1 /* Internal function for converting integers to ASCII.
2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Torbjorn Granlund <tege@matematik.su.se>
5 and Ulrich Drepper <drepper@gnu.org>.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
21 #include <gmp-mparam.h>
24 #include <stdlib/gmp-impl.h>
25 #include <stdlib/longlong.h>
30 /* Canonize environment. For some architectures not all values might
31 be defined in the GMP header files. */
39 /* Control memory layout. */
42 # define PACK __attribute__ ((packed))
48 /* Declare local types. */
51 #if (UDIV_TIME > 2 * UMUL_TIME)
52 mp_limb_t base_multiplier
;
56 #if BITS_PER_MP_LIMB == 32
59 char normalization_steps
;
62 #if UDIV_TIME > 2 * UMUL_TIME
63 mp_limb_t base_ninv PACK
;
69 /* To reduce the memory needed we include some fields of the tables
70 only conditionally. */
71 #if UDIV_TIME > 2 * UMUL_TIME
79 /* Factor table for the different bases. */
80 extern const struct base_table_t _itoa_base_table
[] attribute_hidden
;
82 /* Lower-case digits. */
83 extern const wchar_t _itowa_lower_digits
[] attribute_hidden
;
84 /* Upper-case digits. */
85 extern const wchar_t _itowa_upper_digits
[] attribute_hidden
;
90 _itowa (unsigned long long int value
, wchar_t *buflim
, unsigned int base
,
93 const wchar_t *digits
= (upper_case
94 ? _itowa_upper_digits
: _itowa_lower_digits
);
96 const struct base_table_t
*brec
= &_itoa_base_table
[base
- 2];
100 # define RUN_2N(BITS) \
103 /* `unsigned long long int' always has 64 bits. */ \
104 mp_limb_t work_hi = value >> (64 - BITS_PER_MP_LIMB); \
106 if (BITS_PER_MP_LIMB == 32) \
113 work_lo = value & 0xfffffffful; \
114 for (cnt = BITS_PER_MP_LIMB / BITS; cnt > 0; --cnt) \
116 *--bp = digits[work_lo & ((1ul << BITS) - 1)]; \
119 if (BITS_PER_MP_LIMB % BITS != 0) \
123 & ((1 << (BITS - BITS_PER_MP_LIMB%BITS)) \
125 << BITS_PER_MP_LIMB % BITS); \
126 work_hi >>= BITS - BITS_PER_MP_LIMB % BITS; \
130 *--bp = digits[work_lo]; \
134 work_hi = value & 0xfffffffful; \
138 *--bp = digits[work_hi & ((1 << BITS) - 1)]; \
141 while (work_hi != 0); \
154 # if BITS_PER_MP_LIMB == 64
155 mp_limb_t base_multiplier
= brec
->base_multiplier
;
159 mp_limb_t quo
, rem
, x
;
160 mp_limb_t dummy
__attribute__ ((unused
));
162 umul_ppmm (x
, dummy
, value
, base_multiplier
);
163 quo
= (x
+ ((value
- x
) >> 1)) >> (brec
->post_shift
- 1);
164 rem
= value
- quo
* base
;
171 mp_limb_t quo
, rem
, x
;
172 mp_limb_t dummy
__attribute__ ((unused
));
174 umul_ppmm (x
, dummy
, value
, base_multiplier
);
175 quo
= x
>> brec
->post_shift
;
176 rem
= value
- quo
* base
;
181 # if BITS_PER_MP_LIMB == 32
185 /* First convert x0 to 1-3 words in base s->big.base.
186 Optimize for frequent cases of 32 bit numbers. */
187 if ((mp_limb_t
) (value
>> 32) >= 1)
189 # if UDIV_TIME > 2 * UMUL_TIME || UDIV_NEEDS_NORMALIZATION
190 int big_normalization_steps
= brec
->big
.normalization_steps
;
191 mp_limb_t big_base_norm
192 = brec
->big
.base
<< big_normalization_steps
;
194 if ((mp_limb_t
) (value
>> 32) >= brec
->big
.base
)
196 mp_limb_t x1hi
, x1lo
, r
;
197 /* If you want to optimize this, take advantage of
198 that the quotient in the first udiv_qrnnd will
199 always be very small. It might be faster just to
200 subtract in a tight loop. */
202 # if UDIV_TIME > 2 * UMUL_TIME
205 if (big_normalization_steps
== 0)
208 xh
= (mp_limb_t
) (value
>> (64 - big_normalization_steps
));
209 xl
= (mp_limb_t
) (value
>> (32 - big_normalization_steps
));
210 udiv_qrnnd_preinv (x1hi
, r
, xh
, xl
, big_base_norm
,
211 brec
->big
.base_ninv
);
213 xl
= ((mp_limb_t
) value
) << big_normalization_steps
;
214 udiv_qrnnd_preinv (x1lo
, x
, r
, xl
, big_base_norm
,
215 brec
->big
.base_ninv
);
216 t
[2] = x
>> big_normalization_steps
;
218 if (big_normalization_steps
== 0)
221 xh
= ((x1hi
<< big_normalization_steps
)
222 | (x1lo
>> (32 - big_normalization_steps
)));
223 xl
= x1lo
<< big_normalization_steps
;
224 udiv_qrnnd_preinv (t
[0], x
, xh
, xl
, big_base_norm
,
225 brec
->big
.base_ninv
);
226 t
[1] = x
>> big_normalization_steps
;
227 # elif UDIV_NEEDS_NORMALIZATION
230 if (big_normalization_steps
== 0)
233 xh
= (mp_limb_t
) (value
>> 64 - big_normalization_steps
);
234 xl
= (mp_limb_t
) (value
>> 32 - big_normalization_steps
);
235 udiv_qrnnd (x1hi
, r
, xh
, xl
, big_base_norm
);
237 xl
= ((mp_limb_t
) value
) << big_normalization_steps
;
238 udiv_qrnnd (x1lo
, x
, r
, xl
, big_base_norm
);
239 t
[2] = x
>> big_normalization_steps
;
241 if (big_normalization_steps
== 0)
244 xh
= ((x1hi
<< big_normalization_steps
)
245 | (x1lo
>> 32 - big_normalization_steps
));
246 xl
= x1lo
<< big_normalization_steps
;
247 udiv_qrnnd (t
[0], x
, xh
, xl
, big_base_norm
);
248 t
[1] = x
>> big_normalization_steps
;
250 udiv_qrnnd (x1hi
, r
, 0, (mp_limb_t
) (value
>> 32),
252 udiv_qrnnd (x1lo
, t
[2], r
, (mp_limb_t
) value
, brec
->big
.base
);
253 udiv_qrnnd (t
[0], t
[1], x1hi
, x1lo
, brec
->big
.base
);
259 # if UDIV_TIME > 2 * UMUL_TIME
262 value
<<= brec
->big
.normalization_steps
;
263 udiv_qrnnd_preinv (t
[0], x
, (mp_limb_t
) (value
>> 32),
264 (mp_limb_t
) value
, big_base_norm
,
265 brec
->big
.base_ninv
);
266 t
[1] = x
>> brec
->big
.normalization_steps
;
267 # elif UDIV_NEEDS_NORMALIZATION
270 value
<<= big_normalization_steps
;
271 udiv_qrnnd (t
[0], x
, (mp_limb_t
) (value
>> 32),
272 (mp_limb_t
) value
, big_base_norm
);
273 t
[1] = x
>> big_normalization_steps
;
275 udiv_qrnnd (t
[0], t
[1], (mp_limb_t
) (value
>> 32),
276 (mp_limb_t
) value
, brec
->big
.base
);
287 /* Convert the 1-3 words in t[], word by word, to ASCII. */
290 mp_limb_t ti
= t
[--n
];
291 int ndig_for_this_limb
= 0;
293 # if UDIV_TIME > 2 * UMUL_TIME
294 mp_limb_t base_multiplier
= brec
->base_multiplier
;
298 mp_limb_t quo
, rem
, x
;
299 mp_limb_t dummy
__attribute__ ((unused
));
301 umul_ppmm (x
, dummy
, ti
, base_multiplier
);
302 quo
= (x
+ ((ti
- x
) >> 1)) >> (brec
->post_shift
- 1);
303 rem
= ti
- quo
* base
;
306 ++ndig_for_this_limb
;
311 mp_limb_t quo
, rem
, x
;
312 mp_limb_t dummy
__attribute__ ((unused
));
314 umul_ppmm (x
, dummy
, ti
, base_multiplier
);
315 quo
= x
>> brec
->post_shift
;
316 rem
= ti
- quo
* base
;
319 ++ndig_for_this_limb
;
330 ++ndig_for_this_limb
;
333 /* If this wasn't the most significant word, pad with zeros. */
335 while (ndig_for_this_limb
< brec
->big
.ndigits
)
338 ++ndig_for_this_limb
;