2005-12-27 Roland McGrath <roland@redhat.com>
[glibc.git] / crypt / crypt_util.c
blob0db5be7b0f53c51eae3a3f71c6293efe24f235aa
1 /*
2 * UFC-crypt: ultra fast crypt(3) implementation
4 * Copyright (C) 1991, 92, 93, 96, 97, 98, 2000 Free Software Foundation, Inc.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; see the file COPYING.LIB. If not,
18 * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 02111-1307, USA.
21 * @(#)crypt_util.c 2.56 12/20/96
23 * Support routines
27 #ifdef DEBUG
28 #include <stdio.h>
29 #endif
30 #include <string.h>
32 #ifndef STATIC
33 #define STATIC static
34 #endif
36 #ifndef DOS
37 #include "ufc-crypt.h"
38 #else
40 * Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein)
41 * for DOS patches
43 #include "pl.h"
44 #include "ufc.h"
45 #endif
46 #include "crypt.h"
47 #include "crypt-private.h"
49 /* Prototypes for local functions. */
50 #if __STDC__ - 0
51 #ifndef __GNU_LIBRARY__
52 void _ufc_clearmem (char *start, int cnt);
53 void _ufc_copymem (char *from, char *to, int cnt);
54 #endif
55 #ifdef _UFC_32_
56 STATIC void shuffle_sb (long32 *k, ufc_long saltbits);
57 #else
58 STATIC void shuffle_sb (long64 *k, ufc_long saltbits);
59 #endif
60 #endif
64 * Permutation done once on the 56 bit
65 * key derived from the original 8 byte ASCII key.
67 static const int pc1[56] = {
68 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
69 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
70 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
71 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
75 * How much to rotate each 28 bit half of the pc1 permutated
76 * 56 bit key before using pc2 to give the i' key
78 static const int rots[16] = {
79 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
83 * Permutation giving the key
84 * of the i' DES round
86 static const int pc2[48] = {
87 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
88 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
89 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
90 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
94 * The E expansion table which selects
95 * bits from the 32 bit intermediate result.
97 static const int esel[48] = {
98 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
99 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
100 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
101 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
105 * Permutation done on the
106 * result of sbox lookups
108 static const int perm32[32] = {
109 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
110 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
114 * The sboxes
116 static const int sbox[8][4][16]= {
117 { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
118 { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
119 { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
120 { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
123 { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
124 { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
125 { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
126 { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
129 { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
130 { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
131 { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
132 { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
135 { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
136 { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
137 { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
138 { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
141 { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
142 { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
143 { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
144 { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
147 { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
148 { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
149 { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
150 { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
153 { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
154 { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
155 { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
156 { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
159 { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
160 { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
161 { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
162 { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
167 * This is the initial
168 * permutation matrix
170 static const int initial_perm[64] = {
171 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
172 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
173 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
174 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
178 * This is the final
179 * permutation matrix
181 static const int final_perm[64] = {
182 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
183 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
184 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
185 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
188 #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
189 #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
191 static const ufc_long BITMASK[24] = {
192 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000,
193 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000,
194 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
195 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008
198 static const unsigned char bytemask[8] = {
199 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
202 static const ufc_long longmask[32] = {
203 0x80000000, 0x40000000, 0x20000000, 0x10000000,
204 0x08000000, 0x04000000, 0x02000000, 0x01000000,
205 0x00800000, 0x00400000, 0x00200000, 0x00100000,
206 0x00080000, 0x00040000, 0x00020000, 0x00010000,
207 0x00008000, 0x00004000, 0x00002000, 0x00001000,
208 0x00000800, 0x00000400, 0x00000200, 0x00000100,
209 0x00000080, 0x00000040, 0x00000020, 0x00000010,
210 0x00000008, 0x00000004, 0x00000002, 0x00000001
214 * do_pc1: permform pc1 permutation in the key schedule generation.
216 * The first index is the byte number in the 8 byte ASCII key
217 * - second - - the two 28 bits halfs of the result
218 * - third - selects the 7 bits actually used of each byte
220 * The result is kept with 28 bit per 32 bit with the 4 most significant
221 * bits zero.
223 static ufc_long do_pc1[8][2][128];
226 * do_pc2: permform pc2 permutation in the key schedule generation.
228 * The first index is the septet number in the two 28 bit intermediate values
229 * - second - - - septet values
231 * Knowledge of the structure of the pc2 permutation is used.
233 * The result is kept with 28 bit per 32 bit with the 4 most significant
234 * bits zero.
236 static ufc_long do_pc2[8][128];
239 * eperm32tab: do 32 bit permutation and E selection
241 * The first index is the byte number in the 32 bit value to be permuted
242 * - second - is the value of this byte
243 * - third - selects the two 32 bit values
245 * The table is used and generated internally in init_des to speed it up
247 static ufc_long eperm32tab[4][256][2];
250 * efp: undo an extra e selection and do final
251 * permutation giving the DES result.
253 * Invoked 6 bit a time on two 48 bit values
254 * giving two 32 bit longs.
256 static ufc_long efp[16][64][2];
259 * For use by the old, non-reentrant routines
260 * (crypt/encrypt/setkey)
262 struct crypt_data _ufc_foobar;
264 #ifdef __GNU_LIBRARY__
265 #include <bits/libc-lock.h>
267 __libc_lock_define_initialized (static, _ufc_tables_lock)
268 #endif
270 #ifdef DEBUG
272 void
273 _ufc_prbits(a, n)
274 ufc_long *a;
275 int n;
277 ufc_long i, j, t, tmp;
278 n /= 8;
279 for(i = 0; i < n; i++) {
280 tmp=0;
281 for(j = 0; j < 8; j++) {
282 t=8*i+j;
283 tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0;
285 (void)printf("%02x ",tmp);
287 printf(" ");
290 static void
291 _ufc_set_bits(v, b)
292 ufc_long v;
293 ufc_long *b;
295 ufc_long i;
296 *b = 0;
297 for(i = 0; i < 24; i++) {
298 if(v & longmask[8 + i])
299 *b |= BITMASK[i];
303 #endif
305 #ifndef __GNU_LIBRARY__
307 * Silly rewrites of 'bzero'/'memset'. I do so
308 * because some machines don't have
309 * bzero and some don't have memset.
312 void
313 _ufc_clearmem(start, cnt)
314 char *start;
315 int cnt;
317 while(cnt--)
318 *start++ = '\0';
321 void
322 _ufc_copymem(from, to, cnt)
323 char *from, *to;
324 int cnt;
326 while(cnt--)
327 *to++ = *from++;
329 #else
330 #define _ufc_clearmem(start, cnt) memset(start, 0, cnt)
331 #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt)
332 #endif
334 /* lookup a 6 bit value in sbox */
336 #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
339 * Initialize unit - may be invoked directly
340 * by fcrypt users.
343 void
344 __init_des_r(__data)
345 struct crypt_data * __restrict __data;
347 int comes_from_bit;
348 int bit, sg;
349 ufc_long j;
350 ufc_long mask1, mask2;
351 int e_inverse[64];
352 static volatile int small_tables_initialized = 0;
354 #ifdef _UFC_32_
355 long32 *sb[4];
356 sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1;
357 sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3;
358 #endif
359 #ifdef _UFC_64_
360 long64 *sb[4];
361 sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1;
362 sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3;
363 #endif
365 if(small_tables_initialized == 0) {
366 #ifdef __GNU_LIBRARY__
367 __libc_lock_lock (_ufc_tables_lock);
368 if(small_tables_initialized)
369 goto small_tables_done;
370 #endif
373 * Create the do_pc1 table used
374 * to affect pc1 permutation
375 * when generating keys
377 _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1));
378 for(bit = 0; bit < 56; bit++) {
379 comes_from_bit = pc1[bit] - 1;
380 mask1 = bytemask[comes_from_bit % 8 + 1];
381 mask2 = longmask[bit % 28 + 4];
382 for(j = 0; j < 128; j++) {
383 if(j & mask1)
384 do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
389 * Create the do_pc2 table used
390 * to affect pc2 permutation when
391 * generating keys
393 _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2));
394 for(bit = 0; bit < 48; bit++) {
395 comes_from_bit = pc2[bit] - 1;
396 mask1 = bytemask[comes_from_bit % 7 + 1];
397 mask2 = BITMASK[bit % 24];
398 for(j = 0; j < 128; j++) {
399 if(j & mask1)
400 do_pc2[comes_from_bit / 7][j] |= mask2;
405 * Now generate the table used to do combined
406 * 32 bit permutation and e expansion
408 * We use it because we have to permute 16384 32 bit
409 * longs into 48 bit in order to initialize sb.
411 * Looping 48 rounds per permutation becomes
412 * just too slow...
416 _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab));
417 for(bit = 0; bit < 48; bit++) {
418 ufc_long mask1,comes_from;
419 comes_from = perm32[esel[bit]-1]-1;
420 mask1 = bytemask[comes_from % 8];
421 for(j = 256; j--;) {
422 if(j & mask1)
423 eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24];
428 * Create an inverse matrix for esel telling
429 * where to plug out bits if undoing it
431 for(bit=48; bit--;) {
432 e_inverse[esel[bit] - 1 ] = bit;
433 e_inverse[esel[bit] - 1 + 32] = bit + 48;
437 * create efp: the matrix used to
438 * undo the E expansion and effect final permutation
440 _ufc_clearmem((char*)efp, (int)sizeof efp);
441 for(bit = 0; bit < 64; bit++) {
442 int o_bit, o_long;
443 ufc_long word_value, mask1, mask2;
444 int comes_from_f_bit, comes_from_e_bit;
445 int comes_from_word, bit_within_word;
447 /* See where bit i belongs in the two 32 bit long's */
448 o_long = bit / 32; /* 0..1 */
449 o_bit = bit % 32; /* 0..31 */
452 * And find a bit in the e permutated value setting this bit.
454 * Note: the e selection may have selected the same bit several
455 * times. By the initialization of e_inverse, we only look
456 * for one specific instance.
458 comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
459 comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
460 comes_from_word = comes_from_e_bit / 6; /* 0..15 */
461 bit_within_word = comes_from_e_bit % 6; /* 0..5 */
463 mask1 = longmask[bit_within_word + 26];
464 mask2 = longmask[o_bit];
466 for(word_value = 64; word_value--;) {
467 if(word_value & mask1)
468 efp[comes_from_word][word_value][o_long] |= mask2;
471 small_tables_initialized = 1;
472 #ifdef __GNU_LIBRARY__
473 small_tables_done:
474 __libc_lock_unlock(_ufc_tables_lock);
475 #endif
479 * Create the sb tables:
481 * For each 12 bit segment of an 48 bit intermediate
482 * result, the sb table precomputes the two 4 bit
483 * values of the sbox lookups done with the two 6
484 * bit halves, shifts them to their proper place,
485 * sends them through perm32 and finally E expands
486 * them so that they are ready for the next
487 * DES round.
491 _ufc_clearmem((char*)__data->sb0, (int)sizeof(__data->sb0));
492 _ufc_clearmem((char*)__data->sb1, (int)sizeof(__data->sb1));
493 _ufc_clearmem((char*)__data->sb2, (int)sizeof(__data->sb2));
494 _ufc_clearmem((char*)__data->sb3, (int)sizeof(__data->sb3));
496 for(sg = 0; sg < 4; sg++) {
497 int j1, j2;
498 int s1, s2;
500 for(j1 = 0; j1 < 64; j1++) {
501 s1 = s_lookup(2 * sg, j1);
502 for(j2 = 0; j2 < 64; j2++) {
503 ufc_long to_permute, inx;
505 s2 = s_lookup(2 * sg + 1, j2);
506 to_permute = (((ufc_long)s1 << 4) |
507 (ufc_long)s2) << (24 - 8 * (ufc_long)sg);
509 #ifdef _UFC_32_
510 inx = ((j1 << 6) | j2) << 1;
511 sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
512 sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
513 sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
514 sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
515 sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
516 sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
517 sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
518 sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
519 #endif
520 #ifdef _UFC_64_
521 inx = ((j1 << 6) | j2);
522 sb[sg][inx] =
523 ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
524 (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
525 sb[sg][inx] |=
526 ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
527 (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
528 sb[sg][inx] |=
529 ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
530 (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
531 sb[sg][inx] |=
532 ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
533 (long64)eperm32tab[3][(to_permute) & 0xff][1];
534 #endif
539 __data->current_saltbits = 0;
540 __data->current_salt[0] = 0;
541 __data->current_salt[1] = 0;
542 __data->initialized++;
545 void
546 __init_des()
548 __init_des_r(&_ufc_foobar);
552 * Process the elements of the sb table permuting the
553 * bits swapped in the expansion by the current salt.
556 #ifdef _UFC_32_
557 STATIC void
558 shuffle_sb(k, saltbits)
559 long32 *k;
560 ufc_long saltbits;
562 ufc_long j;
563 long32 x;
564 for(j=4096; j--;) {
565 x = (k[0] ^ k[1]) & (long32)saltbits;
566 *k++ ^= x;
567 *k++ ^= x;
570 #endif
572 #ifdef _UFC_64_
573 STATIC void
574 shuffle_sb(k, saltbits)
575 long64 *k;
576 ufc_long saltbits;
578 ufc_long j;
579 long64 x;
580 for(j=4096; j--;) {
581 x = ((*k >> 32) ^ *k) & (long64)saltbits;
582 *k++ ^= (x << 32) | x;
585 #endif
588 * Setup the unit for a new salt
589 * Hopefully we'll not see a new salt in each crypt call.
592 void
593 _ufc_setup_salt_r(s, __data)
594 __const char *s;
595 struct crypt_data * __restrict __data;
597 ufc_long i, j, saltbits;
599 if(__data->initialized == 0)
600 __init_des_r(__data);
602 if(s[0] == __data->current_salt[0] && s[1] == __data->current_salt[1])
603 return;
604 __data->current_salt[0] = s[0]; __data->current_salt[1] = s[1];
607 * This is the only crypt change to DES:
608 * entries are swapped in the expansion table
609 * according to the bits set in the salt.
611 saltbits = 0;
612 for(i = 0; i < 2; i++) {
613 long c=ascii_to_bin(s[i]);
614 for(j = 0; j < 6; j++) {
615 if((c >> j) & 0x1)
616 saltbits |= BITMASK[6 * i + j];
621 * Permute the sb table values
622 * to reflect the changed e
623 * selection table
625 #ifdef _UFC_32_
626 #define LONGG long32*
627 #endif
628 #ifdef _UFC_64_
629 #define LONGG long64*
630 #endif
632 shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits);
633 shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits);
634 shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits);
635 shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits);
637 __data->current_saltbits = saltbits;
640 void
641 _ufc_mk_keytab_r(key, __data)
642 const char *key;
643 struct crypt_data * __restrict __data;
645 ufc_long v1, v2, *k1;
646 int i;
647 #ifdef _UFC_32_
648 long32 v, *k2;
649 k2 = (long32*)__data->keysched;
650 #endif
651 #ifdef _UFC_64_
652 long64 v, *k2;
653 k2 = (long64*)__data->keysched;
654 #endif
656 v1 = v2 = 0; k1 = &do_pc1[0][0][0];
657 for(i = 8; i--;) {
658 v1 |= k1[*key & 0x7f]; k1 += 128;
659 v2 |= k1[*key++ & 0x7f]; k1 += 128;
662 for(i = 0; i < 16; i++) {
663 k1 = &do_pc2[0][0];
665 v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
666 v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
667 v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
668 v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
669 v |= k1[(v1 ) & 0x7f]; k1 += 128;
671 #ifdef _UFC_32_
672 *k2++ = (v | 0x00008000);
673 v = 0;
674 #endif
675 #ifdef _UFC_64_
676 v = (v << 32);
677 #endif
679 v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
680 v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
681 v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
682 v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
683 v |= k1[(v2 ) & 0x7f];
685 #ifdef _UFC_32_
686 *k2++ = (v | 0x00008000);
687 #endif
688 #ifdef _UFC_64_
689 *k2++ = v | 0x0000800000008000l;
690 #endif
693 __data->direction = 0;
697 * Undo an extra E selection and do final permutations
700 void
701 _ufc_dofinalperm_r(res, __data)
702 ufc_long *res;
703 struct crypt_data * __restrict __data;
705 ufc_long v1, v2, x;
706 ufc_long l1,l2,r1,r2;
708 l1 = res[0]; l2 = res[1];
709 r1 = res[2]; r2 = res[3];
711 x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x;
712 x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x;
714 v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
716 v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
717 v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
718 v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
719 v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
721 v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
722 v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
723 v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
724 v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
726 v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
727 v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
728 v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
729 v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
731 v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
732 v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
733 v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
734 v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
736 res[0] = v1; res[1] = v2;
740 * crypt only: convert from 64 bit to 11 bit ASCII
741 * prefixing with the salt
744 void
745 _ufc_output_conversion_r(v1, v2, salt, __data)
746 ufc_long v1, v2;
747 __const char *salt;
748 struct crypt_data * __restrict __data;
750 int i, s, shf;
752 __data->crypt_3_buf[0] = salt[0];
753 __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0];
755 for(i = 0; i < 5; i++) {
756 shf = (26 - 6 * i); /* to cope with MSC compiler bug */
757 __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
760 s = (v2 & 0xf) << 2;
761 v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
763 for(i = 5; i < 10; i++) {
764 shf = (56 - 6 * i);
765 __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
768 __data->crypt_3_buf[12] = bin_to_ascii(s);
769 __data->crypt_3_buf[13] = 0;
774 * UNIX encrypt function. Takes a bitvector
775 * represented by one byte per bit and
776 * encrypt/decrypt according to edflag
779 void
780 __encrypt_r(__block, __edflag, __data)
781 char *__block;
782 int __edflag;
783 struct crypt_data * __restrict __data;
785 ufc_long l1, l2, r1, r2, res[4];
786 int i;
787 #ifdef _UFC_32_
788 long32 *kt;
789 kt = (long32*)__data->keysched;
790 #endif
791 #ifdef _UFC_64_
792 long64 *kt;
793 kt = (long64*)__data->keysched;
794 #endif
797 * Undo any salt changes to E expansion
799 _ufc_setup_salt_r("..", __data);
802 * Reverse key table if
803 * changing operation (encrypt/decrypt)
805 if((__edflag == 0) != (__data->direction == 0)) {
806 for(i = 0; i < 8; i++) {
807 #ifdef _UFC_32_
808 long32 x;
809 x = kt[2 * (15-i)];
810 kt[2 * (15-i)] = kt[2 * i];
811 kt[2 * i] = x;
813 x = kt[2 * (15-i) + 1];
814 kt[2 * (15-i) + 1] = kt[2 * i + 1];
815 kt[2 * i + 1] = x;
816 #endif
817 #ifdef _UFC_64_
818 long64 x;
819 x = kt[15-i];
820 kt[15-i] = kt[i];
821 kt[i] = x;
822 #endif
824 __data->direction = __edflag;
828 * Do initial permutation + E expansion
830 i = 0;
831 for(l1 = 0; i < 24; i++) {
832 if(__block[initial_perm[esel[i]-1]-1])
833 l1 |= BITMASK[i];
835 for(l2 = 0; i < 48; i++) {
836 if(__block[initial_perm[esel[i]-1]-1])
837 l2 |= BITMASK[i-24];
840 i = 0;
841 for(r1 = 0; i < 24; i++) {
842 if(__block[initial_perm[esel[i]-1+32]-1])
843 r1 |= BITMASK[i];
845 for(r2 = 0; i < 48; i++) {
846 if(__block[initial_perm[esel[i]-1+32]-1])
847 r2 |= BITMASK[i-24];
851 * Do DES inner loops + final conversion
853 res[0] = l1; res[1] = l2;
854 res[2] = r1; res[3] = r2;
855 _ufc_doit_r((ufc_long)1, __data, &res[0]);
858 * Do final permutations
860 _ufc_dofinalperm_r(res, __data);
863 * And convert to bit array
865 l1 = res[0]; r1 = res[1];
866 for(i = 0; i < 32; i++) {
867 *__block++ = (l1 & longmask[i]) != 0;
869 for(i = 0; i < 32; i++) {
870 *__block++ = (r1 & longmask[i]) != 0;
873 weak_alias (__encrypt_r, encrypt_r)
875 void
876 encrypt(__block, __edflag)
877 char *__block;
878 int __edflag;
880 __encrypt_r(__block, __edflag, &_ufc_foobar);
885 * UNIX setkey function. Take a 64 bit DES
886 * key and setup the machinery.
889 void
890 __setkey_r(__key, __data)
891 __const char *__key;
892 struct crypt_data * __restrict __data;
894 int i,j;
895 unsigned char c;
896 unsigned char ktab[8];
898 _ufc_setup_salt_r("..", __data); /* be sure we're initialized */
900 for(i = 0; i < 8; i++) {
901 for(j = 0, c = 0; j < 8; j++)
902 c = c << 1 | *__key++;
903 ktab[i] = c >> 1;
905 _ufc_mk_keytab_r((char *) ktab, __data);
907 weak_alias (__setkey_r, setkey_r)
909 void
910 setkey(__key)
911 __const char *__key;
913 __setkey_r(__key, &_ufc_foobar);