Update scripts/config.* files from upstream GNU config version
[glibc.git] / malloc / malloc.c
blob12908b8f97ccf91d89175ec6ea00df33f3539346
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2022 Free Software Foundation, Inc.
3 Copyright The GNU Toolchain Authors.
4 This file is part of the GNU C Library.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public License as
8 published by the Free Software Foundation; either version 2.1 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If
18 not, see <https://www.gnu.org/licenses/>. */
21 This is a version (aka ptmalloc2) of malloc/free/realloc written by
22 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
24 There have been substantial changes made after the integration into
25 glibc in all parts of the code. Do not look for much commonality
26 with the ptmalloc2 version.
28 * Version ptmalloc2-20011215
29 based on:
30 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
32 * Quickstart
34 In order to compile this implementation, a Makefile is provided with
35 the ptmalloc2 distribution, which has pre-defined targets for some
36 popular systems (e.g. "make posix" for Posix threads). All that is
37 typically required with regard to compiler flags is the selection of
38 the thread package via defining one out of USE_PTHREADS, USE_THR or
39 USE_SPROC. Check the thread-m.h file for what effects this has.
40 Many/most systems will additionally require USE_TSD_DATA_HACK to be
41 defined, so this is the default for "make posix".
43 * Why use this malloc?
45 This is not the fastest, most space-conserving, most portable, or
46 most tunable malloc ever written. However it is among the fastest
47 while also being among the most space-conserving, portable and tunable.
48 Consistent balance across these factors results in a good general-purpose
49 allocator for malloc-intensive programs.
51 The main properties of the algorithms are:
52 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
53 with ties normally decided via FIFO (i.e. least recently used).
54 * For small (<= 64 bytes by default) requests, it is a caching
55 allocator, that maintains pools of quickly recycled chunks.
56 * In between, and for combinations of large and small requests, it does
57 the best it can trying to meet both goals at once.
58 * For very large requests (>= 128KB by default), it relies on system
59 memory mapping facilities, if supported.
61 For a longer but slightly out of date high-level description, see
62 http://gee.cs.oswego.edu/dl/html/malloc.html
64 You may already by default be using a C library containing a malloc
65 that is based on some version of this malloc (for example in
66 linux). You might still want to use the one in this file in order to
67 customize settings or to avoid overheads associated with library
68 versions.
70 * Contents, described in more detail in "description of public routines" below.
72 Standard (ANSI/SVID/...) functions:
73 malloc(size_t n);
74 calloc(size_t n_elements, size_t element_size);
75 free(void* p);
76 realloc(void* p, size_t n);
77 memalign(size_t alignment, size_t n);
78 valloc(size_t n);
79 mallinfo()
80 mallopt(int parameter_number, int parameter_value)
82 Additional functions:
83 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
84 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
85 pvalloc(size_t n);
86 malloc_trim(size_t pad);
87 malloc_usable_size(void* p);
88 malloc_stats();
90 * Vital statistics:
92 Supported pointer representation: 4 or 8 bytes
93 Supported size_t representation: 4 or 8 bytes
94 Note that size_t is allowed to be 4 bytes even if pointers are 8.
95 You can adjust this by defining INTERNAL_SIZE_T
97 Alignment: 2 * sizeof(size_t) (default)
98 (i.e., 8 byte alignment with 4byte size_t). This suffices for
99 nearly all current machines and C compilers. However, you can
100 define MALLOC_ALIGNMENT to be wider than this if necessary.
102 Minimum overhead per allocated chunk: 4 or 8 bytes
103 Each malloced chunk has a hidden word of overhead holding size
104 and status information.
106 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
107 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
109 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
110 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
111 needed; 4 (8) for a trailing size field and 8 (16) bytes for
112 free list pointers. Thus, the minimum allocatable size is
113 16/24/32 bytes.
115 Even a request for zero bytes (i.e., malloc(0)) returns a
116 pointer to something of the minimum allocatable size.
118 The maximum overhead wastage (i.e., number of extra bytes
119 allocated than were requested in malloc) is less than or equal
120 to the minimum size, except for requests >= mmap_threshold that
121 are serviced via mmap(), where the worst case wastage is 2 *
122 sizeof(size_t) bytes plus the remainder from a system page (the
123 minimal mmap unit); typically 4096 or 8192 bytes.
125 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
126 8-byte size_t: 2^64 minus about two pages
128 It is assumed that (possibly signed) size_t values suffice to
129 represent chunk sizes. `Possibly signed' is due to the fact
130 that `size_t' may be defined on a system as either a signed or
131 an unsigned type. The ISO C standard says that it must be
132 unsigned, but a few systems are known not to adhere to this.
133 Additionally, even when size_t is unsigned, sbrk (which is by
134 default used to obtain memory from system) accepts signed
135 arguments, and may not be able to handle size_t-wide arguments
136 with negative sign bit. Generally, values that would
137 appear as negative after accounting for overhead and alignment
138 are supported only via mmap(), which does not have this
139 limitation.
141 Requests for sizes outside the allowed range will perform an optional
142 failure action and then return null. (Requests may also
143 also fail because a system is out of memory.)
145 Thread-safety: thread-safe
147 Compliance: I believe it is compliant with the 1997 Single Unix Specification
148 Also SVID/XPG, ANSI C, and probably others as well.
150 * Synopsis of compile-time options:
152 People have reported using previous versions of this malloc on all
153 versions of Unix, sometimes by tweaking some of the defines
154 below. It has been tested most extensively on Solaris and Linux.
155 People also report using it in stand-alone embedded systems.
157 The implementation is in straight, hand-tuned ANSI C. It is not
158 at all modular. (Sorry!) It uses a lot of macros. To be at all
159 usable, this code should be compiled using an optimizing compiler
160 (for example gcc -O3) that can simplify expressions and control
161 paths. (FAQ: some macros import variables as arguments rather than
162 declare locals because people reported that some debuggers
163 otherwise get confused.)
165 OPTION DEFAULT VALUE
167 Compilation Environment options:
169 HAVE_MREMAP 0
171 Changing default word sizes:
173 INTERNAL_SIZE_T size_t
175 Configuration and functionality options:
177 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
178 USE_MALLOC_LOCK NOT defined
179 MALLOC_DEBUG NOT defined
180 REALLOC_ZERO_BYTES_FREES 1
181 TRIM_FASTBINS 0
183 Options for customizing MORECORE:
185 MORECORE sbrk
186 MORECORE_FAILURE -1
187 MORECORE_CONTIGUOUS 1
188 MORECORE_CANNOT_TRIM NOT defined
189 MORECORE_CLEARS 1
190 MMAP_AS_MORECORE_SIZE (1024 * 1024)
192 Tuning options that are also dynamically changeable via mallopt:
194 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
195 DEFAULT_TRIM_THRESHOLD 128 * 1024
196 DEFAULT_TOP_PAD 0
197 DEFAULT_MMAP_THRESHOLD 128 * 1024
198 DEFAULT_MMAP_MAX 65536
200 There are several other #defined constants and macros that you
201 probably don't want to touch unless you are extending or adapting malloc. */
204 void* is the pointer type that malloc should say it returns
207 #ifndef void
208 #define void void
209 #endif /*void*/
211 #include <stddef.h> /* for size_t */
212 #include <stdlib.h> /* for getenv(), abort() */
213 #include <unistd.h> /* for __libc_enable_secure */
215 #include <atomic.h>
216 #include <_itoa.h>
217 #include <bits/wordsize.h>
218 #include <sys/sysinfo.h>
220 #include <ldsodefs.h>
222 #include <unistd.h>
223 #include <stdio.h> /* needed for malloc_stats */
224 #include <errno.h>
225 #include <assert.h>
227 #include <shlib-compat.h>
229 /* For uintptr_t. */
230 #include <stdint.h>
232 /* For va_arg, va_start, va_end. */
233 #include <stdarg.h>
235 /* For MIN, MAX, powerof2. */
236 #include <sys/param.h>
238 /* For ALIGN_UP et. al. */
239 #include <libc-pointer-arith.h>
241 /* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */
242 #include <libc-diag.h>
244 /* For memory tagging. */
245 #include <libc-mtag.h>
247 #include <malloc/malloc-internal.h>
249 /* For SINGLE_THREAD_P. */
250 #include <sysdep-cancel.h>
252 #include <libc-internal.h>
254 /* For tcache double-free check. */
255 #include <random-bits.h>
256 #include <sys/random.h>
259 Debugging:
261 Because freed chunks may be overwritten with bookkeeping fields, this
262 malloc will often die when freed memory is overwritten by user
263 programs. This can be very effective (albeit in an annoying way)
264 in helping track down dangling pointers.
266 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
267 enabled that will catch more memory errors. You probably won't be
268 able to make much sense of the actual assertion errors, but they
269 should help you locate incorrectly overwritten memory. The checking
270 is fairly extensive, and will slow down execution
271 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
272 will attempt to check every non-mmapped allocated and free chunk in
273 the course of computing the summmaries. (By nature, mmapped regions
274 cannot be checked very much automatically.)
276 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
277 this code. The assertions in the check routines spell out in more
278 detail the assumptions and invariants underlying the algorithms.
280 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
281 checking that all accesses to malloced memory stay within their
282 bounds. However, there are several add-ons and adaptations of this
283 or other mallocs available that do this.
286 #ifndef MALLOC_DEBUG
287 #define MALLOC_DEBUG 0
288 #endif
290 #if IS_IN (libc)
291 #ifndef NDEBUG
292 # define __assert_fail(assertion, file, line, function) \
293 __malloc_assert(assertion, file, line, function)
295 extern const char *__progname;
297 static void
298 __malloc_assert (const char *assertion, const char *file, unsigned int line,
299 const char *function)
301 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
302 __progname, __progname[0] ? ": " : "",
303 file, line,
304 function ? function : "", function ? ": " : "",
305 assertion);
306 fflush (stderr);
307 abort ();
309 #endif
310 #endif
312 #if USE_TCACHE
313 /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */
314 # define TCACHE_MAX_BINS 64
315 # define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1)
317 /* Only used to pre-fill the tunables. */
318 # define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ)
320 /* When "x" is from chunksize(). */
321 # define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT)
322 /* When "x" is a user-provided size. */
323 # define usize2tidx(x) csize2tidx (request2size (x))
325 /* With rounding and alignment, the bins are...
326 idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit)
327 idx 1 bytes 25..40 or 13..20
328 idx 2 bytes 41..56 or 21..28
329 etc. */
331 /* This is another arbitrary limit, which tunables can change. Each
332 tcache bin will hold at most this number of chunks. */
333 # define TCACHE_FILL_COUNT 7
335 /* Maximum chunks in tcache bins for tunables. This value must fit the range
336 of tcache->counts[] entries, else they may overflow. */
337 # define MAX_TCACHE_COUNT UINT16_MAX
338 #endif
340 /* Safe-Linking:
341 Use randomness from ASLR (mmap_base) to protect single-linked lists
342 of Fast-Bins and TCache. That is, mask the "next" pointers of the
343 lists' chunks, and also perform allocation alignment checks on them.
344 This mechanism reduces the risk of pointer hijacking, as was done with
345 Safe-Unlinking in the double-linked lists of Small-Bins.
346 It assumes a minimum page size of 4096 bytes (12 bits). Systems with
347 larger pages provide less entropy, although the pointer mangling
348 still works. */
349 #define PROTECT_PTR(pos, ptr) \
350 ((__typeof (ptr)) ((((size_t) pos) >> 12) ^ ((size_t) ptr)))
351 #define REVEAL_PTR(ptr) PROTECT_PTR (&ptr, ptr)
354 The REALLOC_ZERO_BYTES_FREES macro controls the behavior of realloc (p, 0)
355 when p is nonnull. If the macro is nonzero, the realloc call returns NULL;
356 otherwise, the call returns what malloc (0) would. In either case,
357 p is freed. Glibc uses a nonzero REALLOC_ZERO_BYTES_FREES, which
358 implements common historical practice.
360 ISO C17 says the realloc call has implementation-defined behavior,
361 and it might not even free p.
364 #ifndef REALLOC_ZERO_BYTES_FREES
365 #define REALLOC_ZERO_BYTES_FREES 1
366 #endif
369 TRIM_FASTBINS controls whether free() of a very small chunk can
370 immediately lead to trimming. Setting to true (1) can reduce memory
371 footprint, but will almost always slow down programs that use a lot
372 of small chunks.
374 Define this only if you are willing to give up some speed to more
375 aggressively reduce system-level memory footprint when releasing
376 memory in programs that use many small chunks. You can get
377 essentially the same effect by setting MXFAST to 0, but this can
378 lead to even greater slowdowns in programs using many small chunks.
379 TRIM_FASTBINS is an in-between compile-time option, that disables
380 only those chunks bordering topmost memory from being placed in
381 fastbins.
384 #ifndef TRIM_FASTBINS
385 #define TRIM_FASTBINS 0
386 #endif
388 /* Definition for getting more memory from the OS. */
389 #include "morecore.c"
391 #define MORECORE (*__glibc_morecore)
392 #define MORECORE_FAILURE 0
394 /* Memory tagging. */
396 /* Some systems support the concept of tagging (sometimes known as
397 coloring) memory locations on a fine grained basis. Each memory
398 location is given a color (normally allocated randomly) and
399 pointers are also colored. When the pointer is dereferenced, the
400 pointer's color is checked against the memory's color and if they
401 differ the access is faulted (sometimes lazily).
403 We use this in glibc by maintaining a single color for the malloc
404 data structures that are interleaved with the user data and then
405 assigning separate colors for each block allocation handed out. In
406 this way simple buffer overruns will be rapidly detected. When
407 memory is freed, the memory is recolored back to the glibc default
408 so that simple use-after-free errors can also be detected.
410 If memory is reallocated the buffer is recolored even if the
411 address remains the same. This has a performance impact, but
412 guarantees that the old pointer cannot mistakenly be reused (code
413 that compares old against new will see a mismatch and will then
414 need to behave as though realloc moved the data to a new location).
416 Internal API for memory tagging support.
418 The aim is to keep the code for memory tagging support as close to
419 the normal APIs in glibc as possible, so that if tagging is not
420 enabled in the library, or is disabled at runtime then standard
421 operations can continue to be used. Support macros are used to do
422 this:
424 void *tag_new_zero_region (void *ptr, size_t size)
426 Allocates a new tag, colors the memory with that tag, zeros the
427 memory and returns a pointer that is correctly colored for that
428 location. The non-tagging version will simply call memset with 0.
430 void *tag_region (void *ptr, size_t size)
432 Color the region of memory pointed to by PTR and size SIZE with
433 the color of PTR. Returns the original pointer.
435 void *tag_new_usable (void *ptr)
437 Allocate a new random color and use it to color the user region of
438 a chunk; this may include data from the subsequent chunk's header
439 if tagging is sufficiently fine grained. Returns PTR suitably
440 recolored for accessing the memory there.
442 void *tag_at (void *ptr)
444 Read the current color of the memory at the address pointed to by
445 PTR (ignoring it's current color) and return PTR recolored to that
446 color. PTR must be valid address in all other respects. When
447 tagging is not enabled, it simply returns the original pointer.
450 #ifdef USE_MTAG
451 static bool mtag_enabled = false;
452 static int mtag_mmap_flags = 0;
453 #else
454 # define mtag_enabled false
455 # define mtag_mmap_flags 0
456 #endif
458 static __always_inline void *
459 tag_region (void *ptr, size_t size)
461 if (__glibc_unlikely (mtag_enabled))
462 return __libc_mtag_tag_region (ptr, size);
463 return ptr;
466 static __always_inline void *
467 tag_new_zero_region (void *ptr, size_t size)
469 if (__glibc_unlikely (mtag_enabled))
470 return __libc_mtag_tag_zero_region (__libc_mtag_new_tag (ptr), size);
471 return memset (ptr, 0, size);
474 /* Defined later. */
475 static void *
476 tag_new_usable (void *ptr);
478 static __always_inline void *
479 tag_at (void *ptr)
481 if (__glibc_unlikely (mtag_enabled))
482 return __libc_mtag_address_get_tag (ptr);
483 return ptr;
486 #include <string.h>
489 MORECORE-related declarations. By default, rely on sbrk
494 MORECORE is the name of the routine to call to obtain more memory
495 from the system. See below for general guidance on writing
496 alternative MORECORE functions, as well as a version for WIN32 and a
497 sample version for pre-OSX macos.
500 #ifndef MORECORE
501 #define MORECORE sbrk
502 #endif
505 MORECORE_FAILURE is the value returned upon failure of MORECORE
506 as well as mmap. Since it cannot be an otherwise valid memory address,
507 and must reflect values of standard sys calls, you probably ought not
508 try to redefine it.
511 #ifndef MORECORE_FAILURE
512 #define MORECORE_FAILURE (-1)
513 #endif
516 If MORECORE_CONTIGUOUS is true, take advantage of fact that
517 consecutive calls to MORECORE with positive arguments always return
518 contiguous increasing addresses. This is true of unix sbrk. Even
519 if not defined, when regions happen to be contiguous, malloc will
520 permit allocations spanning regions obtained from different
521 calls. But defining this when applicable enables some stronger
522 consistency checks and space efficiencies.
525 #ifndef MORECORE_CONTIGUOUS
526 #define MORECORE_CONTIGUOUS 1
527 #endif
530 Define MORECORE_CANNOT_TRIM if your version of MORECORE
531 cannot release space back to the system when given negative
532 arguments. This is generally necessary only if you are using
533 a hand-crafted MORECORE function that cannot handle negative arguments.
536 /* #define MORECORE_CANNOT_TRIM */
538 /* MORECORE_CLEARS (default 1)
539 The degree to which the routine mapped to MORECORE zeroes out
540 memory: never (0), only for newly allocated space (1) or always
541 (2). The distinction between (1) and (2) is necessary because on
542 some systems, if the application first decrements and then
543 increments the break value, the contents of the reallocated space
544 are unspecified.
547 #ifndef MORECORE_CLEARS
548 # define MORECORE_CLEARS 1
549 #endif
553 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
554 sbrk fails, and mmap is used as a backup. The value must be a
555 multiple of page size. This backup strategy generally applies only
556 when systems have "holes" in address space, so sbrk cannot perform
557 contiguous expansion, but there is still space available on system.
558 On systems for which this is known to be useful (i.e. most linux
559 kernels), this occurs only when programs allocate huge amounts of
560 memory. Between this, and the fact that mmap regions tend to be
561 limited, the size should be large, to avoid too many mmap calls and
562 thus avoid running out of kernel resources. */
564 #ifndef MMAP_AS_MORECORE_SIZE
565 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
566 #endif
569 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
570 large blocks.
573 #ifndef HAVE_MREMAP
574 #define HAVE_MREMAP 0
575 #endif
578 This version of malloc supports the standard SVID/XPG mallinfo
579 routine that returns a struct containing usage properties and
580 statistics. It should work on any SVID/XPG compliant system that has
581 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
582 install such a thing yourself, cut out the preliminary declarations
583 as described above and below and save them in a malloc.h file. But
584 there's no compelling reason to bother to do this.)
586 The main declaration needed is the mallinfo struct that is returned
587 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
588 bunch of fields that are not even meaningful in this version of
589 malloc. These fields are are instead filled by mallinfo() with
590 other numbers that might be of interest.
594 /* ---------- description of public routines ------------ */
596 #if IS_IN (libc)
598 malloc(size_t n)
599 Returns a pointer to a newly allocated chunk of at least n bytes, or null
600 if no space is available. Additionally, on failure, errno is
601 set to ENOMEM on ANSI C systems.
603 If n is zero, malloc returns a minimum-sized chunk. (The minimum
604 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
605 systems.) On most systems, size_t is an unsigned type, so calls
606 with negative arguments are interpreted as requests for huge amounts
607 of space, which will often fail. The maximum supported value of n
608 differs across systems, but is in all cases less than the maximum
609 representable value of a size_t.
611 void* __libc_malloc(size_t);
612 libc_hidden_proto (__libc_malloc)
615 free(void* p)
616 Releases the chunk of memory pointed to by p, that had been previously
617 allocated using malloc or a related routine such as realloc.
618 It has no effect if p is null. It can have arbitrary (i.e., bad!)
619 effects if p has already been freed.
621 Unless disabled (using mallopt), freeing very large spaces will
622 when possible, automatically trigger operations that give
623 back unused memory to the system, thus reducing program footprint.
625 void __libc_free(void*);
626 libc_hidden_proto (__libc_free)
629 calloc(size_t n_elements, size_t element_size);
630 Returns a pointer to n_elements * element_size bytes, with all locations
631 set to zero.
633 void* __libc_calloc(size_t, size_t);
636 realloc(void* p, size_t n)
637 Returns a pointer to a chunk of size n that contains the same data
638 as does chunk p up to the minimum of (n, p's size) bytes, or null
639 if no space is available.
641 The returned pointer may or may not be the same as p. The algorithm
642 prefers extending p when possible, otherwise it employs the
643 equivalent of a malloc-copy-free sequence.
645 If p is null, realloc is equivalent to malloc.
647 If space is not available, realloc returns null, errno is set (if on
648 ANSI) and p is NOT freed.
650 if n is for fewer bytes than already held by p, the newly unused
651 space is lopped off and freed if possible. Unless the #define
652 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
653 zero (re)allocates a minimum-sized chunk.
655 Large chunks that were internally obtained via mmap will always be
656 grown using malloc-copy-free sequences unless the system supports
657 MREMAP (currently only linux).
659 The old unix realloc convention of allowing the last-free'd chunk
660 to be used as an argument to realloc is not supported.
662 void* __libc_realloc(void*, size_t);
663 libc_hidden_proto (__libc_realloc)
666 memalign(size_t alignment, size_t n);
667 Returns a pointer to a newly allocated chunk of n bytes, aligned
668 in accord with the alignment argument.
670 The alignment argument should be a power of two. If the argument is
671 not a power of two, the nearest greater power is used.
672 8-byte alignment is guaranteed by normal malloc calls, so don't
673 bother calling memalign with an argument of 8 or less.
675 Overreliance on memalign is a sure way to fragment space.
677 void* __libc_memalign(size_t, size_t);
678 libc_hidden_proto (__libc_memalign)
681 valloc(size_t n);
682 Equivalent to memalign(pagesize, n), where pagesize is the page
683 size of the system. If the pagesize is unknown, 4096 is used.
685 void* __libc_valloc(size_t);
690 mallinfo()
691 Returns (by copy) a struct containing various summary statistics:
693 arena: current total non-mmapped bytes allocated from system
694 ordblks: the number of free chunks
695 smblks: the number of fastbin blocks (i.e., small chunks that
696 have been freed but not use resused or consolidated)
697 hblks: current number of mmapped regions
698 hblkhd: total bytes held in mmapped regions
699 usmblks: always 0
700 fsmblks: total bytes held in fastbin blocks
701 uordblks: current total allocated space (normal or mmapped)
702 fordblks: total free space
703 keepcost: the maximum number of bytes that could ideally be released
704 back to system via malloc_trim. ("ideally" means that
705 it ignores page restrictions etc.)
707 Because these fields are ints, but internal bookkeeping may
708 be kept as longs, the reported values may wrap around zero and
709 thus be inaccurate.
711 struct mallinfo2 __libc_mallinfo2(void);
712 libc_hidden_proto (__libc_mallinfo2)
714 struct mallinfo __libc_mallinfo(void);
718 pvalloc(size_t n);
719 Equivalent to valloc(minimum-page-that-holds(n)), that is,
720 round up n to nearest pagesize.
722 void* __libc_pvalloc(size_t);
725 malloc_trim(size_t pad);
727 If possible, gives memory back to the system (via negative
728 arguments to sbrk) if there is unused memory at the `high' end of
729 the malloc pool. You can call this after freeing large blocks of
730 memory to potentially reduce the system-level memory requirements
731 of a program. However, it cannot guarantee to reduce memory. Under
732 some allocation patterns, some large free blocks of memory will be
733 locked between two used chunks, so they cannot be given back to
734 the system.
736 The `pad' argument to malloc_trim represents the amount of free
737 trailing space to leave untrimmed. If this argument is zero,
738 only the minimum amount of memory to maintain internal data
739 structures will be left (one page or less). Non-zero arguments
740 can be supplied to maintain enough trailing space to service
741 future expected allocations without having to re-obtain memory
742 from the system.
744 Malloc_trim returns 1 if it actually released any memory, else 0.
745 On systems that do not support "negative sbrks", it will always
746 return 0.
748 int __malloc_trim(size_t);
751 malloc_usable_size(void* p);
753 Returns the number of bytes you can actually use in
754 an allocated chunk, which may be more than you requested (although
755 often not) due to alignment and minimum size constraints.
756 You can use this many bytes without worrying about
757 overwriting other allocated objects. This is not a particularly great
758 programming practice. malloc_usable_size can be more useful in
759 debugging and assertions, for example:
761 p = malloc(n);
762 assert(malloc_usable_size(p) >= 256);
765 size_t __malloc_usable_size(void*);
768 malloc_stats();
769 Prints on stderr the amount of space obtained from the system (both
770 via sbrk and mmap), the maximum amount (which may be more than
771 current if malloc_trim and/or munmap got called), and the current
772 number of bytes allocated via malloc (or realloc, etc) but not yet
773 freed. Note that this is the number of bytes allocated, not the
774 number requested. It will be larger than the number requested
775 because of alignment and bookkeeping overhead. Because it includes
776 alignment wastage as being in use, this figure may be greater than
777 zero even when no user-level chunks are allocated.
779 The reported current and maximum system memory can be inaccurate if
780 a program makes other calls to system memory allocation functions
781 (normally sbrk) outside of malloc.
783 malloc_stats prints only the most commonly interesting statistics.
784 More information can be obtained by calling mallinfo.
787 void __malloc_stats(void);
790 posix_memalign(void **memptr, size_t alignment, size_t size);
792 POSIX wrapper like memalign(), checking for validity of size.
794 int __posix_memalign(void **, size_t, size_t);
795 #endif /* IS_IN (libc) */
798 mallopt(int parameter_number, int parameter_value)
799 Sets tunable parameters The format is to provide a
800 (parameter-number, parameter-value) pair. mallopt then sets the
801 corresponding parameter to the argument value if it can (i.e., so
802 long as the value is meaningful), and returns 1 if successful else
803 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
804 normally defined in malloc.h. Only one of these (M_MXFAST) is used
805 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
806 so setting them has no effect. But this malloc also supports four
807 other options in mallopt. See below for details. Briefly, supported
808 parameters are as follows (listed defaults are for "typical"
809 configurations).
811 Symbol param # default allowed param values
812 M_MXFAST 1 64 0-80 (0 disables fastbins)
813 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
814 M_TOP_PAD -2 0 any
815 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
816 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
818 int __libc_mallopt(int, int);
819 #if IS_IN (libc)
820 libc_hidden_proto (__libc_mallopt)
821 #endif
823 /* mallopt tuning options */
826 M_MXFAST is the maximum request size used for "fastbins", special bins
827 that hold returned chunks without consolidating their spaces. This
828 enables future requests for chunks of the same size to be handled
829 very quickly, but can increase fragmentation, and thus increase the
830 overall memory footprint of a program.
832 This malloc manages fastbins very conservatively yet still
833 efficiently, so fragmentation is rarely a problem for values less
834 than or equal to the default. The maximum supported value of MXFAST
835 is 80. You wouldn't want it any higher than this anyway. Fastbins
836 are designed especially for use with many small structs, objects or
837 strings -- the default handles structs/objects/arrays with sizes up
838 to 8 4byte fields, or small strings representing words, tokens,
839 etc. Using fastbins for larger objects normally worsens
840 fragmentation without improving speed.
842 M_MXFAST is set in REQUEST size units. It is internally used in
843 chunksize units, which adds padding and alignment. You can reduce
844 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
845 algorithm to be a closer approximation of fifo-best-fit in all cases,
846 not just for larger requests, but will generally cause it to be
847 slower.
851 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
852 #ifndef M_MXFAST
853 #define M_MXFAST 1
854 #endif
856 #ifndef DEFAULT_MXFAST
857 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
858 #endif
862 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
863 to keep before releasing via malloc_trim in free().
865 Automatic trimming is mainly useful in long-lived programs.
866 Because trimming via sbrk can be slow on some systems, and can
867 sometimes be wasteful (in cases where programs immediately
868 afterward allocate more large chunks) the value should be high
869 enough so that your overall system performance would improve by
870 releasing this much memory.
872 The trim threshold and the mmap control parameters (see below)
873 can be traded off with one another. Trimming and mmapping are
874 two different ways of releasing unused memory back to the
875 system. Between these two, it is often possible to keep
876 system-level demands of a long-lived program down to a bare
877 minimum. For example, in one test suite of sessions measuring
878 the XF86 X server on Linux, using a trim threshold of 128K and a
879 mmap threshold of 192K led to near-minimal long term resource
880 consumption.
882 If you are using this malloc in a long-lived program, it should
883 pay to experiment with these values. As a rough guide, you
884 might set to a value close to the average size of a process
885 (program) running on your system. Releasing this much memory
886 would allow such a process to run in memory. Generally, it's
887 worth it to tune for trimming rather tham memory mapping when a
888 program undergoes phases where several large chunks are
889 allocated and released in ways that can reuse each other's
890 storage, perhaps mixed with phases where there are no such
891 chunks at all. And in well-behaved long-lived programs,
892 controlling release of large blocks via trimming versus mapping
893 is usually faster.
895 However, in most programs, these parameters serve mainly as
896 protection against the system-level effects of carrying around
897 massive amounts of unneeded memory. Since frequent calls to
898 sbrk, mmap, and munmap otherwise degrade performance, the default
899 parameters are set to relatively high values that serve only as
900 safeguards.
902 The trim value It must be greater than page size to have any useful
903 effect. To disable trimming completely, you can set to
904 (unsigned long)(-1)
906 Trim settings interact with fastbin (MXFAST) settings: Unless
907 TRIM_FASTBINS is defined, automatic trimming never takes place upon
908 freeing a chunk with size less than or equal to MXFAST. Trimming is
909 instead delayed until subsequent freeing of larger chunks. However,
910 you can still force an attempted trim by calling malloc_trim.
912 Also, trimming is not generally possible in cases where
913 the main arena is obtained via mmap.
915 Note that the trick some people use of mallocing a huge space and
916 then freeing it at program startup, in an attempt to reserve system
917 memory, doesn't have the intended effect under automatic trimming,
918 since that memory will immediately be returned to the system.
921 #define M_TRIM_THRESHOLD -1
923 #ifndef DEFAULT_TRIM_THRESHOLD
924 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
925 #endif
928 M_TOP_PAD is the amount of extra `padding' space to allocate or
929 retain whenever sbrk is called. It is used in two ways internally:
931 * When sbrk is called to extend the top of the arena to satisfy
932 a new malloc request, this much padding is added to the sbrk
933 request.
935 * When malloc_trim is called automatically from free(),
936 it is used as the `pad' argument.
938 In both cases, the actual amount of padding is rounded
939 so that the end of the arena is always a system page boundary.
941 The main reason for using padding is to avoid calling sbrk so
942 often. Having even a small pad greatly reduces the likelihood
943 that nearly every malloc request during program start-up (or
944 after trimming) will invoke sbrk, which needlessly wastes
945 time.
947 Automatic rounding-up to page-size units is normally sufficient
948 to avoid measurable overhead, so the default is 0. However, in
949 systems where sbrk is relatively slow, it can pay to increase
950 this value, at the expense of carrying around more memory than
951 the program needs.
954 #define M_TOP_PAD -2
956 #ifndef DEFAULT_TOP_PAD
957 #define DEFAULT_TOP_PAD (0)
958 #endif
961 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
962 adjusted MMAP_THRESHOLD.
965 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
966 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
967 #endif
969 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
970 /* For 32-bit platforms we cannot increase the maximum mmap
971 threshold much because it is also the minimum value for the
972 maximum heap size and its alignment. Going above 512k (i.e., 1M
973 for new heaps) wastes too much address space. */
974 # if __WORDSIZE == 32
975 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
976 # else
977 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
978 # endif
979 #endif
982 M_MMAP_THRESHOLD is the request size threshold for using mmap()
983 to service a request. Requests of at least this size that cannot
984 be allocated using already-existing space will be serviced via mmap.
985 (If enough normal freed space already exists it is used instead.)
987 Using mmap segregates relatively large chunks of memory so that
988 they can be individually obtained and released from the host
989 system. A request serviced through mmap is never reused by any
990 other request (at least not directly; the system may just so
991 happen to remap successive requests to the same locations).
993 Segregating space in this way has the benefits that:
995 1. Mmapped space can ALWAYS be individually released back
996 to the system, which helps keep the system level memory
997 demands of a long-lived program low.
998 2. Mapped memory can never become `locked' between
999 other chunks, as can happen with normally allocated chunks, which
1000 means that even trimming via malloc_trim would not release them.
1001 3. On some systems with "holes" in address spaces, mmap can obtain
1002 memory that sbrk cannot.
1004 However, it has the disadvantages that:
1006 1. The space cannot be reclaimed, consolidated, and then
1007 used to service later requests, as happens with normal chunks.
1008 2. It can lead to more wastage because of mmap page alignment
1009 requirements
1010 3. It causes malloc performance to be more dependent on host
1011 system memory management support routines which may vary in
1012 implementation quality and may impose arbitrary
1013 limitations. Generally, servicing a request via normal
1014 malloc steps is faster than going through a system's mmap.
1016 The advantages of mmap nearly always outweigh disadvantages for
1017 "large" chunks, but the value of "large" varies across systems. The
1018 default is an empirically derived value that works well in most
1019 systems.
1022 Update in 2006:
1023 The above was written in 2001. Since then the world has changed a lot.
1024 Memory got bigger. Applications got bigger. The virtual address space
1025 layout in 32 bit linux changed.
1027 In the new situation, brk() and mmap space is shared and there are no
1028 artificial limits on brk size imposed by the kernel. What is more,
1029 applications have started using transient allocations larger than the
1030 128Kb as was imagined in 2001.
1032 The price for mmap is also high now; each time glibc mmaps from the
1033 kernel, the kernel is forced to zero out the memory it gives to the
1034 application. Zeroing memory is expensive and eats a lot of cache and
1035 memory bandwidth. This has nothing to do with the efficiency of the
1036 virtual memory system, by doing mmap the kernel just has no choice but
1037 to zero.
1039 In 2001, the kernel had a maximum size for brk() which was about 800
1040 megabytes on 32 bit x86, at that point brk() would hit the first
1041 mmaped shared libaries and couldn't expand anymore. With current 2.6
1042 kernels, the VA space layout is different and brk() and mmap
1043 both can span the entire heap at will.
1045 Rather than using a static threshold for the brk/mmap tradeoff,
1046 we are now using a simple dynamic one. The goal is still to avoid
1047 fragmentation. The old goals we kept are
1048 1) try to get the long lived large allocations to use mmap()
1049 2) really large allocations should always use mmap()
1050 and we're adding now:
1051 3) transient allocations should use brk() to avoid forcing the kernel
1052 having to zero memory over and over again
1054 The implementation works with a sliding threshold, which is by default
1055 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
1056 out at 128Kb as per the 2001 default.
1058 This allows us to satisfy requirement 1) under the assumption that long
1059 lived allocations are made early in the process' lifespan, before it has
1060 started doing dynamic allocations of the same size (which will
1061 increase the threshold).
1063 The upperbound on the threshold satisfies requirement 2)
1065 The threshold goes up in value when the application frees memory that was
1066 allocated with the mmap allocator. The idea is that once the application
1067 starts freeing memory of a certain size, it's highly probable that this is
1068 a size the application uses for transient allocations. This estimator
1069 is there to satisfy the new third requirement.
1073 #define M_MMAP_THRESHOLD -3
1075 #ifndef DEFAULT_MMAP_THRESHOLD
1076 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1077 #endif
1080 M_MMAP_MAX is the maximum number of requests to simultaneously
1081 service using mmap. This parameter exists because
1082 some systems have a limited number of internal tables for
1083 use by mmap, and using more than a few of them may degrade
1084 performance.
1086 The default is set to a value that serves only as a safeguard.
1087 Setting to 0 disables use of mmap for servicing large requests.
1090 #define M_MMAP_MAX -4
1092 #ifndef DEFAULT_MMAP_MAX
1093 #define DEFAULT_MMAP_MAX (65536)
1094 #endif
1096 #include <malloc.h>
1098 #ifndef RETURN_ADDRESS
1099 #define RETURN_ADDRESS(X_) (NULL)
1100 #endif
1102 /* Forward declarations. */
1103 struct malloc_chunk;
1104 typedef struct malloc_chunk* mchunkptr;
1106 /* Internal routines. */
1108 static void* _int_malloc(mstate, size_t);
1109 static void _int_free(mstate, mchunkptr, int);
1110 static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1111 INTERNAL_SIZE_T);
1112 static void* _int_memalign(mstate, size_t, size_t);
1113 #if IS_IN (libc)
1114 static void* _mid_memalign(size_t, size_t, void *);
1115 #endif
1117 static void malloc_printerr(const char *str) __attribute__ ((noreturn));
1119 static void munmap_chunk(mchunkptr p);
1120 #if HAVE_MREMAP
1121 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size);
1122 #endif
1124 /* ------------------ MMAP support ------------------ */
1127 #include <fcntl.h>
1128 #include <sys/mman.h>
1130 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1131 # define MAP_ANONYMOUS MAP_ANON
1132 #endif
1134 #ifndef MAP_NORESERVE
1135 # define MAP_NORESERVE 0
1136 #endif
1138 #define MMAP(addr, size, prot, flags) \
1139 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1143 ----------------------- Chunk representations -----------------------
1148 This struct declaration is misleading (but accurate and necessary).
1149 It declares a "view" into memory allowing access to necessary
1150 fields at known offsets from a given base. See explanation below.
1153 struct malloc_chunk {
1155 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
1156 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */
1158 struct malloc_chunk* fd; /* double links -- used only if free. */
1159 struct malloc_chunk* bk;
1161 /* Only used for large blocks: pointer to next larger size. */
1162 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1163 struct malloc_chunk* bk_nextsize;
1168 malloc_chunk details:
1170 (The following includes lightly edited explanations by Colin Plumb.)
1172 Chunks of memory are maintained using a `boundary tag' method as
1173 described in e.g., Knuth or Standish. (See the paper by Paul
1174 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1175 survey of such techniques.) Sizes of free chunks are stored both
1176 in the front of each chunk and at the end. This makes
1177 consolidating fragmented chunks into bigger chunks very fast. The
1178 size fields also hold bits representing whether chunks are free or
1179 in use.
1181 An allocated chunk looks like this:
1184 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185 | Size of previous chunk, if unallocated (P clear) |
1186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1187 | Size of chunk, in bytes |A|M|P|
1188 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1189 | User data starts here... .
1191 . (malloc_usable_size() bytes) .
1193 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1194 | (size of chunk, but used for application data) |
1195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1196 | Size of next chunk, in bytes |A|0|1|
1197 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1199 Where "chunk" is the front of the chunk for the purpose of most of
1200 the malloc code, but "mem" is the pointer that is returned to the
1201 user. "Nextchunk" is the beginning of the next contiguous chunk.
1203 Chunks always begin on even word boundaries, so the mem portion
1204 (which is returned to the user) is also on an even word boundary, and
1205 thus at least double-word aligned.
1207 Free chunks are stored in circular doubly-linked lists, and look like this:
1209 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1210 | Size of previous chunk, if unallocated (P clear) |
1211 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1212 `head:' | Size of chunk, in bytes |A|0|P|
1213 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1214 | Forward pointer to next chunk in list |
1215 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1216 | Back pointer to previous chunk in list |
1217 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1218 | Unused space (may be 0 bytes long) .
1221 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1222 `foot:' | Size of chunk, in bytes |
1223 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1224 | Size of next chunk, in bytes |A|0|0|
1225 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1227 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1228 chunk size (which is always a multiple of two words), is an in-use
1229 bit for the *previous* chunk. If that bit is *clear*, then the
1230 word before the current chunk size contains the previous chunk
1231 size, and can be used to find the front of the previous chunk.
1232 The very first chunk allocated always has this bit set,
1233 preventing access to non-existent (or non-owned) memory. If
1234 prev_inuse is set for any given chunk, then you CANNOT determine
1235 the size of the previous chunk, and might even get a memory
1236 addressing fault when trying to do so.
1238 The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial,
1239 main arena, described by the main_arena variable. When additional
1240 threads are spawned, each thread receives its own arena (up to a
1241 configurable limit, after which arenas are reused for multiple
1242 threads), and the chunks in these arenas have the A bit set. To
1243 find the arena for a chunk on such a non-main arena, heap_for_ptr
1244 performs a bit mask operation and indirection through the ar_ptr
1245 member of the per-heap header heap_info (see arena.c).
1247 Note that the `foot' of the current chunk is actually represented
1248 as the prev_size of the NEXT chunk. This makes it easier to
1249 deal with alignments etc but can be very confusing when trying
1250 to extend or adapt this code.
1252 The three exceptions to all this are:
1254 1. The special chunk `top' doesn't bother using the
1255 trailing size field since there is no next contiguous chunk
1256 that would have to index off it. After initialization, `top'
1257 is forced to always exist. If it would become less than
1258 MINSIZE bytes long, it is replenished.
1260 2. Chunks allocated via mmap, which have the second-lowest-order
1261 bit M (IS_MMAPPED) set in their size fields. Because they are
1262 allocated one-by-one, each must contain its own trailing size
1263 field. If the M bit is set, the other bits are ignored
1264 (because mmapped chunks are neither in an arena, nor adjacent
1265 to a freed chunk). The M bit is also used for chunks which
1266 originally came from a dumped heap via malloc_set_state in
1267 hooks.c.
1269 3. Chunks in fastbins are treated as allocated chunks from the
1270 point of view of the chunk allocator. They are consolidated
1271 with their neighbors only in bulk, in malloc_consolidate.
1275 ---------- Size and alignment checks and conversions ----------
1278 /* Conversion from malloc headers to user pointers, and back. When
1279 using memory tagging the user data and the malloc data structure
1280 headers have distinct tags. Converting fully from one to the other
1281 involves extracting the tag at the other address and creating a
1282 suitable pointer using it. That can be quite expensive. There are
1283 cases when the pointers are not dereferenced (for example only used
1284 for alignment check) so the tags are not relevant, and there are
1285 cases when user data is not tagged distinctly from malloc headers
1286 (user data is untagged because tagging is done late in malloc and
1287 early in free). User memory tagging across internal interfaces:
1289 sysmalloc: Returns untagged memory.
1290 _int_malloc: Returns untagged memory.
1291 _int_free: Takes untagged memory.
1292 _int_memalign: Returns untagged memory.
1293 _int_memalign: Returns untagged memory.
1294 _mid_memalign: Returns tagged memory.
1295 _int_realloc: Takes and returns tagged memory.
1298 /* The chunk header is two SIZE_SZ elements, but this is used widely, so
1299 we define it here for clarity later. */
1300 #define CHUNK_HDR_SZ (2 * SIZE_SZ)
1302 /* Convert a chunk address to a user mem pointer without correcting
1303 the tag. */
1304 #define chunk2mem(p) ((void*)((char*)(p) + CHUNK_HDR_SZ))
1306 /* Convert a chunk address to a user mem pointer and extract the right tag. */
1307 #define chunk2mem_tag(p) ((void*)tag_at ((char*)(p) + CHUNK_HDR_SZ))
1309 /* Convert a user mem pointer to a chunk address and extract the right tag. */
1310 #define mem2chunk(mem) ((mchunkptr)tag_at (((char*)(mem) - CHUNK_HDR_SZ)))
1312 /* The smallest possible chunk */
1313 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1315 /* The smallest size we can malloc is an aligned minimal chunk */
1317 #define MINSIZE \
1318 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1320 /* Check if m has acceptable alignment */
1322 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1324 #define misaligned_chunk(p) \
1325 ((uintptr_t)(MALLOC_ALIGNMENT == CHUNK_HDR_SZ ? (p) : chunk2mem (p)) \
1326 & MALLOC_ALIGN_MASK)
1328 /* pad request bytes into a usable size -- internal version */
1329 /* Note: This must be a macro that evaluates to a compile time constant
1330 if passed a literal constant. */
1331 #define request2size(req) \
1332 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1333 MINSIZE : \
1334 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1336 /* Check if REQ overflows when padded and aligned and if the resulting
1337 value is less than PTRDIFF_T. Returns the requested size or
1338 MINSIZE in case the value is less than MINSIZE, or 0 if any of the
1339 previous checks fail. */
1340 static inline size_t
1341 checked_request2size (size_t req) __nonnull (1)
1343 if (__glibc_unlikely (req > PTRDIFF_MAX))
1344 return 0;
1346 /* When using tagged memory, we cannot share the end of the user
1347 block with the header for the next chunk, so ensure that we
1348 allocate blocks that are rounded up to the granule size. Take
1349 care not to overflow from close to MAX_SIZE_T to a small
1350 number. Ideally, this would be part of request2size(), but that
1351 must be a macro that produces a compile time constant if passed
1352 a constant literal. */
1353 if (__glibc_unlikely (mtag_enabled))
1355 /* Ensure this is not evaluated if !mtag_enabled, see gcc PR 99551. */
1356 asm ("");
1358 req = (req + (__MTAG_GRANULE_SIZE - 1)) &
1359 ~(size_t)(__MTAG_GRANULE_SIZE - 1);
1362 return request2size (req);
1366 --------------- Physical chunk operations ---------------
1370 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1371 #define PREV_INUSE 0x1
1373 /* extract inuse bit of previous chunk */
1374 #define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE)
1377 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1378 #define IS_MMAPPED 0x2
1380 /* check for mmap()'ed chunk */
1381 #define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED)
1384 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1385 from a non-main arena. This is only set immediately before handing
1386 the chunk to the user, if necessary. */
1387 #define NON_MAIN_ARENA 0x4
1389 /* Check for chunk from main arena. */
1390 #define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0)
1392 /* Mark a chunk as not being on the main arena. */
1393 #define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA)
1397 Bits to mask off when extracting size
1399 Note: IS_MMAPPED is intentionally not masked off from size field in
1400 macros for which mmapped chunks should never be seen. This should
1401 cause helpful core dumps to occur if it is tried by accident by
1402 people extending or adapting this malloc.
1404 #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
1406 /* Get size, ignoring use bits */
1407 #define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS))
1409 /* Like chunksize, but do not mask SIZE_BITS. */
1410 #define chunksize_nomask(p) ((p)->mchunk_size)
1412 /* Ptr to next physical malloc_chunk. */
1413 #define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p)))
1415 /* Size of the chunk below P. Only valid if !prev_inuse (P). */
1416 #define prev_size(p) ((p)->mchunk_prev_size)
1418 /* Set the size of the chunk below P. Only valid if !prev_inuse (P). */
1419 #define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz))
1421 /* Ptr to previous physical malloc_chunk. Only valid if !prev_inuse (P). */
1422 #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p)))
1424 /* Treat space at ptr + offset as a chunk */
1425 #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
1427 /* extract p's inuse bit */
1428 #define inuse(p) \
1429 ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE)
1431 /* set/clear chunk as being inuse without otherwise disturbing */
1432 #define set_inuse(p) \
1433 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE
1435 #define clear_inuse(p) \
1436 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE)
1439 /* check/set/clear inuse bits in known places */
1440 #define inuse_bit_at_offset(p, s) \
1441 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE)
1443 #define set_inuse_bit_at_offset(p, s) \
1444 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE)
1446 #define clear_inuse_bit_at_offset(p, s) \
1447 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE))
1450 /* Set size at head, without disturbing its use bit */
1451 #define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s)))
1453 /* Set size/use field */
1454 #define set_head(p, s) ((p)->mchunk_size = (s))
1456 /* Set size at footer (only when chunk is not in use) */
1457 #define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s))
1459 #pragma GCC poison mchunk_size
1460 #pragma GCC poison mchunk_prev_size
1462 /* This is the size of the real usable data in the chunk. Not valid for
1463 dumped heap chunks. */
1464 #define memsize(p) \
1465 (__MTAG_GRANULE_SIZE > SIZE_SZ && __glibc_unlikely (mtag_enabled) ? \
1466 chunksize (p) - CHUNK_HDR_SZ : \
1467 chunksize (p) - CHUNK_HDR_SZ + (chunk_is_mmapped (p) ? 0 : SIZE_SZ))
1469 /* If memory tagging is enabled the layout changes to accommodate the granule
1470 size, this is wasteful for small allocations so not done by default.
1471 Both the chunk header and user data has to be granule aligned. */
1472 _Static_assert (__MTAG_GRANULE_SIZE <= CHUNK_HDR_SZ,
1473 "memory tagging is not supported with large granule.");
1475 static __always_inline void *
1476 tag_new_usable (void *ptr)
1478 if (__glibc_unlikely (mtag_enabled) && ptr)
1480 mchunkptr cp = mem2chunk(ptr);
1481 ptr = __libc_mtag_tag_region (__libc_mtag_new_tag (ptr), memsize (cp));
1483 return ptr;
1487 -------------------- Internal data structures --------------------
1489 All internal state is held in an instance of malloc_state defined
1490 below. There are no other static variables, except in two optional
1491 cases:
1492 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1493 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1494 for mmap.
1496 Beware of lots of tricks that minimize the total bookkeeping space
1497 requirements. The result is a little over 1K bytes (for 4byte
1498 pointers and size_t.)
1502 Bins
1504 An array of bin headers for free chunks. Each bin is doubly
1505 linked. The bins are approximately proportionally (log) spaced.
1506 There are a lot of these bins (128). This may look excessive, but
1507 works very well in practice. Most bins hold sizes that are
1508 unusual as malloc request sizes, but are more usual for fragments
1509 and consolidated sets of chunks, which is what these bins hold, so
1510 they can be found quickly. All procedures maintain the invariant
1511 that no consolidated chunk physically borders another one, so each
1512 chunk in a list is known to be preceeded and followed by either
1513 inuse chunks or the ends of memory.
1515 Chunks in bins are kept in size order, with ties going to the
1516 approximately least recently used chunk. Ordering isn't needed
1517 for the small bins, which all contain the same-sized chunks, but
1518 facilitates best-fit allocation for larger chunks. These lists
1519 are just sequential. Keeping them in order almost never requires
1520 enough traversal to warrant using fancier ordered data
1521 structures.
1523 Chunks of the same size are linked with the most
1524 recently freed at the front, and allocations are taken from the
1525 back. This results in LRU (FIFO) allocation order, which tends
1526 to give each chunk an equal opportunity to be consolidated with
1527 adjacent freed chunks, resulting in larger free chunks and less
1528 fragmentation.
1530 To simplify use in double-linked lists, each bin header acts
1531 as a malloc_chunk. This avoids special-casing for headers.
1532 But to conserve space and improve locality, we allocate
1533 only the fd/bk pointers of bins, and then use repositioning tricks
1534 to treat these as the fields of a malloc_chunk*.
1537 typedef struct malloc_chunk *mbinptr;
1539 /* addressing -- note that bin_at(0) does not exist */
1540 #define bin_at(m, i) \
1541 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1542 - offsetof (struct malloc_chunk, fd))
1544 /* analog of ++bin */
1545 #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
1547 /* Reminders about list directionality within bins */
1548 #define first(b) ((b)->fd)
1549 #define last(b) ((b)->bk)
1552 Indexing
1554 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1555 8 bytes apart. Larger bins are approximately logarithmically spaced:
1557 64 bins of size 8
1558 32 bins of size 64
1559 16 bins of size 512
1560 8 bins of size 4096
1561 4 bins of size 32768
1562 2 bins of size 262144
1563 1 bin of size what's left
1565 There is actually a little bit of slop in the numbers in bin_index
1566 for the sake of speed. This makes no difference elsewhere.
1568 The bins top out around 1MB because we expect to service large
1569 requests via mmap.
1571 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1572 a valid chunk size the small bins are bumped up one.
1575 #define NBINS 128
1576 #define NSMALLBINS 64
1577 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1578 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > CHUNK_HDR_SZ)
1579 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1581 #define in_smallbin_range(sz) \
1582 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1584 #define smallbin_index(sz) \
1585 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1586 + SMALLBIN_CORRECTION)
1588 #define largebin_index_32(sz) \
1589 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1590 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1591 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1592 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1593 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1594 126)
1596 #define largebin_index_32_big(sz) \
1597 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1598 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1599 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1600 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1601 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1602 126)
1604 // XXX It remains to be seen whether it is good to keep the widths of
1605 // XXX the buckets the same or whether it should be scaled by a factor
1606 // XXX of two as well.
1607 #define largebin_index_64(sz) \
1608 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1609 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1610 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1611 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1612 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1613 126)
1615 #define largebin_index(sz) \
1616 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1617 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1618 : largebin_index_32 (sz))
1620 #define bin_index(sz) \
1621 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
1623 /* Take a chunk off a bin list. */
1624 static void
1625 unlink_chunk (mstate av, mchunkptr p)
1627 if (chunksize (p) != prev_size (next_chunk (p)))
1628 malloc_printerr ("corrupted size vs. prev_size");
1630 mchunkptr fd = p->fd;
1631 mchunkptr bk = p->bk;
1633 if (__builtin_expect (fd->bk != p || bk->fd != p, 0))
1634 malloc_printerr ("corrupted double-linked list");
1636 fd->bk = bk;
1637 bk->fd = fd;
1638 if (!in_smallbin_range (chunksize_nomask (p)) && p->fd_nextsize != NULL)
1640 if (p->fd_nextsize->bk_nextsize != p
1641 || p->bk_nextsize->fd_nextsize != p)
1642 malloc_printerr ("corrupted double-linked list (not small)");
1644 if (fd->fd_nextsize == NULL)
1646 if (p->fd_nextsize == p)
1647 fd->fd_nextsize = fd->bk_nextsize = fd;
1648 else
1650 fd->fd_nextsize = p->fd_nextsize;
1651 fd->bk_nextsize = p->bk_nextsize;
1652 p->fd_nextsize->bk_nextsize = fd;
1653 p->bk_nextsize->fd_nextsize = fd;
1656 else
1658 p->fd_nextsize->bk_nextsize = p->bk_nextsize;
1659 p->bk_nextsize->fd_nextsize = p->fd_nextsize;
1665 Unsorted chunks
1667 All remainders from chunk splits, as well as all returned chunks,
1668 are first placed in the "unsorted" bin. They are then placed
1669 in regular bins after malloc gives them ONE chance to be used before
1670 binning. So, basically, the unsorted_chunks list acts as a queue,
1671 with chunks being placed on it in free (and malloc_consolidate),
1672 and taken off (to be either used or placed in bins) in malloc.
1674 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1675 does not have to be taken into account in size comparisons.
1678 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1679 #define unsorted_chunks(M) (bin_at (M, 1))
1684 The top-most available chunk (i.e., the one bordering the end of
1685 available memory) is treated specially. It is never included in
1686 any bin, is used only if no other chunk is available, and is
1687 released back to the system if it is very large (see
1688 M_TRIM_THRESHOLD). Because top initially
1689 points to its own bin with initial zero size, thus forcing
1690 extension on the first malloc request, we avoid having any special
1691 code in malloc to check whether it even exists yet. But we still
1692 need to do so when getting memory from system, so we make
1693 initial_top treat the bin as a legal but unusable chunk during the
1694 interval between initialization and the first call to
1695 sysmalloc. (This is somewhat delicate, since it relies on
1696 the 2 preceding words to be zero during this interval as well.)
1699 /* Conveniently, the unsorted bin can be used as dummy top on first call */
1700 #define initial_top(M) (unsorted_chunks (M))
1703 Binmap
1705 To help compensate for the large number of bins, a one-level index
1706 structure is used for bin-by-bin searching. `binmap' is a
1707 bitvector recording whether bins are definitely empty so they can
1708 be skipped over during during traversals. The bits are NOT always
1709 cleared as soon as bins are empty, but instead only
1710 when they are noticed to be empty during traversal in malloc.
1713 /* Conservatively use 32 bits per map word, even if on 64bit system */
1714 #define BINMAPSHIFT 5
1715 #define BITSPERMAP (1U << BINMAPSHIFT)
1716 #define BINMAPSIZE (NBINS / BITSPERMAP)
1718 #define idx2block(i) ((i) >> BINMAPSHIFT)
1719 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
1721 #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1722 #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1723 #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
1726 Fastbins
1728 An array of lists holding recently freed small chunks. Fastbins
1729 are not doubly linked. It is faster to single-link them, and
1730 since chunks are never removed from the middles of these lists,
1731 double linking is not necessary. Also, unlike regular bins, they
1732 are not even processed in FIFO order (they use faster LIFO) since
1733 ordering doesn't much matter in the transient contexts in which
1734 fastbins are normally used.
1736 Chunks in fastbins keep their inuse bit set, so they cannot
1737 be consolidated with other free chunks. malloc_consolidate
1738 releases all chunks in fastbins and consolidates them with
1739 other free chunks.
1742 typedef struct malloc_chunk *mfastbinptr;
1743 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1745 /* offset 2 to use otherwise unindexable first 2 bins */
1746 #define fastbin_index(sz) \
1747 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1750 /* The maximum fastbin request size we support */
1751 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1753 #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
1756 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1757 that triggers automatic consolidation of possibly-surrounding
1758 fastbin chunks. This is a heuristic, so the exact value should not
1759 matter too much. It is defined at half the default trim threshold as a
1760 compromise heuristic to only attempt consolidation if it is likely
1761 to lead to trimming. However, it is not dynamically tunable, since
1762 consolidation reduces fragmentation surrounding large chunks even
1763 if trimming is not used.
1766 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1769 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1770 regions. Otherwise, contiguity is exploited in merging together,
1771 when possible, results from consecutive MORECORE calls.
1773 The initial value comes from MORECORE_CONTIGUOUS, but is
1774 changed dynamically if mmap is ever used as an sbrk substitute.
1777 #define NONCONTIGUOUS_BIT (2U)
1779 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1780 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1781 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1782 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1784 /* Maximum size of memory handled in fastbins. */
1785 static INTERNAL_SIZE_T global_max_fast;
1788 Set value of max_fast.
1789 Use impossibly small value if 0.
1790 Precondition: there are no existing fastbin chunks in the main arena.
1791 Since do_check_malloc_state () checks this, we call malloc_consolidate ()
1792 before changing max_fast. Note other arenas will leak their fast bin
1793 entries if max_fast is reduced.
1796 #define set_max_fast(s) \
1797 global_max_fast = (((size_t) (s) <= MALLOC_ALIGN_MASK - SIZE_SZ) \
1798 ? MIN_CHUNK_SIZE / 2 : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1800 static inline INTERNAL_SIZE_T
1801 get_max_fast (void)
1803 /* Tell the GCC optimizers that global_max_fast is never larger
1804 than MAX_FAST_SIZE. This avoids out-of-bounds array accesses in
1805 _int_malloc after constant propagation of the size parameter.
1806 (The code never executes because malloc preserves the
1807 global_max_fast invariant, but the optimizers may not recognize
1808 this.) */
1809 if (global_max_fast > MAX_FAST_SIZE)
1810 __builtin_unreachable ();
1811 return global_max_fast;
1815 ----------- Internal state representation and initialization -----------
1819 have_fastchunks indicates that there are probably some fastbin chunks.
1820 It is set true on entering a chunk into any fastbin, and cleared early in
1821 malloc_consolidate. The value is approximate since it may be set when there
1822 are no fastbin chunks, or it may be clear even if there are fastbin chunks
1823 available. Given it's sole purpose is to reduce number of redundant calls to
1824 malloc_consolidate, it does not affect correctness. As a result we can safely
1825 use relaxed atomic accesses.
1829 struct malloc_state
1831 /* Serialize access. */
1832 __libc_lock_define (, mutex);
1834 /* Flags (formerly in max_fast). */
1835 int flags;
1837 /* Set if the fastbin chunks contain recently inserted free blocks. */
1838 /* Note this is a bool but not all targets support atomics on booleans. */
1839 int have_fastchunks;
1841 /* Fastbins */
1842 mfastbinptr fastbinsY[NFASTBINS];
1844 /* Base of the topmost chunk -- not otherwise kept in a bin */
1845 mchunkptr top;
1847 /* The remainder from the most recent split of a small request */
1848 mchunkptr last_remainder;
1850 /* Normal bins packed as described above */
1851 mchunkptr bins[NBINS * 2 - 2];
1853 /* Bitmap of bins */
1854 unsigned int binmap[BINMAPSIZE];
1856 /* Linked list */
1857 struct malloc_state *next;
1859 /* Linked list for free arenas. Access to this field is serialized
1860 by free_list_lock in arena.c. */
1861 struct malloc_state *next_free;
1863 /* Number of threads attached to this arena. 0 if the arena is on
1864 the free list. Access to this field is serialized by
1865 free_list_lock in arena.c. */
1866 INTERNAL_SIZE_T attached_threads;
1868 /* Memory allocated from the system in this arena. */
1869 INTERNAL_SIZE_T system_mem;
1870 INTERNAL_SIZE_T max_system_mem;
1873 struct malloc_par
1875 /* Tunable parameters */
1876 unsigned long trim_threshold;
1877 INTERNAL_SIZE_T top_pad;
1878 INTERNAL_SIZE_T mmap_threshold;
1879 INTERNAL_SIZE_T arena_test;
1880 INTERNAL_SIZE_T arena_max;
1882 #if HAVE_TUNABLES
1883 /* Transparent Large Page support. */
1884 INTERNAL_SIZE_T thp_pagesize;
1885 /* A value different than 0 means to align mmap allocation to hp_pagesize
1886 add hp_flags on flags. */
1887 INTERNAL_SIZE_T hp_pagesize;
1888 int hp_flags;
1889 #endif
1891 /* Memory map support */
1892 int n_mmaps;
1893 int n_mmaps_max;
1894 int max_n_mmaps;
1895 /* the mmap_threshold is dynamic, until the user sets
1896 it manually, at which point we need to disable any
1897 dynamic behavior. */
1898 int no_dyn_threshold;
1900 /* Statistics */
1901 INTERNAL_SIZE_T mmapped_mem;
1902 INTERNAL_SIZE_T max_mmapped_mem;
1904 /* First address handed out by MORECORE/sbrk. */
1905 char *sbrk_base;
1907 #if USE_TCACHE
1908 /* Maximum number of buckets to use. */
1909 size_t tcache_bins;
1910 size_t tcache_max_bytes;
1911 /* Maximum number of chunks in each bucket. */
1912 size_t tcache_count;
1913 /* Maximum number of chunks to remove from the unsorted list, which
1914 aren't used to prefill the cache. */
1915 size_t tcache_unsorted_limit;
1916 #endif
1919 /* There are several instances of this struct ("arenas") in this
1920 malloc. If you are adapting this malloc in a way that does NOT use
1921 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1922 before using. This malloc relies on the property that malloc_state
1923 is initialized to all zeroes (as is true of C statics). */
1925 static struct malloc_state main_arena =
1927 .mutex = _LIBC_LOCK_INITIALIZER,
1928 .next = &main_arena,
1929 .attached_threads = 1
1932 /* There is only one instance of the malloc parameters. */
1934 static struct malloc_par mp_ =
1936 .top_pad = DEFAULT_TOP_PAD,
1937 .n_mmaps_max = DEFAULT_MMAP_MAX,
1938 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1939 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1940 #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1941 .arena_test = NARENAS_FROM_NCORES (1)
1942 #if USE_TCACHE
1944 .tcache_count = TCACHE_FILL_COUNT,
1945 .tcache_bins = TCACHE_MAX_BINS,
1946 .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1),
1947 .tcache_unsorted_limit = 0 /* No limit. */
1948 #endif
1952 Initialize a malloc_state struct.
1954 This is called from ptmalloc_init () or from _int_new_arena ()
1955 when creating a new arena.
1958 static void
1959 malloc_init_state (mstate av)
1961 int i;
1962 mbinptr bin;
1964 /* Establish circular links for normal bins */
1965 for (i = 1; i < NBINS; ++i)
1967 bin = bin_at (av, i);
1968 bin->fd = bin->bk = bin;
1971 #if MORECORE_CONTIGUOUS
1972 if (av != &main_arena)
1973 #endif
1974 set_noncontiguous (av);
1975 if (av == &main_arena)
1976 set_max_fast (DEFAULT_MXFAST);
1977 atomic_store_relaxed (&av->have_fastchunks, false);
1979 av->top = initial_top (av);
1983 Other internal utilities operating on mstates
1986 static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1987 static int systrim (size_t, mstate);
1988 static void malloc_consolidate (mstate);
1991 /* -------------- Early definitions for debugging hooks ---------------- */
1993 /* This function is called from the arena shutdown hook, to free the
1994 thread cache (if it exists). */
1995 static void tcache_thread_shutdown (void);
1997 /* ------------------ Testing support ----------------------------------*/
1999 static int perturb_byte;
2001 static void
2002 alloc_perturb (char *p, size_t n)
2004 if (__glibc_unlikely (perturb_byte))
2005 memset (p, perturb_byte ^ 0xff, n);
2008 static void
2009 free_perturb (char *p, size_t n)
2011 if (__glibc_unlikely (perturb_byte))
2012 memset (p, perturb_byte, n);
2017 #include <stap-probe.h>
2019 /* ----------- Routines dealing with transparent huge pages ----------- */
2021 static inline void
2022 madvise_thp (void *p, INTERNAL_SIZE_T size)
2024 #if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2025 /* Do not consider areas smaller than a huge page or if the tunable is
2026 not active. */
2027 if (mp_.thp_pagesize == 0 || size < mp_.thp_pagesize)
2028 return;
2030 /* Linux requires the input address to be page-aligned, and unaligned
2031 inputs happens only for initial data segment. */
2032 if (__glibc_unlikely (!PTR_IS_ALIGNED (p, GLRO (dl_pagesize))))
2034 void *q = PTR_ALIGN_DOWN (p, GLRO (dl_pagesize));
2035 size += PTR_DIFF (p, q);
2036 p = q;
2039 __madvise (p, size, MADV_HUGEPAGE);
2040 #endif
2043 /* ------------------- Support for multiple arenas -------------------- */
2044 #include "arena.c"
2047 Debugging support
2049 These routines make a number of assertions about the states
2050 of data structures that should be true at all times. If any
2051 are not true, it's very likely that a user program has somehow
2052 trashed memory. (It's also possible that there is a coding error
2053 in malloc. In which case, please report it!)
2056 #if !MALLOC_DEBUG
2058 # define check_chunk(A, P)
2059 # define check_free_chunk(A, P)
2060 # define check_inuse_chunk(A, P)
2061 # define check_remalloced_chunk(A, P, N)
2062 # define check_malloced_chunk(A, P, N)
2063 # define check_malloc_state(A)
2065 #else
2067 # define check_chunk(A, P) do_check_chunk (A, P)
2068 # define check_free_chunk(A, P) do_check_free_chunk (A, P)
2069 # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
2070 # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
2071 # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
2072 # define check_malloc_state(A) do_check_malloc_state (A)
2075 Properties of all chunks
2078 static void
2079 do_check_chunk (mstate av, mchunkptr p)
2081 unsigned long sz = chunksize (p);
2082 /* min and max possible addresses assuming contiguous allocation */
2083 char *max_address = (char *) (av->top) + chunksize (av->top);
2084 char *min_address = max_address - av->system_mem;
2086 if (!chunk_is_mmapped (p))
2088 /* Has legal address ... */
2089 if (p != av->top)
2091 if (contiguous (av))
2093 assert (((char *) p) >= min_address);
2094 assert (((char *) p + sz) <= ((char *) (av->top)));
2097 else
2099 /* top size is always at least MINSIZE */
2100 assert ((unsigned long) (sz) >= MINSIZE);
2101 /* top predecessor always marked inuse */
2102 assert (prev_inuse (p));
2105 else
2107 /* address is outside main heap */
2108 if (contiguous (av) && av->top != initial_top (av))
2110 assert (((char *) p) < min_address || ((char *) p) >= max_address);
2112 /* chunk is page-aligned */
2113 assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0);
2114 /* mem is aligned */
2115 assert (aligned_OK (chunk2mem (p)));
2120 Properties of free chunks
2123 static void
2124 do_check_free_chunk (mstate av, mchunkptr p)
2126 INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA);
2127 mchunkptr next = chunk_at_offset (p, sz);
2129 do_check_chunk (av, p);
2131 /* Chunk must claim to be free ... */
2132 assert (!inuse (p));
2133 assert (!chunk_is_mmapped (p));
2135 /* Unless a special marker, must have OK fields */
2136 if ((unsigned long) (sz) >= MINSIZE)
2138 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2139 assert (aligned_OK (chunk2mem (p)));
2140 /* ... matching footer field */
2141 assert (prev_size (next_chunk (p)) == sz);
2142 /* ... and is fully consolidated */
2143 assert (prev_inuse (p));
2144 assert (next == av->top || inuse (next));
2146 /* ... and has minimally sane links */
2147 assert (p->fd->bk == p);
2148 assert (p->bk->fd == p);
2150 else /* markers are always of size SIZE_SZ */
2151 assert (sz == SIZE_SZ);
2155 Properties of inuse chunks
2158 static void
2159 do_check_inuse_chunk (mstate av, mchunkptr p)
2161 mchunkptr next;
2163 do_check_chunk (av, p);
2165 if (chunk_is_mmapped (p))
2166 return; /* mmapped chunks have no next/prev */
2168 /* Check whether it claims to be in use ... */
2169 assert (inuse (p));
2171 next = next_chunk (p);
2173 /* ... and is surrounded by OK chunks.
2174 Since more things can be checked with free chunks than inuse ones,
2175 if an inuse chunk borders them and debug is on, it's worth doing them.
2177 if (!prev_inuse (p))
2179 /* Note that we cannot even look at prev unless it is not inuse */
2180 mchunkptr prv = prev_chunk (p);
2181 assert (next_chunk (prv) == p);
2182 do_check_free_chunk (av, prv);
2185 if (next == av->top)
2187 assert (prev_inuse (next));
2188 assert (chunksize (next) >= MINSIZE);
2190 else if (!inuse (next))
2191 do_check_free_chunk (av, next);
2195 Properties of chunks recycled from fastbins
2198 static void
2199 do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2201 INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA);
2203 if (!chunk_is_mmapped (p))
2205 assert (av == arena_for_chunk (p));
2206 if (chunk_main_arena (p))
2207 assert (av == &main_arena);
2208 else
2209 assert (av != &main_arena);
2212 do_check_inuse_chunk (av, p);
2214 /* Legal size ... */
2215 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2216 assert ((unsigned long) (sz) >= MINSIZE);
2217 /* ... and alignment */
2218 assert (aligned_OK (chunk2mem (p)));
2219 /* chunk is less than MINSIZE more than request */
2220 assert ((long) (sz) - (long) (s) >= 0);
2221 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
2225 Properties of nonrecycled chunks at the point they are malloced
2228 static void
2229 do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2231 /* same as recycled case ... */
2232 do_check_remalloced_chunk (av, p, s);
2235 ... plus, must obey implementation invariant that prev_inuse is
2236 always true of any allocated chunk; i.e., that each allocated
2237 chunk borders either a previously allocated and still in-use
2238 chunk, or the base of its memory arena. This is ensured
2239 by making all allocations from the `lowest' part of any found
2240 chunk. This does not necessarily hold however for chunks
2241 recycled via fastbins.
2244 assert (prev_inuse (p));
2249 Properties of malloc_state.
2251 This may be useful for debugging malloc, as well as detecting user
2252 programmer errors that somehow write into malloc_state.
2254 If you are extending or experimenting with this malloc, you can
2255 probably figure out how to hack this routine to print out or
2256 display chunk addresses, sizes, bins, and other instrumentation.
2259 static void
2260 do_check_malloc_state (mstate av)
2262 int i;
2263 mchunkptr p;
2264 mchunkptr q;
2265 mbinptr b;
2266 unsigned int idx;
2267 INTERNAL_SIZE_T size;
2268 unsigned long total = 0;
2269 int max_fast_bin;
2271 /* internal size_t must be no wider than pointer type */
2272 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
2274 /* alignment is a power of 2 */
2275 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
2277 /* Check the arena is initialized. */
2278 assert (av->top != 0);
2280 /* No memory has been allocated yet, so doing more tests is not possible. */
2281 if (av->top == initial_top (av))
2282 return;
2284 /* pagesize is a power of 2 */
2285 assert (powerof2(GLRO (dl_pagesize)));
2287 /* A contiguous main_arena is consistent with sbrk_base. */
2288 if (av == &main_arena && contiguous (av))
2289 assert ((char *) mp_.sbrk_base + av->system_mem ==
2290 (char *) av->top + chunksize (av->top));
2292 /* properties of fastbins */
2294 /* max_fast is in allowed range */
2295 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2297 max_fast_bin = fastbin_index (get_max_fast ());
2299 for (i = 0; i < NFASTBINS; ++i)
2301 p = fastbin (av, i);
2303 /* The following test can only be performed for the main arena.
2304 While mallopt calls malloc_consolidate to get rid of all fast
2305 bins (especially those larger than the new maximum) this does
2306 only happen for the main arena. Trying to do this for any
2307 other arena would mean those arenas have to be locked and
2308 malloc_consolidate be called for them. This is excessive. And
2309 even if this is acceptable to somebody it still cannot solve
2310 the problem completely since if the arena is locked a
2311 concurrent malloc call might create a new arena which then
2312 could use the newly invalid fast bins. */
2314 /* all bins past max_fast are empty */
2315 if (av == &main_arena && i > max_fast_bin)
2316 assert (p == 0);
2318 while (p != 0)
2320 if (__glibc_unlikely (misaligned_chunk (p)))
2321 malloc_printerr ("do_check_malloc_state(): "
2322 "unaligned fastbin chunk detected");
2323 /* each chunk claims to be inuse */
2324 do_check_inuse_chunk (av, p);
2325 total += chunksize (p);
2326 /* chunk belongs in this bin */
2327 assert (fastbin_index (chunksize (p)) == i);
2328 p = REVEAL_PTR (p->fd);
2332 /* check normal bins */
2333 for (i = 1; i < NBINS; ++i)
2335 b = bin_at (av, i);
2337 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2338 if (i >= 2)
2340 unsigned int binbit = get_binmap (av, i);
2341 int empty = last (b) == b;
2342 if (!binbit)
2343 assert (empty);
2344 else if (!empty)
2345 assert (binbit);
2348 for (p = last (b); p != b; p = p->bk)
2350 /* each chunk claims to be free */
2351 do_check_free_chunk (av, p);
2352 size = chunksize (p);
2353 total += size;
2354 if (i >= 2)
2356 /* chunk belongs in bin */
2357 idx = bin_index (size);
2358 assert (idx == i);
2359 /* lists are sorted */
2360 assert (p->bk == b ||
2361 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2363 if (!in_smallbin_range (size))
2365 if (p->fd_nextsize != NULL)
2367 if (p->fd_nextsize == p)
2368 assert (p->bk_nextsize == p);
2369 else
2371 if (p->fd_nextsize == first (b))
2372 assert (chunksize (p) < chunksize (p->fd_nextsize));
2373 else
2374 assert (chunksize (p) > chunksize (p->fd_nextsize));
2376 if (p == first (b))
2377 assert (chunksize (p) > chunksize (p->bk_nextsize));
2378 else
2379 assert (chunksize (p) < chunksize (p->bk_nextsize));
2382 else
2383 assert (p->bk_nextsize == NULL);
2386 else if (!in_smallbin_range (size))
2387 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2388 /* chunk is followed by a legal chain of inuse chunks */
2389 for (q = next_chunk (p);
2390 (q != av->top && inuse (q) &&
2391 (unsigned long) (chunksize (q)) >= MINSIZE);
2392 q = next_chunk (q))
2393 do_check_inuse_chunk (av, q);
2397 /* top chunk is OK */
2398 check_chunk (av, av->top);
2400 #endif
2403 /* ----------------- Support for debugging hooks -------------------- */
2404 #if IS_IN (libc)
2405 #include "hooks.c"
2406 #endif
2409 /* ----------- Routines dealing with system allocation -------------- */
2412 sysmalloc handles malloc cases requiring more memory from the system.
2413 On entry, it is assumed that av->top does not have enough
2414 space to service request for nb bytes, thus requiring that av->top
2415 be extended or replaced.
2418 static void *
2419 sysmalloc_mmap (INTERNAL_SIZE_T nb, size_t pagesize, int extra_flags, mstate av)
2421 long int size;
2424 Round up size to nearest page. For mmapped chunks, the overhead is one
2425 SIZE_SZ unit larger than for normal chunks, because there is no
2426 following chunk whose prev_size field could be used.
2428 See the front_misalign handling below, for glibc there is no need for
2429 further alignments unless we have have high alignment.
2431 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2432 size = ALIGN_UP (nb + SIZE_SZ, pagesize);
2433 else
2434 size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);
2436 /* Don't try if size wraps around 0. */
2437 if ((unsigned long) (size) <= (unsigned long) (nb))
2438 return MAP_FAILED;
2440 char *mm = (char *) MMAP (0, size,
2441 mtag_mmap_flags | PROT_READ | PROT_WRITE,
2442 extra_flags);
2443 if (mm == MAP_FAILED)
2444 return mm;
2446 #ifdef MAP_HUGETLB
2447 if (!(extra_flags & MAP_HUGETLB))
2448 madvise_thp (mm, size);
2449 #endif
2452 The offset to the start of the mmapped region is stored in the prev_size
2453 field of the chunk. This allows us to adjust returned start address to
2454 meet alignment requirements here and in memalign(), and still be able to
2455 compute proper address argument for later munmap in free() and realloc().
2458 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2460 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2462 /* For glibc, chunk2mem increases the address by CHUNK_HDR_SZ and
2463 MALLOC_ALIGN_MASK is CHUNK_HDR_SZ-1. Each mmap'ed area is page
2464 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2465 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2466 front_misalign = 0;
2468 else
2469 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2471 mchunkptr p; /* the allocated/returned chunk */
2473 if (front_misalign > 0)
2475 ptrdiff_t correction = MALLOC_ALIGNMENT - front_misalign;
2476 p = (mchunkptr) (mm + correction);
2477 set_prev_size (p, correction);
2478 set_head (p, (size - correction) | IS_MMAPPED);
2480 else
2482 p = (mchunkptr) mm;
2483 set_prev_size (p, 0);
2484 set_head (p, size | IS_MMAPPED);
2487 /* update statistics */
2488 int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1;
2489 atomic_max (&mp_.max_n_mmaps, new);
2491 unsigned long sum;
2492 sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size;
2493 atomic_max (&mp_.max_mmapped_mem, sum);
2495 check_chunk (av, p);
2497 return chunk2mem (p);
2501 Allocate memory using mmap() based on S and NB requested size, aligning to
2502 PAGESIZE if required. The EXTRA_FLAGS is used on mmap() call. If the call
2503 succeedes S is updated with the allocated size. This is used as a fallback
2504 if MORECORE fails.
2506 static void *
2507 sysmalloc_mmap_fallback (long int *s, INTERNAL_SIZE_T nb,
2508 INTERNAL_SIZE_T old_size, size_t minsize,
2509 size_t pagesize, int extra_flags, mstate av)
2511 long int size = *s;
2513 /* Cannot merge with old top, so add its size back in */
2514 if (contiguous (av))
2515 size = ALIGN_UP (size + old_size, pagesize);
2517 /* If we are relying on mmap as backup, then use larger units */
2518 if ((unsigned long) (size) < minsize)
2519 size = minsize;
2521 /* Don't try if size wraps around 0 */
2522 if ((unsigned long) (size) <= (unsigned long) (nb))
2523 return MORECORE_FAILURE;
2525 char *mbrk = (char *) (MMAP (0, size,
2526 mtag_mmap_flags | PROT_READ | PROT_WRITE,
2527 extra_flags));
2528 if (mbrk == MAP_FAILED)
2529 return MAP_FAILED;
2531 #ifdef MAP_HUGETLB
2532 if (!(extra_flags & MAP_HUGETLB))
2533 madvise_thp (mbrk, size);
2534 #endif
2536 /* Record that we no longer have a contiguous sbrk region. After the first
2537 time mmap is used as backup, we do not ever rely on contiguous space
2538 since this could incorrectly bridge regions. */
2539 set_noncontiguous (av);
2541 *s = size;
2542 return mbrk;
2545 static void *
2546 sysmalloc (INTERNAL_SIZE_T nb, mstate av)
2548 mchunkptr old_top; /* incoming value of av->top */
2549 INTERNAL_SIZE_T old_size; /* its size */
2550 char *old_end; /* its end address */
2552 long size; /* arg to first MORECORE or mmap call */
2553 char *brk; /* return value from MORECORE */
2555 long correction; /* arg to 2nd MORECORE call */
2556 char *snd_brk; /* 2nd return val */
2558 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2559 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2560 char *aligned_brk; /* aligned offset into brk */
2562 mchunkptr p; /* the allocated/returned chunk */
2563 mchunkptr remainder; /* remainder from allocation */
2564 unsigned long remainder_size; /* its size */
2567 size_t pagesize = GLRO (dl_pagesize);
2568 bool tried_mmap = false;
2572 If have mmap, and the request size meets the mmap threshold, and
2573 the system supports mmap, and there are few enough currently
2574 allocated mmapped regions, try to directly map this request
2575 rather than expanding top.
2578 if (av == NULL
2579 || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
2580 && (mp_.n_mmaps < mp_.n_mmaps_max)))
2582 char *mm;
2583 #if HAVE_TUNABLES
2584 if (mp_.hp_pagesize > 0 && nb >= mp_.hp_pagesize)
2586 /* There is no need to isse the THP madvise call if Huge Pages are
2587 used directly. */
2588 mm = sysmalloc_mmap (nb, mp_.hp_pagesize, mp_.hp_flags, av);
2589 if (mm != MAP_FAILED)
2590 return mm;
2592 #endif
2593 mm = sysmalloc_mmap (nb, pagesize, 0, av);
2594 if (mm != MAP_FAILED)
2595 return mm;
2596 tried_mmap = true;
2599 /* There are no usable arenas and mmap also failed. */
2600 if (av == NULL)
2601 return 0;
2603 /* Record incoming configuration of top */
2605 old_top = av->top;
2606 old_size = chunksize (old_top);
2607 old_end = (char *) (chunk_at_offset (old_top, old_size));
2609 brk = snd_brk = (char *) (MORECORE_FAILURE);
2612 If not the first time through, we require old_size to be
2613 at least MINSIZE and to have prev_inuse set.
2616 assert ((old_top == initial_top (av) && old_size == 0) ||
2617 ((unsigned long) (old_size) >= MINSIZE &&
2618 prev_inuse (old_top) &&
2619 ((unsigned long) old_end & (pagesize - 1)) == 0));
2621 /* Precondition: not enough current space to satisfy nb request */
2622 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
2625 if (av != &main_arena)
2627 heap_info *old_heap, *heap;
2628 size_t old_heap_size;
2630 /* First try to extend the current heap. */
2631 old_heap = heap_for_ptr (old_top);
2632 old_heap_size = old_heap->size;
2633 if ((long) (MINSIZE + nb - old_size) > 0
2634 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2636 av->system_mem += old_heap->size - old_heap_size;
2637 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2638 | PREV_INUSE);
2640 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2642 /* Use a newly allocated heap. */
2643 heap->ar_ptr = av;
2644 heap->prev = old_heap;
2645 av->system_mem += heap->size;
2646 /* Set up the new top. */
2647 top (av) = chunk_at_offset (heap, sizeof (*heap));
2648 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2650 /* Setup fencepost and free the old top chunk with a multiple of
2651 MALLOC_ALIGNMENT in size. */
2652 /* The fencepost takes at least MINSIZE bytes, because it might
2653 become the top chunk again later. Note that a footer is set
2654 up, too, although the chunk is marked in use. */
2655 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2656 set_head (chunk_at_offset (old_top, old_size + CHUNK_HDR_SZ),
2657 0 | PREV_INUSE);
2658 if (old_size >= MINSIZE)
2660 set_head (chunk_at_offset (old_top, old_size),
2661 CHUNK_HDR_SZ | PREV_INUSE);
2662 set_foot (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ);
2663 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2664 _int_free (av, old_top, 1);
2666 else
2668 set_head (old_top, (old_size + CHUNK_HDR_SZ) | PREV_INUSE);
2669 set_foot (old_top, (old_size + CHUNK_HDR_SZ));
2672 else if (!tried_mmap)
2674 /* We can at least try to use to mmap memory. If new_heap fails
2675 it is unlikely that trying to allocate huge pages will
2676 succeed. */
2677 char *mm = sysmalloc_mmap (nb, pagesize, 0, av);
2678 if (mm != MAP_FAILED)
2679 return mm;
2682 else /* av == main_arena */
2685 { /* Request enough space for nb + pad + overhead */
2686 size = nb + mp_.top_pad + MINSIZE;
2689 If contiguous, we can subtract out existing space that we hope to
2690 combine with new space. We add it back later only if
2691 we don't actually get contiguous space.
2694 if (contiguous (av))
2695 size -= old_size;
2698 Round to a multiple of page size or huge page size.
2699 If MORECORE is not contiguous, this ensures that we only call it
2700 with whole-page arguments. And if MORECORE is contiguous and
2701 this is not first time through, this preserves page-alignment of
2702 previous calls. Otherwise, we correct to page-align below.
2705 #if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2706 /* Defined in brk.c. */
2707 extern void *__curbrk;
2708 if (__glibc_unlikely (mp_.thp_pagesize != 0))
2710 uintptr_t top = ALIGN_UP ((uintptr_t) __curbrk + size,
2711 mp_.thp_pagesize);
2712 size = top - (uintptr_t) __curbrk;
2714 else
2715 #endif
2716 size = ALIGN_UP (size, GLRO(dl_pagesize));
2719 Don't try to call MORECORE if argument is so big as to appear
2720 negative. Note that since mmap takes size_t arg, it may succeed
2721 below even if we cannot call MORECORE.
2724 if (size > 0)
2726 brk = (char *) (MORECORE (size));
2727 if (brk != (char *) (MORECORE_FAILURE))
2728 madvise_thp (brk, size);
2729 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2732 if (brk == (char *) (MORECORE_FAILURE))
2735 If have mmap, try using it as a backup when MORECORE fails or
2736 cannot be used. This is worth doing on systems that have "holes" in
2737 address space, so sbrk cannot extend to give contiguous space, but
2738 space is available elsewhere. Note that we ignore mmap max count
2739 and threshold limits, since the space will not be used as a
2740 segregated mmap region.
2743 char *mbrk = MAP_FAILED;
2744 #if HAVE_TUNABLES
2745 if (mp_.hp_pagesize > 0)
2746 mbrk = sysmalloc_mmap_fallback (&size, nb, old_size,
2747 mp_.hp_pagesize, mp_.hp_pagesize,
2748 mp_.hp_flags, av);
2749 #endif
2750 if (mbrk == MAP_FAILED)
2751 mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, pagesize,
2752 MMAP_AS_MORECORE_SIZE, 0, av);
2753 if (mbrk != MAP_FAILED)
2755 /* We do not need, and cannot use, another sbrk call to find end */
2756 brk = mbrk;
2757 snd_brk = brk + size;
2761 if (brk != (char *) (MORECORE_FAILURE))
2763 if (mp_.sbrk_base == 0)
2764 mp_.sbrk_base = brk;
2765 av->system_mem += size;
2768 If MORECORE extends previous space, we can likewise extend top size.
2771 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2772 set_head (old_top, (size + old_size) | PREV_INUSE);
2774 else if (contiguous (av) && old_size && brk < old_end)
2775 /* Oops! Someone else killed our space.. Can't touch anything. */
2776 malloc_printerr ("break adjusted to free malloc space");
2779 Otherwise, make adjustments:
2781 * If the first time through or noncontiguous, we need to call sbrk
2782 just to find out where the end of memory lies.
2784 * We need to ensure that all returned chunks from malloc will meet
2785 MALLOC_ALIGNMENT
2787 * If there was an intervening foreign sbrk, we need to adjust sbrk
2788 request size to account for fact that we will not be able to
2789 combine new space with existing space in old_top.
2791 * Almost all systems internally allocate whole pages at a time, in
2792 which case we might as well use the whole last page of request.
2793 So we allocate enough more memory to hit a page boundary now,
2794 which in turn causes future contiguous calls to page-align.
2797 else
2799 front_misalign = 0;
2800 end_misalign = 0;
2801 correction = 0;
2802 aligned_brk = brk;
2804 /* handle contiguous cases */
2805 if (contiguous (av))
2807 /* Count foreign sbrk as system_mem. */
2808 if (old_size)
2809 av->system_mem += brk - old_end;
2811 /* Guarantee alignment of first new chunk made from this space */
2813 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2814 if (front_misalign > 0)
2817 Skip over some bytes to arrive at an aligned position.
2818 We don't need to specially mark these wasted front bytes.
2819 They will never be accessed anyway because
2820 prev_inuse of av->top (and any chunk created from its start)
2821 is always true after initialization.
2824 correction = MALLOC_ALIGNMENT - front_misalign;
2825 aligned_brk += correction;
2829 If this isn't adjacent to existing space, then we will not
2830 be able to merge with old_top space, so must add to 2nd request.
2833 correction += old_size;
2835 /* Extend the end address to hit a page boundary */
2836 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2837 correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;
2839 assert (correction >= 0);
2840 snd_brk = (char *) (MORECORE (correction));
2843 If can't allocate correction, try to at least find out current
2844 brk. It might be enough to proceed without failing.
2846 Note that if second sbrk did NOT fail, we assume that space
2847 is contiguous with first sbrk. This is a safe assumption unless
2848 program is multithreaded but doesn't use locks and a foreign sbrk
2849 occurred between our first and second calls.
2852 if (snd_brk == (char *) (MORECORE_FAILURE))
2854 correction = 0;
2855 snd_brk = (char *) (MORECORE (0));
2857 else
2858 madvise_thp (snd_brk, correction);
2861 /* handle non-contiguous cases */
2862 else
2864 if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
2865 /* MORECORE/mmap must correctly align */
2866 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2867 else
2869 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2870 if (front_misalign > 0)
2873 Skip over some bytes to arrive at an aligned position.
2874 We don't need to specially mark these wasted front bytes.
2875 They will never be accessed anyway because
2876 prev_inuse of av->top (and any chunk created from its start)
2877 is always true after initialization.
2880 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2884 /* Find out current end of memory */
2885 if (snd_brk == (char *) (MORECORE_FAILURE))
2887 snd_brk = (char *) (MORECORE (0));
2891 /* Adjust top based on results of second sbrk */
2892 if (snd_brk != (char *) (MORECORE_FAILURE))
2894 av->top = (mchunkptr) aligned_brk;
2895 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2896 av->system_mem += correction;
2899 If not the first time through, we either have a
2900 gap due to foreign sbrk or a non-contiguous region. Insert a
2901 double fencepost at old_top to prevent consolidation with space
2902 we don't own. These fenceposts are artificial chunks that are
2903 marked as inuse and are in any case too small to use. We need
2904 two to make sizes and alignments work out.
2907 if (old_size != 0)
2910 Shrink old_top to insert fenceposts, keeping size a
2911 multiple of MALLOC_ALIGNMENT. We know there is at least
2912 enough space in old_top to do this.
2914 old_size = (old_size - 2 * CHUNK_HDR_SZ) & ~MALLOC_ALIGN_MASK;
2915 set_head (old_top, old_size | PREV_INUSE);
2918 Note that the following assignments completely overwrite
2919 old_top when old_size was previously MINSIZE. This is
2920 intentional. We need the fencepost, even if old_top otherwise gets
2921 lost.
2923 set_head (chunk_at_offset (old_top, old_size),
2924 CHUNK_HDR_SZ | PREV_INUSE);
2925 set_head (chunk_at_offset (old_top,
2926 old_size + CHUNK_HDR_SZ),
2927 CHUNK_HDR_SZ | PREV_INUSE);
2929 /* If possible, release the rest. */
2930 if (old_size >= MINSIZE)
2932 _int_free (av, old_top, 1);
2938 } /* if (av != &main_arena) */
2940 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
2941 av->max_system_mem = av->system_mem;
2942 check_malloc_state (av);
2944 /* finally, do the allocation */
2945 p = av->top;
2946 size = chunksize (p);
2948 /* check that one of the above allocation paths succeeded */
2949 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2951 remainder_size = size - nb;
2952 remainder = chunk_at_offset (p, nb);
2953 av->top = remainder;
2954 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2955 set_head (remainder, remainder_size | PREV_INUSE);
2956 check_malloced_chunk (av, p, nb);
2957 return chunk2mem (p);
2960 /* catch all failure paths */
2961 __set_errno (ENOMEM);
2962 return 0;
2967 systrim is an inverse of sorts to sysmalloc. It gives memory back
2968 to the system (via negative arguments to sbrk) if there is unused
2969 memory at the `high' end of the malloc pool. It is called
2970 automatically by free() when top space exceeds the trim
2971 threshold. It is also called by the public malloc_trim routine. It
2972 returns 1 if it actually released any memory, else 0.
2975 static int
2976 systrim (size_t pad, mstate av)
2978 long top_size; /* Amount of top-most memory */
2979 long extra; /* Amount to release */
2980 long released; /* Amount actually released */
2981 char *current_brk; /* address returned by pre-check sbrk call */
2982 char *new_brk; /* address returned by post-check sbrk call */
2983 long top_area;
2985 top_size = chunksize (av->top);
2987 top_area = top_size - MINSIZE - 1;
2988 if (top_area <= pad)
2989 return 0;
2991 /* Release in pagesize units and round down to the nearest page. */
2992 #if HAVE_TUNABLES && defined (MADV_HUGEPAGE)
2993 if (__glibc_unlikely (mp_.thp_pagesize != 0))
2994 extra = ALIGN_DOWN (top_area - pad, mp_.thp_pagesize);
2995 else
2996 #endif
2997 extra = ALIGN_DOWN (top_area - pad, GLRO(dl_pagesize));
2999 if (extra == 0)
3000 return 0;
3003 Only proceed if end of memory is where we last set it.
3004 This avoids problems if there were foreign sbrk calls.
3006 current_brk = (char *) (MORECORE (0));
3007 if (current_brk == (char *) (av->top) + top_size)
3010 Attempt to release memory. We ignore MORECORE return value,
3011 and instead call again to find out where new end of memory is.
3012 This avoids problems if first call releases less than we asked,
3013 of if failure somehow altered brk value. (We could still
3014 encounter problems if it altered brk in some very bad way,
3015 but the only thing we can do is adjust anyway, which will cause
3016 some downstream failure.)
3019 MORECORE (-extra);
3020 new_brk = (char *) (MORECORE (0));
3022 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
3024 if (new_brk != (char *) MORECORE_FAILURE)
3026 released = (long) (current_brk - new_brk);
3028 if (released != 0)
3030 /* Success. Adjust top. */
3031 av->system_mem -= released;
3032 set_head (av->top, (top_size - released) | PREV_INUSE);
3033 check_malloc_state (av);
3034 return 1;
3038 return 0;
3041 static void
3042 munmap_chunk (mchunkptr p)
3044 size_t pagesize = GLRO (dl_pagesize);
3045 INTERNAL_SIZE_T size = chunksize (p);
3047 assert (chunk_is_mmapped (p));
3049 uintptr_t mem = (uintptr_t) chunk2mem (p);
3050 uintptr_t block = (uintptr_t) p - prev_size (p);
3051 size_t total_size = prev_size (p) + size;
3052 /* Unfortunately we have to do the compilers job by hand here. Normally
3053 we would test BLOCK and TOTAL-SIZE separately for compliance with the
3054 page size. But gcc does not recognize the optimization possibility
3055 (in the moment at least) so we combine the two values into one before
3056 the bit test. */
3057 if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0
3058 || __glibc_unlikely (!powerof2 (mem & (pagesize - 1))))
3059 malloc_printerr ("munmap_chunk(): invalid pointer");
3061 atomic_decrement (&mp_.n_mmaps);
3062 atomic_add (&mp_.mmapped_mem, -total_size);
3064 /* If munmap failed the process virtual memory address space is in a
3065 bad shape. Just leave the block hanging around, the process will
3066 terminate shortly anyway since not much can be done. */
3067 __munmap ((char *) block, total_size);
3070 #if HAVE_MREMAP
3072 static mchunkptr
3073 mremap_chunk (mchunkptr p, size_t new_size)
3075 size_t pagesize = GLRO (dl_pagesize);
3076 INTERNAL_SIZE_T offset = prev_size (p);
3077 INTERNAL_SIZE_T size = chunksize (p);
3078 char *cp;
3080 assert (chunk_is_mmapped (p));
3082 uintptr_t block = (uintptr_t) p - offset;
3083 uintptr_t mem = (uintptr_t) chunk2mem(p);
3084 size_t total_size = offset + size;
3085 if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0
3086 || __glibc_unlikely (!powerof2 (mem & (pagesize - 1))))
3087 malloc_printerr("mremap_chunk(): invalid pointer");
3089 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3090 new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize);
3092 /* No need to remap if the number of pages does not change. */
3093 if (total_size == new_size)
3094 return p;
3096 cp = (char *) __mremap ((char *) block, total_size, new_size,
3097 MREMAP_MAYMOVE);
3099 if (cp == MAP_FAILED)
3100 return 0;
3102 madvise_thp (cp, new_size);
3104 p = (mchunkptr) (cp + offset);
3106 assert (aligned_OK (chunk2mem (p)));
3108 assert (prev_size (p) == offset);
3109 set_head (p, (new_size - offset) | IS_MMAPPED);
3111 INTERNAL_SIZE_T new;
3112 new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset)
3113 + new_size - size - offset;
3114 atomic_max (&mp_.max_mmapped_mem, new);
3115 return p;
3117 #endif /* HAVE_MREMAP */
3119 /*------------------------ Public wrappers. --------------------------------*/
3121 #if USE_TCACHE
3123 /* We overlay this structure on the user-data portion of a chunk when
3124 the chunk is stored in the per-thread cache. */
3125 typedef struct tcache_entry
3127 struct tcache_entry *next;
3128 /* This field exists to detect double frees. */
3129 uintptr_t key;
3130 } tcache_entry;
3132 /* There is one of these for each thread, which contains the
3133 per-thread cache (hence "tcache_perthread_struct"). Keeping
3134 overall size low is mildly important. Note that COUNTS and ENTRIES
3135 are redundant (we could have just counted the linked list each
3136 time), this is for performance reasons. */
3137 typedef struct tcache_perthread_struct
3139 uint16_t counts[TCACHE_MAX_BINS];
3140 tcache_entry *entries[TCACHE_MAX_BINS];
3141 } tcache_perthread_struct;
3143 static __thread bool tcache_shutting_down = false;
3144 static __thread tcache_perthread_struct *tcache = NULL;
3146 /* Process-wide key to try and catch a double-free in the same thread. */
3147 static uintptr_t tcache_key;
3149 /* The value of tcache_key does not really have to be a cryptographically
3150 secure random number. It only needs to be arbitrary enough so that it does
3151 not collide with values present in applications. If a collision does happen
3152 consistently enough, it could cause a degradation in performance since the
3153 entire list is checked to check if the block indeed has been freed the
3154 second time. The odds of this happening are exceedingly low though, about 1
3155 in 2^wordsize. There is probably a higher chance of the performance
3156 degradation being due to a double free where the first free happened in a
3157 different thread; that's a case this check does not cover. */
3158 static void
3159 tcache_key_initialize (void)
3161 if (__getrandom (&tcache_key, sizeof(tcache_key), GRND_NONBLOCK)
3162 != sizeof (tcache_key))
3164 tcache_key = random_bits ();
3165 #if __WORDSIZE == 64
3166 tcache_key = (tcache_key << 32) | random_bits ();
3167 #endif
3171 /* Caller must ensure that we know tc_idx is valid and there's room
3172 for more chunks. */
3173 static __always_inline void
3174 tcache_put (mchunkptr chunk, size_t tc_idx)
3176 tcache_entry *e = (tcache_entry *) chunk2mem (chunk);
3178 /* Mark this chunk as "in the tcache" so the test in _int_free will
3179 detect a double free. */
3180 e->key = tcache_key;
3182 e->next = PROTECT_PTR (&e->next, tcache->entries[tc_idx]);
3183 tcache->entries[tc_idx] = e;
3184 ++(tcache->counts[tc_idx]);
3187 /* Caller must ensure that we know tc_idx is valid and there's
3188 available chunks to remove. */
3189 static __always_inline void *
3190 tcache_get (size_t tc_idx)
3192 tcache_entry *e = tcache->entries[tc_idx];
3193 if (__glibc_unlikely (!aligned_OK (e)))
3194 malloc_printerr ("malloc(): unaligned tcache chunk detected");
3195 tcache->entries[tc_idx] = REVEAL_PTR (e->next);
3196 --(tcache->counts[tc_idx]);
3197 e->key = 0;
3198 return (void *) e;
3201 static void
3202 tcache_thread_shutdown (void)
3204 int i;
3205 tcache_perthread_struct *tcache_tmp = tcache;
3207 tcache_shutting_down = true;
3209 if (!tcache)
3210 return;
3212 /* Disable the tcache and prevent it from being reinitialized. */
3213 tcache = NULL;
3215 /* Free all of the entries and the tcache itself back to the arena
3216 heap for coalescing. */
3217 for (i = 0; i < TCACHE_MAX_BINS; ++i)
3219 while (tcache_tmp->entries[i])
3221 tcache_entry *e = tcache_tmp->entries[i];
3222 if (__glibc_unlikely (!aligned_OK (e)))
3223 malloc_printerr ("tcache_thread_shutdown(): "
3224 "unaligned tcache chunk detected");
3225 tcache_tmp->entries[i] = REVEAL_PTR (e->next);
3226 __libc_free (e);
3230 __libc_free (tcache_tmp);
3233 static void
3234 tcache_init(void)
3236 mstate ar_ptr;
3237 void *victim = 0;
3238 const size_t bytes = sizeof (tcache_perthread_struct);
3240 if (tcache_shutting_down)
3241 return;
3243 arena_get (ar_ptr, bytes);
3244 victim = _int_malloc (ar_ptr, bytes);
3245 if (!victim && ar_ptr != NULL)
3247 ar_ptr = arena_get_retry (ar_ptr, bytes);
3248 victim = _int_malloc (ar_ptr, bytes);
3252 if (ar_ptr != NULL)
3253 __libc_lock_unlock (ar_ptr->mutex);
3255 /* In a low memory situation, we may not be able to allocate memory
3256 - in which case, we just keep trying later. However, we
3257 typically do this very early, so either there is sufficient
3258 memory, or there isn't enough memory to do non-trivial
3259 allocations anyway. */
3260 if (victim)
3262 tcache = (tcache_perthread_struct *) victim;
3263 memset (tcache, 0, sizeof (tcache_perthread_struct));
3268 # define MAYBE_INIT_TCACHE() \
3269 if (__glibc_unlikely (tcache == NULL)) \
3270 tcache_init();
3272 #else /* !USE_TCACHE */
3273 # define MAYBE_INIT_TCACHE()
3275 static void
3276 tcache_thread_shutdown (void)
3278 /* Nothing to do if there is no thread cache. */
3281 #endif /* !USE_TCACHE */
3283 #if IS_IN (libc)
3284 void *
3285 __libc_malloc (size_t bytes)
3287 mstate ar_ptr;
3288 void *victim;
3290 _Static_assert (PTRDIFF_MAX <= SIZE_MAX / 2,
3291 "PTRDIFF_MAX is not more than half of SIZE_MAX");
3293 if (!__malloc_initialized)
3294 ptmalloc_init ();
3295 #if USE_TCACHE
3296 /* int_free also calls request2size, be careful to not pad twice. */
3297 size_t tbytes = checked_request2size (bytes);
3298 if (tbytes == 0)
3300 __set_errno (ENOMEM);
3301 return NULL;
3303 size_t tc_idx = csize2tidx (tbytes);
3305 MAYBE_INIT_TCACHE ();
3307 DIAG_PUSH_NEEDS_COMMENT;
3308 if (tc_idx < mp_.tcache_bins
3309 && tcache
3310 && tcache->counts[tc_idx] > 0)
3312 victim = tcache_get (tc_idx);
3313 return tag_new_usable (victim);
3315 DIAG_POP_NEEDS_COMMENT;
3316 #endif
3318 if (SINGLE_THREAD_P)
3320 victim = tag_new_usable (_int_malloc (&main_arena, bytes));
3321 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3322 &main_arena == arena_for_chunk (mem2chunk (victim)));
3323 return victim;
3326 arena_get (ar_ptr, bytes);
3328 victim = _int_malloc (ar_ptr, bytes);
3329 /* Retry with another arena only if we were able to find a usable arena
3330 before. */
3331 if (!victim && ar_ptr != NULL)
3333 LIBC_PROBE (memory_malloc_retry, 1, bytes);
3334 ar_ptr = arena_get_retry (ar_ptr, bytes);
3335 victim = _int_malloc (ar_ptr, bytes);
3338 if (ar_ptr != NULL)
3339 __libc_lock_unlock (ar_ptr->mutex);
3341 victim = tag_new_usable (victim);
3343 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3344 ar_ptr == arena_for_chunk (mem2chunk (victim)));
3345 return victim;
3347 libc_hidden_def (__libc_malloc)
3349 void
3350 __libc_free (void *mem)
3352 mstate ar_ptr;
3353 mchunkptr p; /* chunk corresponding to mem */
3355 if (mem == 0) /* free(0) has no effect */
3356 return;
3358 /* Quickly check that the freed pointer matches the tag for the memory.
3359 This gives a useful double-free detection. */
3360 if (__glibc_unlikely (mtag_enabled))
3361 *(volatile char *)mem;
3363 int err = errno;
3365 p = mem2chunk (mem);
3367 if (chunk_is_mmapped (p)) /* release mmapped memory. */
3369 /* See if the dynamic brk/mmap threshold needs adjusting.
3370 Dumped fake mmapped chunks do not affect the threshold. */
3371 if (!mp_.no_dyn_threshold
3372 && chunksize_nomask (p) > mp_.mmap_threshold
3373 && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX)
3375 mp_.mmap_threshold = chunksize (p);
3376 mp_.trim_threshold = 2 * mp_.mmap_threshold;
3377 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
3378 mp_.mmap_threshold, mp_.trim_threshold);
3380 munmap_chunk (p);
3382 else
3384 MAYBE_INIT_TCACHE ();
3386 /* Mark the chunk as belonging to the library again. */
3387 (void)tag_region (chunk2mem (p), memsize (p));
3389 ar_ptr = arena_for_chunk (p);
3390 _int_free (ar_ptr, p, 0);
3393 __set_errno (err);
3395 libc_hidden_def (__libc_free)
3397 void *
3398 __libc_realloc (void *oldmem, size_t bytes)
3400 mstate ar_ptr;
3401 INTERNAL_SIZE_T nb; /* padded request size */
3403 void *newp; /* chunk to return */
3405 if (!__malloc_initialized)
3406 ptmalloc_init ();
3408 #if REALLOC_ZERO_BYTES_FREES
3409 if (bytes == 0 && oldmem != NULL)
3411 __libc_free (oldmem); return 0;
3413 #endif
3415 /* realloc of null is supposed to be same as malloc */
3416 if (oldmem == 0)
3417 return __libc_malloc (bytes);
3419 /* Perform a quick check to ensure that the pointer's tag matches the
3420 memory's tag. */
3421 if (__glibc_unlikely (mtag_enabled))
3422 *(volatile char*) oldmem;
3424 /* chunk corresponding to oldmem */
3425 const mchunkptr oldp = mem2chunk (oldmem);
3426 /* its size */
3427 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
3429 if (chunk_is_mmapped (oldp))
3430 ar_ptr = NULL;
3431 else
3433 MAYBE_INIT_TCACHE ();
3434 ar_ptr = arena_for_chunk (oldp);
3437 /* Little security check which won't hurt performance: the allocator
3438 never wrapps around at the end of the address space. Therefore
3439 we can exclude some size values which might appear here by
3440 accident or by "design" from some intruder. */
3441 if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3442 || __builtin_expect (misaligned_chunk (oldp), 0)))
3443 malloc_printerr ("realloc(): invalid pointer");
3445 nb = checked_request2size (bytes);
3446 if (nb == 0)
3448 __set_errno (ENOMEM);
3449 return NULL;
3452 if (chunk_is_mmapped (oldp))
3454 void *newmem;
3456 #if HAVE_MREMAP
3457 newp = mremap_chunk (oldp, nb);
3458 if (newp)
3460 void *newmem = chunk2mem_tag (newp);
3461 /* Give the new block a different tag. This helps to ensure
3462 that stale handles to the previous mapping are not
3463 reused. There's a performance hit for both us and the
3464 caller for doing this, so we might want to
3465 reconsider. */
3466 return tag_new_usable (newmem);
3468 #endif
3469 /* Note the extra SIZE_SZ overhead. */
3470 if (oldsize - SIZE_SZ >= nb)
3471 return oldmem; /* do nothing */
3473 /* Must alloc, copy, free. */
3474 newmem = __libc_malloc (bytes);
3475 if (newmem == 0)
3476 return 0; /* propagate failure */
3478 memcpy (newmem, oldmem, oldsize - CHUNK_HDR_SZ);
3479 munmap_chunk (oldp);
3480 return newmem;
3483 if (SINGLE_THREAD_P)
3485 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3486 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3487 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3489 return newp;
3492 __libc_lock_lock (ar_ptr->mutex);
3494 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3496 __libc_lock_unlock (ar_ptr->mutex);
3497 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3498 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3500 if (newp == NULL)
3502 /* Try harder to allocate memory in other arenas. */
3503 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
3504 newp = __libc_malloc (bytes);
3505 if (newp != NULL)
3507 size_t sz = memsize (oldp);
3508 memcpy (newp, oldmem, sz);
3509 (void) tag_region (chunk2mem (oldp), sz);
3510 _int_free (ar_ptr, oldp, 0);
3514 return newp;
3516 libc_hidden_def (__libc_realloc)
3518 void *
3519 __libc_memalign (size_t alignment, size_t bytes)
3521 if (!__malloc_initialized)
3522 ptmalloc_init ();
3524 void *address = RETURN_ADDRESS (0);
3525 return _mid_memalign (alignment, bytes, address);
3528 static void *
3529 _mid_memalign (size_t alignment, size_t bytes, void *address)
3531 mstate ar_ptr;
3532 void *p;
3534 /* If we need less alignment than we give anyway, just relay to malloc. */
3535 if (alignment <= MALLOC_ALIGNMENT)
3536 return __libc_malloc (bytes);
3538 /* Otherwise, ensure that it is at least a minimum chunk size */
3539 if (alignment < MINSIZE)
3540 alignment = MINSIZE;
3542 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3543 power of 2 and will cause overflow in the check below. */
3544 if (alignment > SIZE_MAX / 2 + 1)
3546 __set_errno (EINVAL);
3547 return 0;
3551 /* Make sure alignment is power of 2. */
3552 if (!powerof2 (alignment))
3554 size_t a = MALLOC_ALIGNMENT * 2;
3555 while (a < alignment)
3556 a <<= 1;
3557 alignment = a;
3560 if (SINGLE_THREAD_P)
3562 p = _int_memalign (&main_arena, alignment, bytes);
3563 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3564 &main_arena == arena_for_chunk (mem2chunk (p)));
3565 return tag_new_usable (p);
3568 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3570 p = _int_memalign (ar_ptr, alignment, bytes);
3571 if (!p && ar_ptr != NULL)
3573 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3574 ar_ptr = arena_get_retry (ar_ptr, bytes);
3575 p = _int_memalign (ar_ptr, alignment, bytes);
3578 if (ar_ptr != NULL)
3579 __libc_lock_unlock (ar_ptr->mutex);
3581 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3582 ar_ptr == arena_for_chunk (mem2chunk (p)));
3583 return tag_new_usable (p);
3585 /* For ISO C11. */
3586 weak_alias (__libc_memalign, aligned_alloc)
3587 libc_hidden_def (__libc_memalign)
3589 void *
3590 __libc_valloc (size_t bytes)
3592 if (!__malloc_initialized)
3593 ptmalloc_init ();
3595 void *address = RETURN_ADDRESS (0);
3596 size_t pagesize = GLRO (dl_pagesize);
3597 return _mid_memalign (pagesize, bytes, address);
3600 void *
3601 __libc_pvalloc (size_t bytes)
3603 if (!__malloc_initialized)
3604 ptmalloc_init ();
3606 void *address = RETURN_ADDRESS (0);
3607 size_t pagesize = GLRO (dl_pagesize);
3608 size_t rounded_bytes;
3609 /* ALIGN_UP with overflow check. */
3610 if (__glibc_unlikely (__builtin_add_overflow (bytes,
3611 pagesize - 1,
3612 &rounded_bytes)))
3614 __set_errno (ENOMEM);
3615 return 0;
3617 rounded_bytes = rounded_bytes & -(pagesize - 1);
3619 return _mid_memalign (pagesize, rounded_bytes, address);
3622 void *
3623 __libc_calloc (size_t n, size_t elem_size)
3625 mstate av;
3626 mchunkptr oldtop;
3627 INTERNAL_SIZE_T sz, oldtopsize;
3628 void *mem;
3629 unsigned long clearsize;
3630 unsigned long nclears;
3631 INTERNAL_SIZE_T *d;
3632 ptrdiff_t bytes;
3634 if (__glibc_unlikely (__builtin_mul_overflow (n, elem_size, &bytes)))
3636 __set_errno (ENOMEM);
3637 return NULL;
3640 sz = bytes;
3642 if (!__malloc_initialized)
3643 ptmalloc_init ();
3645 MAYBE_INIT_TCACHE ();
3647 if (SINGLE_THREAD_P)
3648 av = &main_arena;
3649 else
3650 arena_get (av, sz);
3652 if (av)
3654 /* Check if we hand out the top chunk, in which case there may be no
3655 need to clear. */
3656 #if MORECORE_CLEARS
3657 oldtop = top (av);
3658 oldtopsize = chunksize (top (av));
3659 # if MORECORE_CLEARS < 2
3660 /* Only newly allocated memory is guaranteed to be cleared. */
3661 if (av == &main_arena &&
3662 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3663 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3664 # endif
3665 if (av != &main_arena)
3667 heap_info *heap = heap_for_ptr (oldtop);
3668 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3669 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3671 #endif
3673 else
3675 /* No usable arenas. */
3676 oldtop = 0;
3677 oldtopsize = 0;
3679 mem = _int_malloc (av, sz);
3681 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3682 av == arena_for_chunk (mem2chunk (mem)));
3684 if (!SINGLE_THREAD_P)
3686 if (mem == 0 && av != NULL)
3688 LIBC_PROBE (memory_calloc_retry, 1, sz);
3689 av = arena_get_retry (av, sz);
3690 mem = _int_malloc (av, sz);
3693 if (av != NULL)
3694 __libc_lock_unlock (av->mutex);
3697 /* Allocation failed even after a retry. */
3698 if (mem == 0)
3699 return 0;
3701 mchunkptr p = mem2chunk (mem);
3703 /* If we are using memory tagging, then we need to set the tags
3704 regardless of MORECORE_CLEARS, so we zero the whole block while
3705 doing so. */
3706 if (__glibc_unlikely (mtag_enabled))
3707 return tag_new_zero_region (mem, memsize (p));
3709 INTERNAL_SIZE_T csz = chunksize (p);
3711 /* Two optional cases in which clearing not necessary */
3712 if (chunk_is_mmapped (p))
3714 if (__builtin_expect (perturb_byte, 0))
3715 return memset (mem, 0, sz);
3717 return mem;
3720 #if MORECORE_CLEARS
3721 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3723 /* clear only the bytes from non-freshly-sbrked memory */
3724 csz = oldtopsize;
3726 #endif
3728 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3729 contents have an odd number of INTERNAL_SIZE_T-sized words;
3730 minimally 3. */
3731 d = (INTERNAL_SIZE_T *) mem;
3732 clearsize = csz - SIZE_SZ;
3733 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3734 assert (nclears >= 3);
3736 if (nclears > 9)
3737 return memset (d, 0, clearsize);
3739 else
3741 *(d + 0) = 0;
3742 *(d + 1) = 0;
3743 *(d + 2) = 0;
3744 if (nclears > 4)
3746 *(d + 3) = 0;
3747 *(d + 4) = 0;
3748 if (nclears > 6)
3750 *(d + 5) = 0;
3751 *(d + 6) = 0;
3752 if (nclears > 8)
3754 *(d + 7) = 0;
3755 *(d + 8) = 0;
3761 return mem;
3763 #endif /* IS_IN (libc) */
3766 ------------------------------ malloc ------------------------------
3769 static void *
3770 _int_malloc (mstate av, size_t bytes)
3772 INTERNAL_SIZE_T nb; /* normalized request size */
3773 unsigned int idx; /* associated bin index */
3774 mbinptr bin; /* associated bin */
3776 mchunkptr victim; /* inspected/selected chunk */
3777 INTERNAL_SIZE_T size; /* its size */
3778 int victim_index; /* its bin index */
3780 mchunkptr remainder; /* remainder from a split */
3781 unsigned long remainder_size; /* its size */
3783 unsigned int block; /* bit map traverser */
3784 unsigned int bit; /* bit map traverser */
3785 unsigned int map; /* current word of binmap */
3787 mchunkptr fwd; /* misc temp for linking */
3788 mchunkptr bck; /* misc temp for linking */
3790 #if USE_TCACHE
3791 size_t tcache_unsorted_count; /* count of unsorted chunks processed */
3792 #endif
3795 Convert request size to internal form by adding SIZE_SZ bytes
3796 overhead plus possibly more to obtain necessary alignment and/or
3797 to obtain a size of at least MINSIZE, the smallest allocatable
3798 size. Also, checked_request2size returns false for request sizes
3799 that are so large that they wrap around zero when padded and
3800 aligned.
3803 nb = checked_request2size (bytes);
3804 if (nb == 0)
3806 __set_errno (ENOMEM);
3807 return NULL;
3810 /* There are no usable arenas. Fall back to sysmalloc to get a chunk from
3811 mmap. */
3812 if (__glibc_unlikely (av == NULL))
3814 void *p = sysmalloc (nb, av);
3815 if (p != NULL)
3816 alloc_perturb (p, bytes);
3817 return p;
3821 If the size qualifies as a fastbin, first check corresponding bin.
3822 This code is safe to execute even if av is not yet initialized, so we
3823 can try it without checking, which saves some time on this fast path.
3826 #define REMOVE_FB(fb, victim, pp) \
3827 do \
3829 victim = pp; \
3830 if (victim == NULL) \
3831 break; \
3832 pp = REVEAL_PTR (victim->fd); \
3833 if (__glibc_unlikely (pp != NULL && misaligned_chunk (pp))) \
3834 malloc_printerr ("malloc(): unaligned fastbin chunk detected"); \
3836 while ((pp = catomic_compare_and_exchange_val_acq (fb, pp, victim)) \
3837 != victim); \
3839 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3841 idx = fastbin_index (nb);
3842 mfastbinptr *fb = &fastbin (av, idx);
3843 mchunkptr pp;
3844 victim = *fb;
3846 if (victim != NULL)
3848 if (__glibc_unlikely (misaligned_chunk (victim)))
3849 malloc_printerr ("malloc(): unaligned fastbin chunk detected 2");
3851 if (SINGLE_THREAD_P)
3852 *fb = REVEAL_PTR (victim->fd);
3853 else
3854 REMOVE_FB (fb, pp, victim);
3855 if (__glibc_likely (victim != NULL))
3857 size_t victim_idx = fastbin_index (chunksize (victim));
3858 if (__builtin_expect (victim_idx != idx, 0))
3859 malloc_printerr ("malloc(): memory corruption (fast)");
3860 check_remalloced_chunk (av, victim, nb);
3861 #if USE_TCACHE
3862 /* While we're here, if we see other chunks of the same size,
3863 stash them in the tcache. */
3864 size_t tc_idx = csize2tidx (nb);
3865 if (tcache && tc_idx < mp_.tcache_bins)
3867 mchunkptr tc_victim;
3869 /* While bin not empty and tcache not full, copy chunks. */
3870 while (tcache->counts[tc_idx] < mp_.tcache_count
3871 && (tc_victim = *fb) != NULL)
3873 if (__glibc_unlikely (misaligned_chunk (tc_victim)))
3874 malloc_printerr ("malloc(): unaligned fastbin chunk detected 3");
3875 if (SINGLE_THREAD_P)
3876 *fb = REVEAL_PTR (tc_victim->fd);
3877 else
3879 REMOVE_FB (fb, pp, tc_victim);
3880 if (__glibc_unlikely (tc_victim == NULL))
3881 break;
3883 tcache_put (tc_victim, tc_idx);
3886 #endif
3887 void *p = chunk2mem (victim);
3888 alloc_perturb (p, bytes);
3889 return p;
3895 If a small request, check regular bin. Since these "smallbins"
3896 hold one size each, no searching within bins is necessary.
3897 (For a large request, we need to wait until unsorted chunks are
3898 processed to find best fit. But for small ones, fits are exact
3899 anyway, so we can check now, which is faster.)
3902 if (in_smallbin_range (nb))
3904 idx = smallbin_index (nb);
3905 bin = bin_at (av, idx);
3907 if ((victim = last (bin)) != bin)
3909 bck = victim->bk;
3910 if (__glibc_unlikely (bck->fd != victim))
3911 malloc_printerr ("malloc(): smallbin double linked list corrupted");
3912 set_inuse_bit_at_offset (victim, nb);
3913 bin->bk = bck;
3914 bck->fd = bin;
3916 if (av != &main_arena)
3917 set_non_main_arena (victim);
3918 check_malloced_chunk (av, victim, nb);
3919 #if USE_TCACHE
3920 /* While we're here, if we see other chunks of the same size,
3921 stash them in the tcache. */
3922 size_t tc_idx = csize2tidx (nb);
3923 if (tcache && tc_idx < mp_.tcache_bins)
3925 mchunkptr tc_victim;
3927 /* While bin not empty and tcache not full, copy chunks over. */
3928 while (tcache->counts[tc_idx] < mp_.tcache_count
3929 && (tc_victim = last (bin)) != bin)
3931 if (tc_victim != 0)
3933 bck = tc_victim->bk;
3934 set_inuse_bit_at_offset (tc_victim, nb);
3935 if (av != &main_arena)
3936 set_non_main_arena (tc_victim);
3937 bin->bk = bck;
3938 bck->fd = bin;
3940 tcache_put (tc_victim, tc_idx);
3944 #endif
3945 void *p = chunk2mem (victim);
3946 alloc_perturb (p, bytes);
3947 return p;
3952 If this is a large request, consolidate fastbins before continuing.
3953 While it might look excessive to kill all fastbins before
3954 even seeing if there is space available, this avoids
3955 fragmentation problems normally associated with fastbins.
3956 Also, in practice, programs tend to have runs of either small or
3957 large requests, but less often mixtures, so consolidation is not
3958 invoked all that often in most programs. And the programs that
3959 it is called frequently in otherwise tend to fragment.
3962 else
3964 idx = largebin_index (nb);
3965 if (atomic_load_relaxed (&av->have_fastchunks))
3966 malloc_consolidate (av);
3970 Process recently freed or remaindered chunks, taking one only if
3971 it is exact fit, or, if this a small request, the chunk is remainder from
3972 the most recent non-exact fit. Place other traversed chunks in
3973 bins. Note that this step is the only place in any routine where
3974 chunks are placed in bins.
3976 The outer loop here is needed because we might not realize until
3977 near the end of malloc that we should have consolidated, so must
3978 do so and retry. This happens at most once, and only when we would
3979 otherwise need to expand memory to service a "small" request.
3982 #if USE_TCACHE
3983 INTERNAL_SIZE_T tcache_nb = 0;
3984 size_t tc_idx = csize2tidx (nb);
3985 if (tcache && tc_idx < mp_.tcache_bins)
3986 tcache_nb = nb;
3987 int return_cached = 0;
3989 tcache_unsorted_count = 0;
3990 #endif
3992 for (;; )
3994 int iters = 0;
3995 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3997 bck = victim->bk;
3998 size = chunksize (victim);
3999 mchunkptr next = chunk_at_offset (victim, size);
4001 if (__glibc_unlikely (size <= CHUNK_HDR_SZ)
4002 || __glibc_unlikely (size > av->system_mem))
4003 malloc_printerr ("malloc(): invalid size (unsorted)");
4004 if (__glibc_unlikely (chunksize_nomask (next) < CHUNK_HDR_SZ)
4005 || __glibc_unlikely (chunksize_nomask (next) > av->system_mem))
4006 malloc_printerr ("malloc(): invalid next size (unsorted)");
4007 if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size))
4008 malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)");
4009 if (__glibc_unlikely (bck->fd != victim)
4010 || __glibc_unlikely (victim->fd != unsorted_chunks (av)))
4011 malloc_printerr ("malloc(): unsorted double linked list corrupted");
4012 if (__glibc_unlikely (prev_inuse (next)))
4013 malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)");
4016 If a small request, try to use last remainder if it is the
4017 only chunk in unsorted bin. This helps promote locality for
4018 runs of consecutive small requests. This is the only
4019 exception to best-fit, and applies only when there is
4020 no exact fit for a small chunk.
4023 if (in_smallbin_range (nb) &&
4024 bck == unsorted_chunks (av) &&
4025 victim == av->last_remainder &&
4026 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4028 /* split and reattach remainder */
4029 remainder_size = size - nb;
4030 remainder = chunk_at_offset (victim, nb);
4031 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
4032 av->last_remainder = remainder;
4033 remainder->bk = remainder->fd = unsorted_chunks (av);
4034 if (!in_smallbin_range (remainder_size))
4036 remainder->fd_nextsize = NULL;
4037 remainder->bk_nextsize = NULL;
4040 set_head (victim, nb | PREV_INUSE |
4041 (av != &main_arena ? NON_MAIN_ARENA : 0));
4042 set_head (remainder, remainder_size | PREV_INUSE);
4043 set_foot (remainder, remainder_size);
4045 check_malloced_chunk (av, victim, nb);
4046 void *p = chunk2mem (victim);
4047 alloc_perturb (p, bytes);
4048 return p;
4051 /* remove from unsorted list */
4052 if (__glibc_unlikely (bck->fd != victim))
4053 malloc_printerr ("malloc(): corrupted unsorted chunks 3");
4054 unsorted_chunks (av)->bk = bck;
4055 bck->fd = unsorted_chunks (av);
4057 /* Take now instead of binning if exact fit */
4059 if (size == nb)
4061 set_inuse_bit_at_offset (victim, size);
4062 if (av != &main_arena)
4063 set_non_main_arena (victim);
4064 #if USE_TCACHE
4065 /* Fill cache first, return to user only if cache fills.
4066 We may return one of these chunks later. */
4067 if (tcache_nb
4068 && tcache->counts[tc_idx] < mp_.tcache_count)
4070 tcache_put (victim, tc_idx);
4071 return_cached = 1;
4072 continue;
4074 else
4076 #endif
4077 check_malloced_chunk (av, victim, nb);
4078 void *p = chunk2mem (victim);
4079 alloc_perturb (p, bytes);
4080 return p;
4081 #if USE_TCACHE
4083 #endif
4086 /* place chunk in bin */
4088 if (in_smallbin_range (size))
4090 victim_index = smallbin_index (size);
4091 bck = bin_at (av, victim_index);
4092 fwd = bck->fd;
4094 else
4096 victim_index = largebin_index (size);
4097 bck = bin_at (av, victim_index);
4098 fwd = bck->fd;
4100 /* maintain large bins in sorted order */
4101 if (fwd != bck)
4103 /* Or with inuse bit to speed comparisons */
4104 size |= PREV_INUSE;
4105 /* if smaller than smallest, bypass loop below */
4106 assert (chunk_main_arena (bck->bk));
4107 if ((unsigned long) (size)
4108 < (unsigned long) chunksize_nomask (bck->bk))
4110 fwd = bck;
4111 bck = bck->bk;
4113 victim->fd_nextsize = fwd->fd;
4114 victim->bk_nextsize = fwd->fd->bk_nextsize;
4115 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
4117 else
4119 assert (chunk_main_arena (fwd));
4120 while ((unsigned long) size < chunksize_nomask (fwd))
4122 fwd = fwd->fd_nextsize;
4123 assert (chunk_main_arena (fwd));
4126 if ((unsigned long) size
4127 == (unsigned long) chunksize_nomask (fwd))
4128 /* Always insert in the second position. */
4129 fwd = fwd->fd;
4130 else
4132 victim->fd_nextsize = fwd;
4133 victim->bk_nextsize = fwd->bk_nextsize;
4134 if (__glibc_unlikely (fwd->bk_nextsize->fd_nextsize != fwd))
4135 malloc_printerr ("malloc(): largebin double linked list corrupted (nextsize)");
4136 fwd->bk_nextsize = victim;
4137 victim->bk_nextsize->fd_nextsize = victim;
4139 bck = fwd->bk;
4140 if (bck->fd != fwd)
4141 malloc_printerr ("malloc(): largebin double linked list corrupted (bk)");
4144 else
4145 victim->fd_nextsize = victim->bk_nextsize = victim;
4148 mark_bin (av, victim_index);
4149 victim->bk = bck;
4150 victim->fd = fwd;
4151 fwd->bk = victim;
4152 bck->fd = victim;
4154 #if USE_TCACHE
4155 /* If we've processed as many chunks as we're allowed while
4156 filling the cache, return one of the cached ones. */
4157 ++tcache_unsorted_count;
4158 if (return_cached
4159 && mp_.tcache_unsorted_limit > 0
4160 && tcache_unsorted_count > mp_.tcache_unsorted_limit)
4162 return tcache_get (tc_idx);
4164 #endif
4166 #define MAX_ITERS 10000
4167 if (++iters >= MAX_ITERS)
4168 break;
4171 #if USE_TCACHE
4172 /* If all the small chunks we found ended up cached, return one now. */
4173 if (return_cached)
4175 return tcache_get (tc_idx);
4177 #endif
4180 If a large request, scan through the chunks of current bin in
4181 sorted order to find smallest that fits. Use the skip list for this.
4184 if (!in_smallbin_range (nb))
4186 bin = bin_at (av, idx);
4188 /* skip scan if empty or largest chunk is too small */
4189 if ((victim = first (bin)) != bin
4190 && (unsigned long) chunksize_nomask (victim)
4191 >= (unsigned long) (nb))
4193 victim = victim->bk_nextsize;
4194 while (((unsigned long) (size = chunksize (victim)) <
4195 (unsigned long) (nb)))
4196 victim = victim->bk_nextsize;
4198 /* Avoid removing the first entry for a size so that the skip
4199 list does not have to be rerouted. */
4200 if (victim != last (bin)
4201 && chunksize_nomask (victim)
4202 == chunksize_nomask (victim->fd))
4203 victim = victim->fd;
4205 remainder_size = size - nb;
4206 unlink_chunk (av, victim);
4208 /* Exhaust */
4209 if (remainder_size < MINSIZE)
4211 set_inuse_bit_at_offset (victim, size);
4212 if (av != &main_arena)
4213 set_non_main_arena (victim);
4215 /* Split */
4216 else
4218 remainder = chunk_at_offset (victim, nb);
4219 /* We cannot assume the unsorted list is empty and therefore
4220 have to perform a complete insert here. */
4221 bck = unsorted_chunks (av);
4222 fwd = bck->fd;
4223 if (__glibc_unlikely (fwd->bk != bck))
4224 malloc_printerr ("malloc(): corrupted unsorted chunks");
4225 remainder->bk = bck;
4226 remainder->fd = fwd;
4227 bck->fd = remainder;
4228 fwd->bk = remainder;
4229 if (!in_smallbin_range (remainder_size))
4231 remainder->fd_nextsize = NULL;
4232 remainder->bk_nextsize = NULL;
4234 set_head (victim, nb | PREV_INUSE |
4235 (av != &main_arena ? NON_MAIN_ARENA : 0));
4236 set_head (remainder, remainder_size | PREV_INUSE);
4237 set_foot (remainder, remainder_size);
4239 check_malloced_chunk (av, victim, nb);
4240 void *p = chunk2mem (victim);
4241 alloc_perturb (p, bytes);
4242 return p;
4247 Search for a chunk by scanning bins, starting with next largest
4248 bin. This search is strictly by best-fit; i.e., the smallest
4249 (with ties going to approximately the least recently used) chunk
4250 that fits is selected.
4252 The bitmap avoids needing to check that most blocks are nonempty.
4253 The particular case of skipping all bins during warm-up phases
4254 when no chunks have been returned yet is faster than it might look.
4257 ++idx;
4258 bin = bin_at (av, idx);
4259 block = idx2block (idx);
4260 map = av->binmap[block];
4261 bit = idx2bit (idx);
4263 for (;; )
4265 /* Skip rest of block if there are no more set bits in this block. */
4266 if (bit > map || bit == 0)
4270 if (++block >= BINMAPSIZE) /* out of bins */
4271 goto use_top;
4273 while ((map = av->binmap[block]) == 0);
4275 bin = bin_at (av, (block << BINMAPSHIFT));
4276 bit = 1;
4279 /* Advance to bin with set bit. There must be one. */
4280 while ((bit & map) == 0)
4282 bin = next_bin (bin);
4283 bit <<= 1;
4284 assert (bit != 0);
4287 /* Inspect the bin. It is likely to be non-empty */
4288 victim = last (bin);
4290 /* If a false alarm (empty bin), clear the bit. */
4291 if (victim == bin)
4293 av->binmap[block] = map &= ~bit; /* Write through */
4294 bin = next_bin (bin);
4295 bit <<= 1;
4298 else
4300 size = chunksize (victim);
4302 /* We know the first chunk in this bin is big enough to use. */
4303 assert ((unsigned long) (size) >= (unsigned long) (nb));
4305 remainder_size = size - nb;
4307 /* unlink */
4308 unlink_chunk (av, victim);
4310 /* Exhaust */
4311 if (remainder_size < MINSIZE)
4313 set_inuse_bit_at_offset (victim, size);
4314 if (av != &main_arena)
4315 set_non_main_arena (victim);
4318 /* Split */
4319 else
4321 remainder = chunk_at_offset (victim, nb);
4323 /* We cannot assume the unsorted list is empty and therefore
4324 have to perform a complete insert here. */
4325 bck = unsorted_chunks (av);
4326 fwd = bck->fd;
4327 if (__glibc_unlikely (fwd->bk != bck))
4328 malloc_printerr ("malloc(): corrupted unsorted chunks 2");
4329 remainder->bk = bck;
4330 remainder->fd = fwd;
4331 bck->fd = remainder;
4332 fwd->bk = remainder;
4334 /* advertise as last remainder */
4335 if (in_smallbin_range (nb))
4336 av->last_remainder = remainder;
4337 if (!in_smallbin_range (remainder_size))
4339 remainder->fd_nextsize = NULL;
4340 remainder->bk_nextsize = NULL;
4342 set_head (victim, nb | PREV_INUSE |
4343 (av != &main_arena ? NON_MAIN_ARENA : 0));
4344 set_head (remainder, remainder_size | PREV_INUSE);
4345 set_foot (remainder, remainder_size);
4347 check_malloced_chunk (av, victim, nb);
4348 void *p = chunk2mem (victim);
4349 alloc_perturb (p, bytes);
4350 return p;
4354 use_top:
4356 If large enough, split off the chunk bordering the end of memory
4357 (held in av->top). Note that this is in accord with the best-fit
4358 search rule. In effect, av->top is treated as larger (and thus
4359 less well fitting) than any other available chunk since it can
4360 be extended to be as large as necessary (up to system
4361 limitations).
4363 We require that av->top always exists (i.e., has size >=
4364 MINSIZE) after initialization, so if it would otherwise be
4365 exhausted by current request, it is replenished. (The main
4366 reason for ensuring it exists is that we may need MINSIZE space
4367 to put in fenceposts in sysmalloc.)
4370 victim = av->top;
4371 size = chunksize (victim);
4373 if (__glibc_unlikely (size > av->system_mem))
4374 malloc_printerr ("malloc(): corrupted top size");
4376 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
4378 remainder_size = size - nb;
4379 remainder = chunk_at_offset (victim, nb);
4380 av->top = remainder;
4381 set_head (victim, nb | PREV_INUSE |
4382 (av != &main_arena ? NON_MAIN_ARENA : 0));
4383 set_head (remainder, remainder_size | PREV_INUSE);
4385 check_malloced_chunk (av, victim, nb);
4386 void *p = chunk2mem (victim);
4387 alloc_perturb (p, bytes);
4388 return p;
4391 /* When we are using atomic ops to free fast chunks we can get
4392 here for all block sizes. */
4393 else if (atomic_load_relaxed (&av->have_fastchunks))
4395 malloc_consolidate (av);
4396 /* restore original bin index */
4397 if (in_smallbin_range (nb))
4398 idx = smallbin_index (nb);
4399 else
4400 idx = largebin_index (nb);
4404 Otherwise, relay to handle system-dependent cases
4406 else
4408 void *p = sysmalloc (nb, av);
4409 if (p != NULL)
4410 alloc_perturb (p, bytes);
4411 return p;
4417 ------------------------------ free ------------------------------
4420 static void
4421 _int_free (mstate av, mchunkptr p, int have_lock)
4423 INTERNAL_SIZE_T size; /* its size */
4424 mfastbinptr *fb; /* associated fastbin */
4425 mchunkptr nextchunk; /* next contiguous chunk */
4426 INTERNAL_SIZE_T nextsize; /* its size */
4427 int nextinuse; /* true if nextchunk is used */
4428 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4429 mchunkptr bck; /* misc temp for linking */
4430 mchunkptr fwd; /* misc temp for linking */
4432 size = chunksize (p);
4434 /* Little security check which won't hurt performance: the
4435 allocator never wrapps around at the end of the address space.
4436 Therefore we can exclude some size values which might appear
4437 here by accident or by "design" from some intruder. */
4438 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
4439 || __builtin_expect (misaligned_chunk (p), 0))
4440 malloc_printerr ("free(): invalid pointer");
4441 /* We know that each chunk is at least MINSIZE bytes in size or a
4442 multiple of MALLOC_ALIGNMENT. */
4443 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
4444 malloc_printerr ("free(): invalid size");
4446 check_inuse_chunk(av, p);
4448 #if USE_TCACHE
4450 size_t tc_idx = csize2tidx (size);
4451 if (tcache != NULL && tc_idx < mp_.tcache_bins)
4453 /* Check to see if it's already in the tcache. */
4454 tcache_entry *e = (tcache_entry *) chunk2mem (p);
4456 /* This test succeeds on double free. However, we don't 100%
4457 trust it (it also matches random payload data at a 1 in
4458 2^<size_t> chance), so verify it's not an unlikely
4459 coincidence before aborting. */
4460 if (__glibc_unlikely (e->key == tcache_key))
4462 tcache_entry *tmp;
4463 size_t cnt = 0;
4464 LIBC_PROBE (memory_tcache_double_free, 2, e, tc_idx);
4465 for (tmp = tcache->entries[tc_idx];
4466 tmp;
4467 tmp = REVEAL_PTR (tmp->next), ++cnt)
4469 if (cnt >= mp_.tcache_count)
4470 malloc_printerr ("free(): too many chunks detected in tcache");
4471 if (__glibc_unlikely (!aligned_OK (tmp)))
4472 malloc_printerr ("free(): unaligned chunk detected in tcache 2");
4473 if (tmp == e)
4474 malloc_printerr ("free(): double free detected in tcache 2");
4475 /* If we get here, it was a coincidence. We've wasted a
4476 few cycles, but don't abort. */
4480 if (tcache->counts[tc_idx] < mp_.tcache_count)
4482 tcache_put (p, tc_idx);
4483 return;
4487 #endif
4490 If eligible, place chunk on a fastbin so it can be found
4491 and used quickly in malloc.
4494 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
4496 #if TRIM_FASTBINS
4498 If TRIM_FASTBINS set, don't place chunks
4499 bordering top into fastbins
4501 && (chunk_at_offset(p, size) != av->top)
4502 #endif
4505 if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size))
4506 <= CHUNK_HDR_SZ, 0)
4507 || __builtin_expect (chunksize (chunk_at_offset (p, size))
4508 >= av->system_mem, 0))
4510 bool fail = true;
4511 /* We might not have a lock at this point and concurrent modifications
4512 of system_mem might result in a false positive. Redo the test after
4513 getting the lock. */
4514 if (!have_lock)
4516 __libc_lock_lock (av->mutex);
4517 fail = (chunksize_nomask (chunk_at_offset (p, size)) <= CHUNK_HDR_SZ
4518 || chunksize (chunk_at_offset (p, size)) >= av->system_mem);
4519 __libc_lock_unlock (av->mutex);
4522 if (fail)
4523 malloc_printerr ("free(): invalid next size (fast)");
4526 free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ);
4528 atomic_store_relaxed (&av->have_fastchunks, true);
4529 unsigned int idx = fastbin_index(size);
4530 fb = &fastbin (av, idx);
4532 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
4533 mchunkptr old = *fb, old2;
4535 if (SINGLE_THREAD_P)
4537 /* Check that the top of the bin is not the record we are going to
4538 add (i.e., double free). */
4539 if (__builtin_expect (old == p, 0))
4540 malloc_printerr ("double free or corruption (fasttop)");
4541 p->fd = PROTECT_PTR (&p->fd, old);
4542 *fb = p;
4544 else
4547 /* Check that the top of the bin is not the record we are going to
4548 add (i.e., double free). */
4549 if (__builtin_expect (old == p, 0))
4550 malloc_printerr ("double free or corruption (fasttop)");
4551 old2 = old;
4552 p->fd = PROTECT_PTR (&p->fd, old);
4554 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2))
4555 != old2);
4557 /* Check that size of fastbin chunk at the top is the same as
4558 size of the chunk that we are adding. We can dereference OLD
4559 only if we have the lock, otherwise it might have already been
4560 allocated again. */
4561 if (have_lock && old != NULL
4562 && __builtin_expect (fastbin_index (chunksize (old)) != idx, 0))
4563 malloc_printerr ("invalid fastbin entry (free)");
4567 Consolidate other non-mmapped chunks as they arrive.
4570 else if (!chunk_is_mmapped(p)) {
4572 /* If we're single-threaded, don't lock the arena. */
4573 if (SINGLE_THREAD_P)
4574 have_lock = true;
4576 if (!have_lock)
4577 __libc_lock_lock (av->mutex);
4579 nextchunk = chunk_at_offset(p, size);
4581 /* Lightweight tests: check whether the block is already the
4582 top block. */
4583 if (__glibc_unlikely (p == av->top))
4584 malloc_printerr ("double free or corruption (top)");
4585 /* Or whether the next chunk is beyond the boundaries of the arena. */
4586 if (__builtin_expect (contiguous (av)
4587 && (char *) nextchunk
4588 >= ((char *) av->top + chunksize(av->top)), 0))
4589 malloc_printerr ("double free or corruption (out)");
4590 /* Or whether the block is actually not marked used. */
4591 if (__glibc_unlikely (!prev_inuse(nextchunk)))
4592 malloc_printerr ("double free or corruption (!prev)");
4594 nextsize = chunksize(nextchunk);
4595 if (__builtin_expect (chunksize_nomask (nextchunk) <= CHUNK_HDR_SZ, 0)
4596 || __builtin_expect (nextsize >= av->system_mem, 0))
4597 malloc_printerr ("free(): invalid next size (normal)");
4599 free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ);
4601 /* consolidate backward */
4602 if (!prev_inuse(p)) {
4603 prevsize = prev_size (p);
4604 size += prevsize;
4605 p = chunk_at_offset(p, -((long) prevsize));
4606 if (__glibc_unlikely (chunksize(p) != prevsize))
4607 malloc_printerr ("corrupted size vs. prev_size while consolidating");
4608 unlink_chunk (av, p);
4611 if (nextchunk != av->top) {
4612 /* get and clear inuse bit */
4613 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4615 /* consolidate forward */
4616 if (!nextinuse) {
4617 unlink_chunk (av, nextchunk);
4618 size += nextsize;
4619 } else
4620 clear_inuse_bit_at_offset(nextchunk, 0);
4623 Place the chunk in unsorted chunk list. Chunks are
4624 not placed into regular bins until after they have
4625 been given one chance to be used in malloc.
4628 bck = unsorted_chunks(av);
4629 fwd = bck->fd;
4630 if (__glibc_unlikely (fwd->bk != bck))
4631 malloc_printerr ("free(): corrupted unsorted chunks");
4632 p->fd = fwd;
4633 p->bk = bck;
4634 if (!in_smallbin_range(size))
4636 p->fd_nextsize = NULL;
4637 p->bk_nextsize = NULL;
4639 bck->fd = p;
4640 fwd->bk = p;
4642 set_head(p, size | PREV_INUSE);
4643 set_foot(p, size);
4645 check_free_chunk(av, p);
4649 If the chunk borders the current high end of memory,
4650 consolidate into top
4653 else {
4654 size += nextsize;
4655 set_head(p, size | PREV_INUSE);
4656 av->top = p;
4657 check_chunk(av, p);
4661 If freeing a large space, consolidate possibly-surrounding
4662 chunks. Then, if the total unused topmost memory exceeds trim
4663 threshold, ask malloc_trim to reduce top.
4665 Unless max_fast is 0, we don't know if there are fastbins
4666 bordering top, so we cannot tell for sure whether threshold
4667 has been reached unless fastbins are consolidated. But we
4668 don't want to consolidate on each free. As a compromise,
4669 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4670 is reached.
4673 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4674 if (atomic_load_relaxed (&av->have_fastchunks))
4675 malloc_consolidate(av);
4677 if (av == &main_arena) {
4678 #ifndef MORECORE_CANNOT_TRIM
4679 if ((unsigned long)(chunksize(av->top)) >=
4680 (unsigned long)(mp_.trim_threshold))
4681 systrim(mp_.top_pad, av);
4682 #endif
4683 } else {
4684 /* Always try heap_trim(), even if the top chunk is not
4685 large, because the corresponding heap might go away. */
4686 heap_info *heap = heap_for_ptr(top(av));
4688 assert(heap->ar_ptr == av);
4689 heap_trim(heap, mp_.top_pad);
4693 if (!have_lock)
4694 __libc_lock_unlock (av->mutex);
4697 If the chunk was allocated via mmap, release via munmap().
4700 else {
4701 munmap_chunk (p);
4706 ------------------------- malloc_consolidate -------------------------
4708 malloc_consolidate is a specialized version of free() that tears
4709 down chunks held in fastbins. Free itself cannot be used for this
4710 purpose since, among other things, it might place chunks back onto
4711 fastbins. So, instead, we need to use a minor variant of the same
4712 code.
4715 static void malloc_consolidate(mstate av)
4717 mfastbinptr* fb; /* current fastbin being consolidated */
4718 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4719 mchunkptr p; /* current chunk being consolidated */
4720 mchunkptr nextp; /* next chunk to consolidate */
4721 mchunkptr unsorted_bin; /* bin header */
4722 mchunkptr first_unsorted; /* chunk to link to */
4724 /* These have same use as in free() */
4725 mchunkptr nextchunk;
4726 INTERNAL_SIZE_T size;
4727 INTERNAL_SIZE_T nextsize;
4728 INTERNAL_SIZE_T prevsize;
4729 int nextinuse;
4731 atomic_store_relaxed (&av->have_fastchunks, false);
4733 unsorted_bin = unsorted_chunks(av);
4736 Remove each chunk from fast bin and consolidate it, placing it
4737 then in unsorted bin. Among other reasons for doing this,
4738 placing in unsorted bin avoids needing to calculate actual bins
4739 until malloc is sure that chunks aren't immediately going to be
4740 reused anyway.
4743 maxfb = &fastbin (av, NFASTBINS - 1);
4744 fb = &fastbin (av, 0);
4745 do {
4746 p = atomic_exchange_acq (fb, NULL);
4747 if (p != 0) {
4748 do {
4750 if (__glibc_unlikely (misaligned_chunk (p)))
4751 malloc_printerr ("malloc_consolidate(): "
4752 "unaligned fastbin chunk detected");
4754 unsigned int idx = fastbin_index (chunksize (p));
4755 if ((&fastbin (av, idx)) != fb)
4756 malloc_printerr ("malloc_consolidate(): invalid chunk size");
4759 check_inuse_chunk(av, p);
4760 nextp = REVEAL_PTR (p->fd);
4762 /* Slightly streamlined version of consolidation code in free() */
4763 size = chunksize (p);
4764 nextchunk = chunk_at_offset(p, size);
4765 nextsize = chunksize(nextchunk);
4767 if (!prev_inuse(p)) {
4768 prevsize = prev_size (p);
4769 size += prevsize;
4770 p = chunk_at_offset(p, -((long) prevsize));
4771 if (__glibc_unlikely (chunksize(p) != prevsize))
4772 malloc_printerr ("corrupted size vs. prev_size in fastbins");
4773 unlink_chunk (av, p);
4776 if (nextchunk != av->top) {
4777 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4779 if (!nextinuse) {
4780 size += nextsize;
4781 unlink_chunk (av, nextchunk);
4782 } else
4783 clear_inuse_bit_at_offset(nextchunk, 0);
4785 first_unsorted = unsorted_bin->fd;
4786 unsorted_bin->fd = p;
4787 first_unsorted->bk = p;
4789 if (!in_smallbin_range (size)) {
4790 p->fd_nextsize = NULL;
4791 p->bk_nextsize = NULL;
4794 set_head(p, size | PREV_INUSE);
4795 p->bk = unsorted_bin;
4796 p->fd = first_unsorted;
4797 set_foot(p, size);
4800 else {
4801 size += nextsize;
4802 set_head(p, size | PREV_INUSE);
4803 av->top = p;
4806 } while ( (p = nextp) != 0);
4809 } while (fb++ != maxfb);
4813 ------------------------------ realloc ------------------------------
4816 static void *
4817 _int_realloc (mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4818 INTERNAL_SIZE_T nb)
4820 mchunkptr newp; /* chunk to return */
4821 INTERNAL_SIZE_T newsize; /* its size */
4822 void* newmem; /* corresponding user mem */
4824 mchunkptr next; /* next contiguous chunk after oldp */
4826 mchunkptr remainder; /* extra space at end of newp */
4827 unsigned long remainder_size; /* its size */
4829 /* oldmem size */
4830 if (__builtin_expect (chunksize_nomask (oldp) <= CHUNK_HDR_SZ, 0)
4831 || __builtin_expect (oldsize >= av->system_mem, 0))
4832 malloc_printerr ("realloc(): invalid old size");
4834 check_inuse_chunk (av, oldp);
4836 /* All callers already filter out mmap'ed chunks. */
4837 assert (!chunk_is_mmapped (oldp));
4839 next = chunk_at_offset (oldp, oldsize);
4840 INTERNAL_SIZE_T nextsize = chunksize (next);
4841 if (__builtin_expect (chunksize_nomask (next) <= CHUNK_HDR_SZ, 0)
4842 || __builtin_expect (nextsize >= av->system_mem, 0))
4843 malloc_printerr ("realloc(): invalid next size");
4845 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4847 /* already big enough; split below */
4848 newp = oldp;
4849 newsize = oldsize;
4852 else
4854 /* Try to expand forward into top */
4855 if (next == av->top &&
4856 (unsigned long) (newsize = oldsize + nextsize) >=
4857 (unsigned long) (nb + MINSIZE))
4859 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4860 av->top = chunk_at_offset (oldp, nb);
4861 set_head (av->top, (newsize - nb) | PREV_INUSE);
4862 check_inuse_chunk (av, oldp);
4863 return tag_new_usable (chunk2mem (oldp));
4866 /* Try to expand forward into next chunk; split off remainder below */
4867 else if (next != av->top &&
4868 !inuse (next) &&
4869 (unsigned long) (newsize = oldsize + nextsize) >=
4870 (unsigned long) (nb))
4872 newp = oldp;
4873 unlink_chunk (av, next);
4876 /* allocate, copy, free */
4877 else
4879 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4880 if (newmem == 0)
4881 return 0; /* propagate failure */
4883 newp = mem2chunk (newmem);
4884 newsize = chunksize (newp);
4887 Avoid copy if newp is next chunk after oldp.
4889 if (newp == next)
4891 newsize += oldsize;
4892 newp = oldp;
4894 else
4896 void *oldmem = chunk2mem (oldp);
4897 size_t sz = memsize (oldp);
4898 (void) tag_region (oldmem, sz);
4899 newmem = tag_new_usable (newmem);
4900 memcpy (newmem, oldmem, sz);
4901 _int_free (av, oldp, 1);
4902 check_inuse_chunk (av, newp);
4903 return newmem;
4908 /* If possible, free extra space in old or extended chunk */
4910 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
4912 remainder_size = newsize - nb;
4914 if (remainder_size < MINSIZE) /* not enough extra to split off */
4916 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4917 set_inuse_bit_at_offset (newp, newsize);
4919 else /* split remainder */
4921 remainder = chunk_at_offset (newp, nb);
4922 /* Clear any user-space tags before writing the header. */
4923 remainder = tag_region (remainder, remainder_size);
4924 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4925 set_head (remainder, remainder_size | PREV_INUSE |
4926 (av != &main_arena ? NON_MAIN_ARENA : 0));
4927 /* Mark remainder as inuse so free() won't complain */
4928 set_inuse_bit_at_offset (remainder, remainder_size);
4929 _int_free (av, remainder, 1);
4932 check_inuse_chunk (av, newp);
4933 return tag_new_usable (chunk2mem (newp));
4937 ------------------------------ memalign ------------------------------
4940 static void *
4941 _int_memalign (mstate av, size_t alignment, size_t bytes)
4943 INTERNAL_SIZE_T nb; /* padded request size */
4944 char *m; /* memory returned by malloc call */
4945 mchunkptr p; /* corresponding chunk */
4946 char *brk; /* alignment point within p */
4947 mchunkptr newp; /* chunk to return */
4948 INTERNAL_SIZE_T newsize; /* its size */
4949 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4950 mchunkptr remainder; /* spare room at end to split off */
4951 unsigned long remainder_size; /* its size */
4952 INTERNAL_SIZE_T size;
4956 nb = checked_request2size (bytes);
4957 if (nb == 0)
4959 __set_errno (ENOMEM);
4960 return NULL;
4964 Strategy: find a spot within that chunk that meets the alignment
4965 request, and then possibly free the leading and trailing space.
4968 /* Call malloc with worst case padding to hit alignment. */
4970 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4972 if (m == 0)
4973 return 0; /* propagate failure */
4975 p = mem2chunk (m);
4977 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4979 { /*
4980 Find an aligned spot inside chunk. Since we need to give back
4981 leading space in a chunk of at least MINSIZE, if the first
4982 calculation places us at a spot with less than MINSIZE leader,
4983 we can move to the next aligned spot -- we've allocated enough
4984 total room so that this is always possible.
4986 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4987 - ((signed long) alignment));
4988 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4989 brk += alignment;
4991 newp = (mchunkptr) brk;
4992 leadsize = brk - (char *) (p);
4993 newsize = chunksize (p) - leadsize;
4995 /* For mmapped chunks, just adjust offset */
4996 if (chunk_is_mmapped (p))
4998 set_prev_size (newp, prev_size (p) + leadsize);
4999 set_head (newp, newsize | IS_MMAPPED);
5000 return chunk2mem (newp);
5003 /* Otherwise, give back leader, use the rest */
5004 set_head (newp, newsize | PREV_INUSE |
5005 (av != &main_arena ? NON_MAIN_ARENA : 0));
5006 set_inuse_bit_at_offset (newp, newsize);
5007 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
5008 _int_free (av, p, 1);
5009 p = newp;
5011 assert (newsize >= nb &&
5012 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
5015 /* Also give back spare room at the end */
5016 if (!chunk_is_mmapped (p))
5018 size = chunksize (p);
5019 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
5021 remainder_size = size - nb;
5022 remainder = chunk_at_offset (p, nb);
5023 set_head (remainder, remainder_size | PREV_INUSE |
5024 (av != &main_arena ? NON_MAIN_ARENA : 0));
5025 set_head_size (p, nb);
5026 _int_free (av, remainder, 1);
5030 check_inuse_chunk (av, p);
5031 return chunk2mem (p);
5036 ------------------------------ malloc_trim ------------------------------
5039 static int
5040 mtrim (mstate av, size_t pad)
5042 /* Ensure all blocks are consolidated. */
5043 malloc_consolidate (av);
5045 const size_t ps = GLRO (dl_pagesize);
5046 int psindex = bin_index (ps);
5047 const size_t psm1 = ps - 1;
5049 int result = 0;
5050 for (int i = 1; i < NBINS; ++i)
5051 if (i == 1 || i >= psindex)
5053 mbinptr bin = bin_at (av, i);
5055 for (mchunkptr p = last (bin); p != bin; p = p->bk)
5057 INTERNAL_SIZE_T size = chunksize (p);
5059 if (size > psm1 + sizeof (struct malloc_chunk))
5061 /* See whether the chunk contains at least one unused page. */
5062 char *paligned_mem = (char *) (((uintptr_t) p
5063 + sizeof (struct malloc_chunk)
5064 + psm1) & ~psm1);
5066 assert ((char *) chunk2mem (p) + 2 * CHUNK_HDR_SZ
5067 <= paligned_mem);
5068 assert ((char *) p + size > paligned_mem);
5070 /* This is the size we could potentially free. */
5071 size -= paligned_mem - (char *) p;
5073 if (size > psm1)
5075 #if MALLOC_DEBUG
5076 /* When debugging we simulate destroying the memory
5077 content. */
5078 memset (paligned_mem, 0x89, size & ~psm1);
5079 #endif
5080 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
5082 result = 1;
5088 #ifndef MORECORE_CANNOT_TRIM
5089 return result | (av == &main_arena ? systrim (pad, av) : 0);
5091 #else
5092 return result;
5093 #endif
5098 __malloc_trim (size_t s)
5100 int result = 0;
5102 if (!__malloc_initialized)
5103 ptmalloc_init ();
5105 mstate ar_ptr = &main_arena;
5108 __libc_lock_lock (ar_ptr->mutex);
5109 result |= mtrim (ar_ptr, s);
5110 __libc_lock_unlock (ar_ptr->mutex);
5112 ar_ptr = ar_ptr->next;
5114 while (ar_ptr != &main_arena);
5116 return result;
5121 ------------------------- malloc_usable_size -------------------------
5124 static size_t
5125 musable (void *mem)
5127 mchunkptr p = mem2chunk (mem);
5129 if (chunk_is_mmapped (p))
5130 return chunksize (p) - CHUNK_HDR_SZ;
5131 else if (inuse (p))
5132 return memsize (p);
5134 return 0;
5137 #if IS_IN (libc)
5138 size_t
5139 __malloc_usable_size (void *m)
5141 if (m == NULL)
5142 return 0;
5143 return musable (m);
5145 #endif
5148 ------------------------------ mallinfo ------------------------------
5149 Accumulate malloc statistics for arena AV into M.
5151 static void
5152 int_mallinfo (mstate av, struct mallinfo2 *m)
5154 size_t i;
5155 mbinptr b;
5156 mchunkptr p;
5157 INTERNAL_SIZE_T avail;
5158 INTERNAL_SIZE_T fastavail;
5159 int nblocks;
5160 int nfastblocks;
5162 check_malloc_state (av);
5164 /* Account for top */
5165 avail = chunksize (av->top);
5166 nblocks = 1; /* top always exists */
5168 /* traverse fastbins */
5169 nfastblocks = 0;
5170 fastavail = 0;
5172 for (i = 0; i < NFASTBINS; ++i)
5174 for (p = fastbin (av, i);
5175 p != 0;
5176 p = REVEAL_PTR (p->fd))
5178 if (__glibc_unlikely (misaligned_chunk (p)))
5179 malloc_printerr ("int_mallinfo(): "
5180 "unaligned fastbin chunk detected");
5181 ++nfastblocks;
5182 fastavail += chunksize (p);
5186 avail += fastavail;
5188 /* traverse regular bins */
5189 for (i = 1; i < NBINS; ++i)
5191 b = bin_at (av, i);
5192 for (p = last (b); p != b; p = p->bk)
5194 ++nblocks;
5195 avail += chunksize (p);
5199 m->smblks += nfastblocks;
5200 m->ordblks += nblocks;
5201 m->fordblks += avail;
5202 m->uordblks += av->system_mem - avail;
5203 m->arena += av->system_mem;
5204 m->fsmblks += fastavail;
5205 if (av == &main_arena)
5207 m->hblks = mp_.n_mmaps;
5208 m->hblkhd = mp_.mmapped_mem;
5209 m->usmblks = 0;
5210 m->keepcost = chunksize (av->top);
5215 struct mallinfo2
5216 __libc_mallinfo2 (void)
5218 struct mallinfo2 m;
5219 mstate ar_ptr;
5221 if (!__malloc_initialized)
5222 ptmalloc_init ();
5224 memset (&m, 0, sizeof (m));
5225 ar_ptr = &main_arena;
5228 __libc_lock_lock (ar_ptr->mutex);
5229 int_mallinfo (ar_ptr, &m);
5230 __libc_lock_unlock (ar_ptr->mutex);
5232 ar_ptr = ar_ptr->next;
5234 while (ar_ptr != &main_arena);
5236 return m;
5238 libc_hidden_def (__libc_mallinfo2)
5240 struct mallinfo
5241 __libc_mallinfo (void)
5243 struct mallinfo m;
5244 struct mallinfo2 m2 = __libc_mallinfo2 ();
5246 m.arena = m2.arena;
5247 m.ordblks = m2.ordblks;
5248 m.smblks = m2.smblks;
5249 m.hblks = m2.hblks;
5250 m.hblkhd = m2.hblkhd;
5251 m.usmblks = m2.usmblks;
5252 m.fsmblks = m2.fsmblks;
5253 m.uordblks = m2.uordblks;
5254 m.fordblks = m2.fordblks;
5255 m.keepcost = m2.keepcost;
5257 return m;
5262 ------------------------------ malloc_stats ------------------------------
5265 void
5266 __malloc_stats (void)
5268 int i;
5269 mstate ar_ptr;
5270 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
5272 if (!__malloc_initialized)
5273 ptmalloc_init ();
5274 _IO_flockfile (stderr);
5275 int old_flags2 = stderr->_flags2;
5276 stderr->_flags2 |= _IO_FLAGS2_NOTCANCEL;
5277 for (i = 0, ar_ptr = &main_arena;; i++)
5279 struct mallinfo2 mi;
5281 memset (&mi, 0, sizeof (mi));
5282 __libc_lock_lock (ar_ptr->mutex);
5283 int_mallinfo (ar_ptr, &mi);
5284 fprintf (stderr, "Arena %d:\n", i);
5285 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
5286 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
5287 #if MALLOC_DEBUG > 1
5288 if (i > 0)
5289 dump_heap (heap_for_ptr (top (ar_ptr)));
5290 #endif
5291 system_b += mi.arena;
5292 in_use_b += mi.uordblks;
5293 __libc_lock_unlock (ar_ptr->mutex);
5294 ar_ptr = ar_ptr->next;
5295 if (ar_ptr == &main_arena)
5296 break;
5298 fprintf (stderr, "Total (incl. mmap):\n");
5299 fprintf (stderr, "system bytes = %10u\n", system_b);
5300 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
5301 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
5302 fprintf (stderr, "max mmap bytes = %10lu\n",
5303 (unsigned long) mp_.max_mmapped_mem);
5304 stderr->_flags2 = old_flags2;
5305 _IO_funlockfile (stderr);
5310 ------------------------------ mallopt ------------------------------
5312 static __always_inline int
5313 do_set_trim_threshold (size_t value)
5315 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold,
5316 mp_.no_dyn_threshold);
5317 mp_.trim_threshold = value;
5318 mp_.no_dyn_threshold = 1;
5319 return 1;
5322 static __always_inline int
5323 do_set_top_pad (size_t value)
5325 LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad,
5326 mp_.no_dyn_threshold);
5327 mp_.top_pad = value;
5328 mp_.no_dyn_threshold = 1;
5329 return 1;
5332 static __always_inline int
5333 do_set_mmap_threshold (size_t value)
5335 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold,
5336 mp_.no_dyn_threshold);
5337 mp_.mmap_threshold = value;
5338 mp_.no_dyn_threshold = 1;
5339 return 1;
5342 static __always_inline int
5343 do_set_mmaps_max (int32_t value)
5345 LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max,
5346 mp_.no_dyn_threshold);
5347 mp_.n_mmaps_max = value;
5348 mp_.no_dyn_threshold = 1;
5349 return 1;
5352 static __always_inline int
5353 do_set_mallopt_check (int32_t value)
5355 return 1;
5358 static __always_inline int
5359 do_set_perturb_byte (int32_t value)
5361 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
5362 perturb_byte = value;
5363 return 1;
5366 static __always_inline int
5367 do_set_arena_test (size_t value)
5369 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
5370 mp_.arena_test = value;
5371 return 1;
5374 static __always_inline int
5375 do_set_arena_max (size_t value)
5377 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
5378 mp_.arena_max = value;
5379 return 1;
5382 #if USE_TCACHE
5383 static __always_inline int
5384 do_set_tcache_max (size_t value)
5386 if (value <= MAX_TCACHE_SIZE)
5388 LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes);
5389 mp_.tcache_max_bytes = value;
5390 mp_.tcache_bins = csize2tidx (request2size(value)) + 1;
5391 return 1;
5393 return 0;
5396 static __always_inline int
5397 do_set_tcache_count (size_t value)
5399 if (value <= MAX_TCACHE_COUNT)
5401 LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count);
5402 mp_.tcache_count = value;
5403 return 1;
5405 return 0;
5408 static __always_inline int
5409 do_set_tcache_unsorted_limit (size_t value)
5411 LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit);
5412 mp_.tcache_unsorted_limit = value;
5413 return 1;
5415 #endif
5417 static __always_inline int
5418 do_set_mxfast (size_t value)
5420 if (value <= MAX_FAST_SIZE)
5422 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
5423 set_max_fast (value);
5424 return 1;
5426 return 0;
5429 #if HAVE_TUNABLES
5430 static __always_inline int
5431 do_set_hugetlb (size_t value)
5433 if (value == 1)
5435 enum malloc_thp_mode_t thp_mode = __malloc_thp_mode ();
5437 Only enable THP madvise usage if system does support it and
5438 has 'madvise' mode. Otherwise the madvise() call is wasteful.
5440 if (thp_mode == malloc_thp_mode_madvise)
5441 mp_.thp_pagesize = __malloc_default_thp_pagesize ();
5443 else if (value >= 2)
5444 __malloc_hugepage_config (value == 2 ? 0 : value, &mp_.hp_pagesize,
5445 &mp_.hp_flags);
5446 return 0;
5448 #endif
5451 __libc_mallopt (int param_number, int value)
5453 mstate av = &main_arena;
5454 int res = 1;
5456 if (!__malloc_initialized)
5457 ptmalloc_init ();
5458 __libc_lock_lock (av->mutex);
5460 LIBC_PROBE (memory_mallopt, 2, param_number, value);
5462 /* We must consolidate main arena before changing max_fast
5463 (see definition of set_max_fast). */
5464 malloc_consolidate (av);
5466 /* Many of these helper functions take a size_t. We do not worry
5467 about overflow here, because negative int values will wrap to
5468 very large size_t values and the helpers have sufficient range
5469 checking for such conversions. Many of these helpers are also
5470 used by the tunables macros in arena.c. */
5472 switch (param_number)
5474 case M_MXFAST:
5475 res = do_set_mxfast (value);
5476 break;
5478 case M_TRIM_THRESHOLD:
5479 res = do_set_trim_threshold (value);
5480 break;
5482 case M_TOP_PAD:
5483 res = do_set_top_pad (value);
5484 break;
5486 case M_MMAP_THRESHOLD:
5487 res = do_set_mmap_threshold (value);
5488 break;
5490 case M_MMAP_MAX:
5491 res = do_set_mmaps_max (value);
5492 break;
5494 case M_CHECK_ACTION:
5495 res = do_set_mallopt_check (value);
5496 break;
5498 case M_PERTURB:
5499 res = do_set_perturb_byte (value);
5500 break;
5502 case M_ARENA_TEST:
5503 if (value > 0)
5504 res = do_set_arena_test (value);
5505 break;
5507 case M_ARENA_MAX:
5508 if (value > 0)
5509 res = do_set_arena_max (value);
5510 break;
5512 __libc_lock_unlock (av->mutex);
5513 return res;
5515 libc_hidden_def (__libc_mallopt)
5519 -------------------- Alternative MORECORE functions --------------------
5524 General Requirements for MORECORE.
5526 The MORECORE function must have the following properties:
5528 If MORECORE_CONTIGUOUS is false:
5530 * MORECORE must allocate in multiples of pagesize. It will
5531 only be called with arguments that are multiples of pagesize.
5533 * MORECORE(0) must return an address that is at least
5534 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5536 else (i.e. If MORECORE_CONTIGUOUS is true):
5538 * Consecutive calls to MORECORE with positive arguments
5539 return increasing addresses, indicating that space has been
5540 contiguously extended.
5542 * MORECORE need not allocate in multiples of pagesize.
5543 Calls to MORECORE need not have args of multiples of pagesize.
5545 * MORECORE need not page-align.
5547 In either case:
5549 * MORECORE may allocate more memory than requested. (Or even less,
5550 but this will generally result in a malloc failure.)
5552 * MORECORE must not allocate memory when given argument zero, but
5553 instead return one past the end address of memory from previous
5554 nonzero call. This malloc does NOT call MORECORE(0)
5555 until at least one call with positive arguments is made, so
5556 the initial value returned is not important.
5558 * Even though consecutive calls to MORECORE need not return contiguous
5559 addresses, it must be OK for malloc'ed chunks to span multiple
5560 regions in those cases where they do happen to be contiguous.
5562 * MORECORE need not handle negative arguments -- it may instead
5563 just return MORECORE_FAILURE when given negative arguments.
5564 Negative arguments are always multiples of pagesize. MORECORE
5565 must not misinterpret negative args as large positive unsigned
5566 args. You can suppress all such calls from even occurring by defining
5567 MORECORE_CANNOT_TRIM,
5569 There is some variation across systems about the type of the
5570 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5571 actually be size_t, because sbrk supports negative args, so it is
5572 normally the signed type of the same width as size_t (sometimes
5573 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5574 matter though. Internally, we use "long" as arguments, which should
5575 work across all reasonable possibilities.
5577 Additionally, if MORECORE ever returns failure for a positive
5578 request, then mmap is used as a noncontiguous system allocator. This
5579 is a useful backup strategy for systems with holes in address spaces
5580 -- in this case sbrk cannot contiguously expand the heap, but mmap
5581 may be able to map noncontiguous space.
5583 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5584 a function that always returns MORECORE_FAILURE.
5586 If you are using this malloc with something other than sbrk (or its
5587 emulation) to supply memory regions, you probably want to set
5588 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5589 allocator kindly contributed for pre-OSX macOS. It uses virtually
5590 but not necessarily physically contiguous non-paged memory (locked
5591 in, present and won't get swapped out). You can use it by
5592 uncommenting this section, adding some #includes, and setting up the
5593 appropriate defines above:
5595 *#define MORECORE osMoreCore
5596 *#define MORECORE_CONTIGUOUS 0
5598 There is also a shutdown routine that should somehow be called for
5599 cleanup upon program exit.
5601 *#define MAX_POOL_ENTRIES 100
5602 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
5603 static int next_os_pool;
5604 void *our_os_pools[MAX_POOL_ENTRIES];
5606 void *osMoreCore(int size)
5608 void *ptr = 0;
5609 static void *sbrk_top = 0;
5611 if (size > 0)
5613 if (size < MINIMUM_MORECORE_SIZE)
5614 size = MINIMUM_MORECORE_SIZE;
5615 if (CurrentExecutionLevel() == kTaskLevel)
5616 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5617 if (ptr == 0)
5619 return (void *) MORECORE_FAILURE;
5621 // save ptrs so they can be freed during cleanup
5622 our_os_pools[next_os_pool] = ptr;
5623 next_os_pool++;
5624 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5625 sbrk_top = (char *) ptr + size;
5626 return ptr;
5628 else if (size < 0)
5630 // we don't currently support shrink behavior
5631 return (void *) MORECORE_FAILURE;
5633 else
5635 return sbrk_top;
5639 // cleanup any allocated memory pools
5640 // called as last thing before shutting down driver
5642 void osCleanupMem(void)
5644 void **ptr;
5646 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5647 if (*ptr)
5649 PoolDeallocate(*ptr);
5650 * ptr = 0;
5657 /* Helper code. */
5659 extern char **__libc_argv attribute_hidden;
5661 static void
5662 malloc_printerr (const char *str)
5664 #if IS_IN (libc)
5665 __libc_message (do_abort, "%s\n", str);
5666 #else
5667 __libc_fatal (str);
5668 #endif
5669 __builtin_unreachable ();
5672 #if IS_IN (libc)
5673 /* We need a wrapper function for one of the additions of POSIX. */
5675 __posix_memalign (void **memptr, size_t alignment, size_t size)
5677 void *mem;
5679 if (!__malloc_initialized)
5680 ptmalloc_init ();
5682 /* Test whether the SIZE argument is valid. It must be a power of
5683 two multiple of sizeof (void *). */
5684 if (alignment % sizeof (void *) != 0
5685 || !powerof2 (alignment / sizeof (void *))
5686 || alignment == 0)
5687 return EINVAL;
5690 void *address = RETURN_ADDRESS (0);
5691 mem = _mid_memalign (alignment, size, address);
5693 if (mem != NULL)
5695 *memptr = mem;
5696 return 0;
5699 return ENOMEM;
5701 weak_alias (__posix_memalign, posix_memalign)
5702 #endif
5706 __malloc_info (int options, FILE *fp)
5708 /* For now, at least. */
5709 if (options != 0)
5710 return EINVAL;
5712 int n = 0;
5713 size_t total_nblocks = 0;
5714 size_t total_nfastblocks = 0;
5715 size_t total_avail = 0;
5716 size_t total_fastavail = 0;
5717 size_t total_system = 0;
5718 size_t total_max_system = 0;
5719 size_t total_aspace = 0;
5720 size_t total_aspace_mprotect = 0;
5724 if (!__malloc_initialized)
5725 ptmalloc_init ();
5727 fputs ("<malloc version=\"1\">\n", fp);
5729 /* Iterate over all arenas currently in use. */
5730 mstate ar_ptr = &main_arena;
5733 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5735 size_t nblocks = 0;
5736 size_t nfastblocks = 0;
5737 size_t avail = 0;
5738 size_t fastavail = 0;
5739 struct
5741 size_t from;
5742 size_t to;
5743 size_t total;
5744 size_t count;
5745 } sizes[NFASTBINS + NBINS - 1];
5746 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5748 __libc_lock_lock (ar_ptr->mutex);
5750 /* Account for top chunk. The top-most available chunk is
5751 treated specially and is never in any bin. See "initial_top"
5752 comments. */
5753 avail = chunksize (ar_ptr->top);
5754 nblocks = 1; /* Top always exists. */
5756 for (size_t i = 0; i < NFASTBINS; ++i)
5758 mchunkptr p = fastbin (ar_ptr, i);
5759 if (p != NULL)
5761 size_t nthissize = 0;
5762 size_t thissize = chunksize (p);
5764 while (p != NULL)
5766 if (__glibc_unlikely (misaligned_chunk (p)))
5767 malloc_printerr ("__malloc_info(): "
5768 "unaligned fastbin chunk detected");
5769 ++nthissize;
5770 p = REVEAL_PTR (p->fd);
5773 fastavail += nthissize * thissize;
5774 nfastblocks += nthissize;
5775 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5776 sizes[i].to = thissize;
5777 sizes[i].count = nthissize;
5779 else
5780 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5782 sizes[i].total = sizes[i].count * sizes[i].to;
5786 mbinptr bin;
5787 struct malloc_chunk *r;
5789 for (size_t i = 1; i < NBINS; ++i)
5791 bin = bin_at (ar_ptr, i);
5792 r = bin->fd;
5793 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5794 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5795 = sizes[NFASTBINS - 1 + i].count = 0;
5797 if (r != NULL)
5798 while (r != bin)
5800 size_t r_size = chunksize_nomask (r);
5801 ++sizes[NFASTBINS - 1 + i].count;
5802 sizes[NFASTBINS - 1 + i].total += r_size;
5803 sizes[NFASTBINS - 1 + i].from
5804 = MIN (sizes[NFASTBINS - 1 + i].from, r_size);
5805 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5806 r_size);
5808 r = r->fd;
5811 if (sizes[NFASTBINS - 1 + i].count == 0)
5812 sizes[NFASTBINS - 1 + i].from = 0;
5813 nblocks += sizes[NFASTBINS - 1 + i].count;
5814 avail += sizes[NFASTBINS - 1 + i].total;
5817 size_t heap_size = 0;
5818 size_t heap_mprotect_size = 0;
5819 size_t heap_count = 0;
5820 if (ar_ptr != &main_arena)
5822 /* Iterate over the arena heaps from back to front. */
5823 heap_info *heap = heap_for_ptr (top (ar_ptr));
5826 heap_size += heap->size;
5827 heap_mprotect_size += heap->mprotect_size;
5828 heap = heap->prev;
5829 ++heap_count;
5831 while (heap != NULL);
5834 __libc_lock_unlock (ar_ptr->mutex);
5836 total_nfastblocks += nfastblocks;
5837 total_fastavail += fastavail;
5839 total_nblocks += nblocks;
5840 total_avail += avail;
5842 for (size_t i = 0; i < nsizes; ++i)
5843 if (sizes[i].count != 0 && i != NFASTBINS)
5844 fprintf (fp, "\
5845 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5846 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5848 if (sizes[NFASTBINS].count != 0)
5849 fprintf (fp, "\
5850 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5851 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5852 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5854 total_system += ar_ptr->system_mem;
5855 total_max_system += ar_ptr->max_system_mem;
5857 fprintf (fp,
5858 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5859 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5860 "<system type=\"current\" size=\"%zu\"/>\n"
5861 "<system type=\"max\" size=\"%zu\"/>\n",
5862 nfastblocks, fastavail, nblocks, avail,
5863 ar_ptr->system_mem, ar_ptr->max_system_mem);
5865 if (ar_ptr != &main_arena)
5867 fprintf (fp,
5868 "<aspace type=\"total\" size=\"%zu\"/>\n"
5869 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5870 "<aspace type=\"subheaps\" size=\"%zu\"/>\n",
5871 heap_size, heap_mprotect_size, heap_count);
5872 total_aspace += heap_size;
5873 total_aspace_mprotect += heap_mprotect_size;
5875 else
5877 fprintf (fp,
5878 "<aspace type=\"total\" size=\"%zu\"/>\n"
5879 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5880 ar_ptr->system_mem, ar_ptr->system_mem);
5881 total_aspace += ar_ptr->system_mem;
5882 total_aspace_mprotect += ar_ptr->system_mem;
5885 fputs ("</heap>\n", fp);
5886 ar_ptr = ar_ptr->next;
5888 while (ar_ptr != &main_arena);
5890 fprintf (fp,
5891 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5892 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5893 "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
5894 "<system type=\"current\" size=\"%zu\"/>\n"
5895 "<system type=\"max\" size=\"%zu\"/>\n"
5896 "<aspace type=\"total\" size=\"%zu\"/>\n"
5897 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5898 "</malloc>\n",
5899 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5900 mp_.n_mmaps, mp_.mmapped_mem,
5901 total_system, total_max_system,
5902 total_aspace, total_aspace_mprotect);
5904 return 0;
5906 #if IS_IN (libc)
5907 weak_alias (__malloc_info, malloc_info)
5909 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5910 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5911 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5912 strong_alias (__libc_memalign, __memalign)
5913 weak_alias (__libc_memalign, memalign)
5914 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5915 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5916 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5917 strong_alias (__libc_mallinfo, __mallinfo)
5918 weak_alias (__libc_mallinfo, mallinfo)
5919 strong_alias (__libc_mallinfo2, __mallinfo2)
5920 weak_alias (__libc_mallinfo2, mallinfo2)
5921 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5923 weak_alias (__malloc_stats, malloc_stats)
5924 weak_alias (__malloc_usable_size, malloc_usable_size)
5925 weak_alias (__malloc_trim, malloc_trim)
5926 #endif
5928 #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_26)
5929 compat_symbol (libc, __libc_free, cfree, GLIBC_2_0);
5930 #endif
5932 /* ------------------------------------------------------------
5933 History:
5935 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5939 * Local variables:
5940 * c-basic-offset: 2
5941 * End: