2 * UFC-crypt: ultra fast crypt(3) implementation
4 * Copyright (C) 1991-2020 Free Software Foundation, Inc.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; see the file COPYING.LIB. If not,
18 * see <https://www.gnu.org/licenses/>.
20 * @(#)crypt_util.c 2.56 12/20/96
36 #include "crypt-private.h"
37 #include <shlib-compat.h>
39 /* Prototypes for local functions. */
40 #ifndef __GNU_LIBRARY__
41 void _ufc_clearmem (char *start
, int cnt
);
42 void _ufc_copymem (char *from
, char *to
, int cnt
);
45 STATIC
void shuffle_sb (long32
*k
, ufc_long saltbits
);
47 STATIC
void shuffle_sb (long64
*k
, ufc_long saltbits
);
52 * Permutation done once on the 56 bit
53 * key derived from the original 8 byte ASCII key.
55 static const int pc1
[56] = {
56 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
57 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
58 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
59 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
63 * How much to rotate each 28 bit half of the pc1 permutated
64 * 56 bit key before using pc2 to give the i' key
66 static const int rots
[16] = {
67 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
71 * Permutation giving the key
74 static const int pc2
[48] = {
75 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
76 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
77 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
78 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
82 * The E expansion table which selects
83 * bits from the 32 bit intermediate result.
85 static const int esel
[48] = {
86 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
87 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
88 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
89 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
93 * Permutation done on the
94 * result of sbox lookups
96 static const int perm32
[32] = {
97 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
98 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
104 static const int sbox
[8][4][16]= {
105 { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
106 { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
107 { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
108 { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
111 { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
112 { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
113 { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
114 { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
117 { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
118 { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
119 { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
120 { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
123 { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
124 { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
125 { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
126 { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
129 { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
130 { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
131 { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
132 { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
135 { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
136 { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
137 { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
138 { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
141 { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
142 { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
143 { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
144 { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
147 { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
148 { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
149 { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
150 { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
154 #if SHLIB_COMPAT (libcrypt, GLIBC_2_0, GLIBC_2_28)
156 * This is the initial
159 static const int initial_perm
[64] = {
160 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
161 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
162 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
163 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
171 static const int final_perm
[64] = {
172 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
173 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
174 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
175 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
178 #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
179 #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
181 static const ufc_long BITMASK
[24] = {
182 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000,
183 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000,
184 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
185 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008
188 static const unsigned char bytemask
[8] = {
189 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
192 static const ufc_long longmask
[32] = {
193 0x80000000, 0x40000000, 0x20000000, 0x10000000,
194 0x08000000, 0x04000000, 0x02000000, 0x01000000,
195 0x00800000, 0x00400000, 0x00200000, 0x00100000,
196 0x00080000, 0x00040000, 0x00020000, 0x00010000,
197 0x00008000, 0x00004000, 0x00002000, 0x00001000,
198 0x00000800, 0x00000400, 0x00000200, 0x00000100,
199 0x00000080, 0x00000040, 0x00000020, 0x00000010,
200 0x00000008, 0x00000004, 0x00000002, 0x00000001
204 * do_pc1: permform pc1 permutation in the key schedule generation.
206 * The first index is the byte number in the 8 byte ASCII key
207 * - second - - the two 28 bits halfs of the result
208 * - third - selects the 7 bits actually used of each byte
210 * The result is kept with 28 bit per 32 bit with the 4 most significant
213 static ufc_long do_pc1
[8][2][128];
216 * do_pc2: permform pc2 permutation in the key schedule generation.
218 * The first index is the septet number in the two 28 bit intermediate values
219 * - second - - - septet values
221 * Knowledge of the structure of the pc2 permutation is used.
223 * The result is kept with 28 bit per 32 bit with the 4 most significant
226 static ufc_long do_pc2
[8][128];
229 * eperm32tab: do 32 bit permutation and E selection
231 * The first index is the byte number in the 32 bit value to be permuted
232 * - second - is the value of this byte
233 * - third - selects the two 32 bit values
235 * The table is used and generated internally in init_des to speed it up
237 static ufc_long eperm32tab
[4][256][2];
240 * efp: undo an extra e selection and do final
241 * permutation giving the DES result.
243 * Invoked 6 bit a time on two 48 bit values
244 * giving two 32 bit longs.
246 static ufc_long efp
[16][64][2];
248 /* Table with characters for base64 transformation. */
249 static const char b64t
[64] =
250 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
253 * For use by the old, non-reentrant routines
254 * (crypt/encrypt/setkey)
256 struct crypt_data _ufc_foobar
;
258 #ifdef __GNU_LIBRARY__
259 #include <libc-lock.h>
261 __libc_lock_define_initialized (static, _ufc_tables_lock
)
267 _ufc_prbits (ufc_long
*a
, int n
)
269 ufc_long i
, j
, t
, tmp
;
271 for(i
= 0; i
< n
; i
++) {
273 for(j
= 0; j
< 8; j
++) {
275 tmp
|=(a
[t
/24] & BITMASK
[t
% 24])?bytemask
[j
]:0;
277 (void)printf("%02lx ", tmp
);
282 static void __attribute__ ((unused
))
283 _ufc_set_bits (ufc_long v
, ufc_long
*b
)
287 for(i
= 0; i
< 24; i
++) {
288 if(v
& longmask
[8 + i
])
295 #ifndef __GNU_LIBRARY__
297 * Silly rewrites of 'bzero'/'memset'. I do so
298 * because some machines don't have
299 * bzero and some don't have memset.
303 _ufc_clearmem (char *start
, int cnt
)
310 _ufc_copymem (char *from
, char *to
, int cnt
)
316 #define _ufc_clearmem(start, cnt) memset(start, 0, cnt)
317 #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt)
320 /* lookup a 6 bit value in sbox */
322 #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
325 * Initialize unit - may be invoked directly
330 __init_des_r (struct crypt_data
* __restrict __data
)
335 ufc_long mask1
, mask2
;
337 static volatile int small_tables_initialized
= 0;
341 sb
[0] = (long32
*)__data
->sb0
; sb
[1] = (long32
*)__data
->sb1
;
342 sb
[2] = (long32
*)__data
->sb2
; sb
[3] = (long32
*)__data
->sb3
;
346 sb
[0] = (long64
*)__data
->sb0
; sb
[1] = (long64
*)__data
->sb1
;
347 sb
[2] = (long64
*)__data
->sb2
; sb
[3] = (long64
*)__data
->sb3
;
350 if(small_tables_initialized
== 0) {
351 #ifdef __GNU_LIBRARY__
352 __libc_lock_lock (_ufc_tables_lock
);
353 if(small_tables_initialized
)
354 goto small_tables_done
;
358 * Create the do_pc1 table used
359 * to affect pc1 permutation
360 * when generating keys
362 _ufc_clearmem((char*)do_pc1
, (int)sizeof(do_pc1
));
363 for(bit
= 0; bit
< 56; bit
++) {
364 comes_from_bit
= pc1
[bit
] - 1;
365 mask1
= bytemask
[comes_from_bit
% 8 + 1];
366 mask2
= longmask
[bit
% 28 + 4];
367 for(j
= 0; j
< 128; j
++) {
369 do_pc1
[comes_from_bit
/ 8][bit
/ 28][j
] |= mask2
;
374 * Create the do_pc2 table used
375 * to affect pc2 permutation when
378 _ufc_clearmem((char*)do_pc2
, (int)sizeof(do_pc2
));
379 for(bit
= 0; bit
< 48; bit
++) {
380 comes_from_bit
= pc2
[bit
] - 1;
381 mask1
= bytemask
[comes_from_bit
% 7 + 1];
382 mask2
= BITMASK
[bit
% 24];
383 for(j
= 0; j
< 128; j
++) {
385 do_pc2
[comes_from_bit
/ 7][j
] |= mask2
;
390 * Now generate the table used to do combined
391 * 32 bit permutation and e expansion
393 * We use it because we have to permute 16384 32 bit
394 * longs into 48 bit in order to initialize sb.
396 * Looping 48 rounds per permutation becomes
401 _ufc_clearmem((char*)eperm32tab
, (int)sizeof(eperm32tab
));
402 for(bit
= 0; bit
< 48; bit
++) {
403 ufc_long mask1
,comes_from
;
404 comes_from
= perm32
[esel
[bit
]-1]-1;
405 mask1
= bytemask
[comes_from
% 8];
408 eperm32tab
[comes_from
/ 8][j
][bit
/ 24] |= BITMASK
[bit
% 24];
413 * Create an inverse matrix for esel telling
414 * where to plug out bits if undoing it
416 for(bit
=48; bit
--;) {
417 e_inverse
[esel
[bit
] - 1 ] = bit
;
418 e_inverse
[esel
[bit
] - 1 + 32] = bit
+ 48;
422 * create efp: the matrix used to
423 * undo the E expansion and effect final permutation
425 _ufc_clearmem((char*)efp
, (int)sizeof efp
);
426 for(bit
= 0; bit
< 64; bit
++) {
428 ufc_long word_value
, mask1
, mask2
;
429 int comes_from_f_bit
, comes_from_e_bit
;
430 int comes_from_word
, bit_within_word
;
432 /* See where bit i belongs in the two 32 bit long's */
433 o_long
= bit
/ 32; /* 0..1 */
434 o_bit
= bit
% 32; /* 0..31 */
437 * And find a bit in the e permutated value setting this bit.
439 * Note: the e selection may have selected the same bit several
440 * times. By the initialization of e_inverse, we only look
441 * for one specific instance.
443 comes_from_f_bit
= final_perm
[bit
] - 1; /* 0..63 */
444 comes_from_e_bit
= e_inverse
[comes_from_f_bit
]; /* 0..95 */
445 comes_from_word
= comes_from_e_bit
/ 6; /* 0..15 */
446 bit_within_word
= comes_from_e_bit
% 6; /* 0..5 */
448 mask1
= longmask
[bit_within_word
+ 26];
449 mask2
= longmask
[o_bit
];
451 for(word_value
= 64; word_value
--;) {
452 if(word_value
& mask1
)
453 efp
[comes_from_word
][word_value
][o_long
] |= mask2
;
456 atomic_write_barrier ();
457 small_tables_initialized
= 1;
458 #ifdef __GNU_LIBRARY__
460 __libc_lock_unlock(_ufc_tables_lock
);
463 atomic_read_barrier ();
466 * Create the sb tables:
468 * For each 12 bit segment of an 48 bit intermediate
469 * result, the sb table precomputes the two 4 bit
470 * values of the sbox lookups done with the two 6
471 * bit halves, shifts them to their proper place,
472 * sends them through perm32 and finally E expands
473 * them so that they are ready for the next
478 if (__data
->sb0
+ sizeof (__data
->sb0
) == __data
->sb1
479 && __data
->sb1
+ sizeof (__data
->sb1
) == __data
->sb2
480 && __data
->sb2
+ sizeof (__data
->sb2
) == __data
->sb3
)
481 _ufc_clearmem(__data
->sb0
,
482 (int)sizeof(__data
->sb0
)
483 + (int)sizeof(__data
->sb1
)
484 + (int)sizeof(__data
->sb2
)
485 + (int)sizeof(__data
->sb3
));
487 _ufc_clearmem(__data
->sb0
, (int)sizeof(__data
->sb0
));
488 _ufc_clearmem(__data
->sb1
, (int)sizeof(__data
->sb1
));
489 _ufc_clearmem(__data
->sb2
, (int)sizeof(__data
->sb2
));
490 _ufc_clearmem(__data
->sb3
, (int)sizeof(__data
->sb3
));
493 for(sg
= 0; sg
< 4; sg
++) {
497 for(j1
= 0; j1
< 64; j1
++) {
498 s1
= s_lookup(2 * sg
, j1
);
499 for(j2
= 0; j2
< 64; j2
++) {
500 ufc_long to_permute
, inx
;
502 s2
= s_lookup(2 * sg
+ 1, j2
);
503 to_permute
= (((ufc_long
)s1
<< 4) |
504 (ufc_long
)s2
) << (24 - 8 * (ufc_long
)sg
);
507 inx
= ((j1
<< 6) | j2
) << 1;
508 sb
[sg
][inx
] = eperm32tab
[0][(to_permute
>> 24) & 0xff][0];
509 sb
[sg
][inx
+1] = eperm32tab
[0][(to_permute
>> 24) & 0xff][1];
510 sb
[sg
][inx
] |= eperm32tab
[1][(to_permute
>> 16) & 0xff][0];
511 sb
[sg
][inx
+1] |= eperm32tab
[1][(to_permute
>> 16) & 0xff][1];
512 sb
[sg
][inx
] |= eperm32tab
[2][(to_permute
>> 8) & 0xff][0];
513 sb
[sg
][inx
+1] |= eperm32tab
[2][(to_permute
>> 8) & 0xff][1];
514 sb
[sg
][inx
] |= eperm32tab
[3][(to_permute
) & 0xff][0];
515 sb
[sg
][inx
+1] |= eperm32tab
[3][(to_permute
) & 0xff][1];
518 inx
= ((j1
<< 6) | j2
);
520 ((long64
)eperm32tab
[0][(to_permute
>> 24) & 0xff][0] << 32) |
521 (long64
)eperm32tab
[0][(to_permute
>> 24) & 0xff][1];
523 ((long64
)eperm32tab
[1][(to_permute
>> 16) & 0xff][0] << 32) |
524 (long64
)eperm32tab
[1][(to_permute
>> 16) & 0xff][1];
526 ((long64
)eperm32tab
[2][(to_permute
>> 8) & 0xff][0] << 32) |
527 (long64
)eperm32tab
[2][(to_permute
>> 8) & 0xff][1];
529 ((long64
)eperm32tab
[3][(to_permute
) & 0xff][0] << 32) |
530 (long64
)eperm32tab
[3][(to_permute
) & 0xff][1];
536 __data
->current_saltbits
= 0;
537 __data
->current_salt
[0] = 0;
538 __data
->current_salt
[1] = 0;
539 __data
->initialized
++;
545 __init_des_r(&_ufc_foobar
);
549 * Process the elements of the sb table permuting the
550 * bits swapped in the expansion by the current salt.
555 shuffle_sb (long32
*k
, ufc_long saltbits
)
560 x
= (k
[0] ^ k
[1]) & (long32
)saltbits
;
569 shuffle_sb (long64
*k
, ufc_long saltbits
)
574 x
= ((*k
>> 32) ^ *k
) & (long64
)saltbits
;
575 *k
++ ^= (x
<< 32) | x
;
581 * Return false iff C is in the specified alphabet for crypt salt.
585 bad_for_salt (char c
)
601 * Setup the unit for a new salt
602 * Hopefully we'll not see a new salt in each crypt call.
603 * Return false if an unexpected character was found in s[0] or s[1].
607 _ufc_setup_salt_r (const char *s
, struct crypt_data
* __restrict __data
)
609 ufc_long i
, j
, saltbits
;
612 if(__data
->initialized
== 0)
613 __init_des_r(__data
);
616 if(bad_for_salt (s0
))
620 if(bad_for_salt (s1
))
623 if(s0
== __data
->current_salt
[0] && s1
== __data
->current_salt
[1])
626 __data
->current_salt
[0] = s0
;
627 __data
->current_salt
[1] = s1
;
630 * This is the only crypt change to DES:
631 * entries are swapped in the expansion table
632 * according to the bits set in the salt.
635 for(i
= 0; i
< 2; i
++) {
636 long c
=ascii_to_bin(s
[i
]);
637 for(j
= 0; j
< 6; j
++) {
639 saltbits
|= BITMASK
[6 * i
+ j
];
644 * Permute the sb table values
645 * to reflect the changed e
649 #define LONGG long32*
652 #define LONGG long64*
655 shuffle_sb((LONGG
)__data
->sb0
, __data
->current_saltbits
^ saltbits
);
656 shuffle_sb((LONGG
)__data
->sb1
, __data
->current_saltbits
^ saltbits
);
657 shuffle_sb((LONGG
)__data
->sb2
, __data
->current_saltbits
^ saltbits
);
658 shuffle_sb((LONGG
)__data
->sb3
, __data
->current_saltbits
^ saltbits
);
660 __data
->current_saltbits
= saltbits
;
666 _ufc_mk_keytab_r (const char *key
, struct crypt_data
* __restrict __data
)
668 ufc_long v1
, v2
, *k1
;
672 k2
= (long32
*)__data
->keysched
;
676 k2
= (long64
*)__data
->keysched
;
679 v1
= v2
= 0; k1
= &do_pc1
[0][0][0];
681 v1
|= k1
[*key
& 0x7f]; k1
+= 128;
682 v2
|= k1
[*key
++ & 0x7f]; k1
+= 128;
685 for(i
= 0; i
< 16; i
++) {
688 v1
= (v1
<< rots
[i
]) | (v1
>> (28 - rots
[i
]));
689 v
= k1
[(v1
>> 21) & 0x7f]; k1
+= 128;
690 v
|= k1
[(v1
>> 14) & 0x7f]; k1
+= 128;
691 v
|= k1
[(v1
>> 7) & 0x7f]; k1
+= 128;
692 v
|= k1
[(v1
) & 0x7f]; k1
+= 128;
695 *k2
++ = (v
| 0x00008000);
702 v2
= (v2
<< rots
[i
]) | (v2
>> (28 - rots
[i
]));
703 v
|= k1
[(v2
>> 21) & 0x7f]; k1
+= 128;
704 v
|= k1
[(v2
>> 14) & 0x7f]; k1
+= 128;
705 v
|= k1
[(v2
>> 7) & 0x7f]; k1
+= 128;
706 v
|= k1
[(v2
) & 0x7f];
709 *k2
++ = (v
| 0x00008000);
712 *k2
++ = v
| 0x0000800000008000l
;
716 __data
->direction
= 0;
720 * Undo an extra E selection and do final permutations
724 _ufc_dofinalperm_r (ufc_long
*res
, struct crypt_data
* __restrict __data
)
727 ufc_long l1
,l2
,r1
,r2
;
729 l1
= res
[0]; l2
= res
[1];
730 r1
= res
[2]; r2
= res
[3];
732 x
= (l1
^ l2
) & __data
->current_saltbits
; l1
^= x
; l2
^= x
;
733 x
= (r1
^ r2
) & __data
->current_saltbits
; r1
^= x
; r2
^= x
;
735 v1
=v2
=0; l1
>>= 3; l2
>>= 3; r1
>>= 3; r2
>>= 3;
737 v1
|= efp
[15][ r2
& 0x3f][0]; v2
|= efp
[15][ r2
& 0x3f][1];
738 v1
|= efp
[14][(r2
>>= 6) & 0x3f][0]; v2
|= efp
[14][ r2
& 0x3f][1];
739 v1
|= efp
[13][(r2
>>= 10) & 0x3f][0]; v2
|= efp
[13][ r2
& 0x3f][1];
740 v1
|= efp
[12][(r2
>>= 6) & 0x3f][0]; v2
|= efp
[12][ r2
& 0x3f][1];
742 v1
|= efp
[11][ r1
& 0x3f][0]; v2
|= efp
[11][ r1
& 0x3f][1];
743 v1
|= efp
[10][(r1
>>= 6) & 0x3f][0]; v2
|= efp
[10][ r1
& 0x3f][1];
744 v1
|= efp
[ 9][(r1
>>= 10) & 0x3f][0]; v2
|= efp
[ 9][ r1
& 0x3f][1];
745 v1
|= efp
[ 8][(r1
>>= 6) & 0x3f][0]; v2
|= efp
[ 8][ r1
& 0x3f][1];
747 v1
|= efp
[ 7][ l2
& 0x3f][0]; v2
|= efp
[ 7][ l2
& 0x3f][1];
748 v1
|= efp
[ 6][(l2
>>= 6) & 0x3f][0]; v2
|= efp
[ 6][ l2
& 0x3f][1];
749 v1
|= efp
[ 5][(l2
>>= 10) & 0x3f][0]; v2
|= efp
[ 5][ l2
& 0x3f][1];
750 v1
|= efp
[ 4][(l2
>>= 6) & 0x3f][0]; v2
|= efp
[ 4][ l2
& 0x3f][1];
752 v1
|= efp
[ 3][ l1
& 0x3f][0]; v2
|= efp
[ 3][ l1
& 0x3f][1];
753 v1
|= efp
[ 2][(l1
>>= 6) & 0x3f][0]; v2
|= efp
[ 2][ l1
& 0x3f][1];
754 v1
|= efp
[ 1][(l1
>>= 10) & 0x3f][0]; v2
|= efp
[ 1][ l1
& 0x3f][1];
755 v1
|= efp
[ 0][(l1
>>= 6) & 0x3f][0]; v2
|= efp
[ 0][ l1
& 0x3f][1];
757 res
[0] = v1
; res
[1] = v2
;
761 * crypt only: convert from 64 bit to 11 bit ASCII
762 * prefixing with the salt
766 _ufc_output_conversion_r (ufc_long v1
, ufc_long v2
, const char *salt
,
767 struct crypt_data
* __restrict __data
)
771 __data
->crypt_3_buf
[0] = salt
[0];
772 __data
->crypt_3_buf
[1] = salt
[1] ? salt
[1] : salt
[0];
774 for(i
= 0; i
< 5; i
++) {
775 shf
= (26 - 6 * i
); /* to cope with MSC compiler bug */
776 __data
->crypt_3_buf
[i
+ 2] = bin_to_ascii((v1
>> shf
) & 0x3f);
780 v2
= (v2
>> 2) | ((v1
& 0x3) << 30);
782 for(i
= 5; i
< 10; i
++) {
784 __data
->crypt_3_buf
[i
+ 2] = bin_to_ascii((v2
>> shf
) & 0x3f);
787 __data
->crypt_3_buf
[12] = bin_to_ascii(s
);
788 __data
->crypt_3_buf
[13] = 0;
791 #if SHLIB_COMPAT (libcrypt, GLIBC_2_0, GLIBC_2_28)
794 * UNIX encrypt function. Takes a bitvector
795 * represented by one byte per bit and
796 * encrypt/decrypt according to edflag
800 __encrypt_r (char *__block
, int __edflag
,
801 struct crypt_data
* __restrict __data
)
803 ufc_long l1
, l2
, r1
, r2
, res
[4];
807 kt
= (long32
*)__data
->keysched
;
811 kt
= (long64
*)__data
->keysched
;
815 * Undo any salt changes to E expansion
817 _ufc_setup_salt_r("..", __data
);
820 * Reverse key table if
821 * changing operation (encrypt/decrypt)
823 if((__edflag
== 0) != (__data
->direction
== 0)) {
824 for(i
= 0; i
< 8; i
++) {
828 kt
[2 * (15-i
)] = kt
[2 * i
];
831 x
= kt
[2 * (15-i
) + 1];
832 kt
[2 * (15-i
) + 1] = kt
[2 * i
+ 1];
842 __data
->direction
= __edflag
;
846 * Do initial permutation + E expansion
849 for(l1
= 0; i
< 24; i
++) {
850 if(__block
[initial_perm
[esel
[i
]-1]-1])
853 for(l2
= 0; i
< 48; i
++) {
854 if(__block
[initial_perm
[esel
[i
]-1]-1])
859 for(r1
= 0; i
< 24; i
++) {
860 if(__block
[initial_perm
[esel
[i
]-1+32]-1])
863 for(r2
= 0; i
< 48; i
++) {
864 if(__block
[initial_perm
[esel
[i
]-1+32]-1])
869 * Do DES inner loops + final conversion
871 res
[0] = l1
; res
[1] = l2
;
872 res
[2] = r1
; res
[3] = r2
;
873 _ufc_doit_r((ufc_long
)1, __data
, &res
[0]);
876 * Do final permutations
878 _ufc_dofinalperm_r(res
, __data
);
881 * And convert to bit array
883 l1
= res
[0]; r1
= res
[1];
884 for(i
= 0; i
< 32; i
++) {
885 *__block
++ = (l1
& longmask
[i
]) != 0;
887 for(i
= 0; i
< 32; i
++) {
888 *__block
++ = (r1
& longmask
[i
]) != 0;
891 weak_alias (__encrypt_r
, encrypt_r
)
892 compat_symbol (libcrypt
, encrypt_r
, encrypt_r
, GLIBC_2_0
);
895 encrypt (char *__block
, int __edflag
)
897 __encrypt_r(__block
, __edflag
, &_ufc_foobar
);
899 compat_symbol (libcrypt
, encrypt
, encrypt
, GLIBC_2_0
);
903 * UNIX setkey function. Take a 64 bit DES
904 * key and setup the machinery.
908 __setkey_r (const char *__key
, struct crypt_data
* __restrict __data
)
912 unsigned char ktab
[8];
914 _ufc_setup_salt_r("..", __data
); /* be sure we're initialized */
916 for(i
= 0; i
< 8; i
++) {
917 for(j
= 0, c
= 0; j
< 8; j
++)
918 c
= c
<< 1 | *__key
++;
921 _ufc_mk_keytab_r((char *) ktab
, __data
);
923 weak_alias (__setkey_r
, setkey_r
)
924 compat_symbol (libcrypt
, setkey_r
, setkey_r
, GLIBC_2_0
);
927 setkey (const char *__key
)
929 __setkey_r(__key
, &_ufc_foobar
);
931 compat_symbol (libcrypt
, setkey
, setkey
, GLIBC_2_0
);
932 #endif /* SHLIB_COMPAT (libcrypt, GLIBC_2_0, GLIBC_2_28) */
935 __b64_from_24bit (char **cp
, int *buflen
,
936 unsigned int b2
, unsigned int b1
, unsigned int b0
,
939 unsigned int w
= (b2
<< 16) | (b1
<< 8) | b0
;
940 while (n
-- > 0 && (*buflen
) > 0)
942 *(*cp
)++ = b64t
[w
& 0x3f];