*preg
;
7836 || errcode
>= (int) (sizeof (re_error_msgid_idx
)
7837 / sizeof (re_error_msgid_idx
[0])))
7838 /* Only error codes returned by the rest of the code should be passed
7839 to this routine. If we are given anything else, or if other regex
7840 code generates an invalid error code, then the program has a bug.
7841 Dump core so we can fix it. */
7844 msg
= gettext (re_error_msgid
+ re_error_msgid_idx
[errcode
]);
7846 msg_size
= strlen (msg
) + 1; /* Includes the null. */
7848 if (errbuf_size
!= 0)
7850 if (msg_size
> errbuf_size
)
7852 #if defined HAVE_MEMPCPY || defined _LIBC
7853 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
7855 memcpy (errbuf
, msg
, errbuf_size
- 1);
7856 errbuf
[errbuf_size
- 1] = 0;
7860 memcpy (errbuf
, msg
, msg_size
);
7866 weak_alias (__regerror
, regerror
)
7870 /* Free dynamically allocated space used by PREG. */
7876 if (preg
->buffer
!= NULL
)
7877 free (preg
->buffer
);
7878 preg
->buffer
= NULL
;
7880 preg
->allocated
= 0;
7883 if (preg
->fastmap
!= NULL
)
7884 free (preg
->fastmap
);
7885 preg
->fastmap
= NULL
;
7886 preg
->fastmap_accurate
= 0;
7888 if (preg
->translate
!= NULL
)
7889 free (preg
->translate
);
7890 preg
->translate
= NULL
;
7893 weak_alias (__regfree
, regfree
)
7896 #endif /* not emacs */