sparc: Implement memcpy/mempcpy ifunc selection in C
[glibc.git] / math / k_casinh_template.c
blob4ab7d4b8362672dc78ac0931fe11b51ac41a3a49
1 /* Return arc hyperbolic sine for a complex float type, with the
2 imaginary part of the result possibly adjusted for use in
3 computing other functions.
4 Copyright (C) 1997-2017 Free Software Foundation, Inc.
5 This file is part of the GNU C Library.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
21 #include <complex.h>
22 #include <math.h>
23 #include <math_private.h>
24 #include <float.h>
26 /* Return the complex inverse hyperbolic sine of finite nonzero Z,
27 with the imaginary part of the result subtracted from pi/2 if ADJ
28 is nonzero. */
30 CFLOAT
31 M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj)
33 CFLOAT res;
34 FLOAT rx, ix;
35 CFLOAT y;
37 /* Avoid cancellation by reducing to the first quadrant. */
38 rx = M_FABS (__real__ x);
39 ix = M_FABS (__imag__ x);
41 if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON)
43 /* For large x in the first quadrant, x + csqrt (1 + x * x)
44 is sufficiently close to 2 * x to make no significant
45 difference to the result; avoid possible overflow from
46 the squaring and addition. */
47 __real__ y = rx;
48 __imag__ y = ix;
50 if (adj)
52 FLOAT t = __real__ y;
53 __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
54 __imag__ y = t;
57 res = M_SUF (__clog) (y);
58 __real__ res += (FLOAT) M_MLIT (M_LN2);
60 else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8)
62 FLOAT s = M_HYPOT (1, rx);
64 __real__ res = M_LOG (rx + s);
65 if (adj)
66 __imag__ res = M_ATAN2 (s, __imag__ x);
67 else
68 __imag__ res = M_ATAN2 (ix, s);
70 else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5))
72 FLOAT s = M_SQRT ((ix + 1) * (ix - 1));
74 __real__ res = M_LOG (ix + s);
75 if (adj)
76 __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
77 else
78 __imag__ res = M_ATAN2 (s, rx);
80 else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5))
82 if (rx < M_EPSILON * M_EPSILON)
84 FLOAT ix2m1 = (ix + 1) * (ix - 1);
85 FLOAT s = M_SQRT (ix2m1);
87 __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2;
88 if (adj)
89 __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
90 else
91 __imag__ res = M_ATAN2 (s, rx);
93 else
95 FLOAT ix2m1 = (ix + 1) * (ix - 1);
96 FLOAT rx2 = rx * rx;
97 FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
98 FLOAT d = M_SQRT (ix2m1 * ix2m1 + f);
99 FLOAT dp = d + ix2m1;
100 FLOAT dm = f / dp;
101 FLOAT r1 = M_SQRT ((dm + rx2) / 2);
102 FLOAT r2 = rx * ix / r1;
104 __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2;
105 if (adj)
106 __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x));
107 else
108 __imag__ res = M_ATAN2 (ix + r2, rx + r1);
111 else if (ix == 1 && rx < M_LIT (0.5))
113 if (rx < M_EPSILON / 8)
115 __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2;
116 if (adj)
117 __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x));
118 else
119 __imag__ res = M_ATAN2 (1, M_SQRT (rx));
121 else
123 FLOAT d = rx * M_SQRT (4 + rx * rx);
124 FLOAT s1 = M_SQRT ((d + rx * rx) / 2);
125 FLOAT s2 = M_SQRT ((d - rx * rx) / 2);
127 __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2;
128 if (adj)
129 __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x));
130 else
131 __imag__ res = M_ATAN2 (1 + s2, rx + s1);
134 else if (ix < 1 && rx < M_LIT (0.5))
136 if (ix >= M_EPSILON)
138 if (rx < M_EPSILON * M_EPSILON)
140 FLOAT onemix2 = (1 + ix) * (1 - ix);
141 FLOAT s = M_SQRT (onemix2);
143 __real__ res = M_LOG1P (2 * rx / s) / 2;
144 if (adj)
145 __imag__ res = M_ATAN2 (s, __imag__ x);
146 else
147 __imag__ res = M_ATAN2 (ix, s);
149 else
151 FLOAT onemix2 = (1 + ix) * (1 - ix);
152 FLOAT rx2 = rx * rx;
153 FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
154 FLOAT d = M_SQRT (onemix2 * onemix2 + f);
155 FLOAT dp = d + onemix2;
156 FLOAT dm = f / dp;
157 FLOAT r1 = M_SQRT ((dp + rx2) / 2);
158 FLOAT r2 = rx * ix / r1;
160 __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2;
161 if (adj)
162 __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2,
163 __imag__ x));
164 else
165 __imag__ res = M_ATAN2 (ix + r2, rx + r1);
168 else
170 FLOAT s = M_HYPOT (1, rx);
172 __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2;
173 if (adj)
174 __imag__ res = M_ATAN2 (s, __imag__ x);
175 else
176 __imag__ res = M_ATAN2 (ix, s);
178 math_check_force_underflow_nonneg (__real__ res);
180 else
182 __real__ y = (rx - ix) * (rx + ix) + 1;
183 __imag__ y = 2 * rx * ix;
185 y = M_SUF (__csqrt) (y);
187 __real__ y += rx;
188 __imag__ y += ix;
190 if (adj)
192 FLOAT t = __real__ y;
193 __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
194 __imag__ y = t;
197 res = M_SUF (__clog) (y);
200 /* Give results the correct sign for the original argument. */
201 __real__ res = M_COPYSIGN (__real__ res, __real__ x);
202 __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x));
204 return res;