1 /* Test that explicit_bzero block clears are not optimized out.
2 Copyright (C) 2016-2022 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
19 /* This test is conceptually based on a test designed by Matthew
20 Dempsky for the OpenBSD regression suite:
21 <openbsd>/src/regress/lib/libc/explicit_bzero/explicit_bzero.c.
22 The basic idea is, we have a function that contains a
23 block-clearing operation (not necessarily explicit_bzero), after
24 which the block is dead, in the compiler-jargon sense. Execute
25 that function while running on a user-allocated alternative
26 stack. Then we have another pointer to the memory region affected
27 by the block clear -- namely, the original allocation for the
28 alternative stack -- and can find out whether it actually happened.
30 The OpenBSD test uses sigaltstack and SIGUSR1 to get onto an
31 alternative stack. This causes a number of awkward problems; some
32 operating systems (e.g. Solaris and OSX) wipe the signal stack upon
33 returning to the normal stack, there's no way to be sure that other
34 processes running on the same system will not interfere, and the
35 signal stack is very small so it's not safe to call printf there.
36 This implementation instead uses the <ucontext.h> coroutine
37 interface. The coroutine stack is still too small to safely use
38 printf, but we know the OS won't erase it, so we can do all the
39 checks and printing from the normal stack. */
51 /* A byte pattern that is unlikely to occur by chance: the first 16
52 prime numbers (OEIS A000040). */
53 static const unsigned char test_pattern
[16] =
55 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53
58 /* Immediately after each subtest returns, we call swapcontext to get
59 back onto the main stack. That call might itself overwrite the
60 test pattern, so we fill a modest-sized buffer with copies of it
61 and check whether any of them survived. */
63 #define PATTERN_SIZE (sizeof test_pattern)
64 #define PATTERN_REPS 32
65 #define TEST_BUFFER_SIZE (PATTERN_SIZE * PATTERN_REPS)
67 /* There are three subtests, two of which are sanity checks.
68 Each test follows this sequence:
87 In the "no_clear" case, we don't do anything to the test buffer
88 between preparing it and letting it go out of scope, and we expect
89 to find it. This confirms that the test buffer does get filled in
90 and we can find it from the stack buffer. In the "ordinary_clear"
91 case, we clear it using memset. Depending on the target, the
92 compiler may not be able to apply dead store elimination to the
93 memset call, so the test does not fail if the memset is not
94 eliminated. Finally, the "explicit_clear" case uses explicit_bzero
95 and expects _not_ to find the test buffer, which is the real
98 static ucontext_t uc_main
, uc_co
;
100 static __attribute__ ((noinline
, noclone
)) int
101 use_test_buffer (unsigned char *buf
)
103 unsigned int sum
= 0;
105 for (unsigned int i
= 0; i
< PATTERN_REPS
; i
++)
106 sum
+= buf
[i
* PATTERN_SIZE
];
108 return (sum
== 2 * PATTERN_REPS
) ? 0 : 1;
111 /* Always check the test buffer immediately after filling it; this
112 makes externally visible side effects depend on the buffer existing
113 and having been filled in. */
114 #if defined __CET__ && !__glibc_has_attribute (__indirect_return__)
115 /* Note: swapcontext returns via indirect branch when SHSTK is enabled.
116 Without indirect_return attribute, swapcontext is marked with
117 returns_twice attribute, which prevents always_inline to work. */
118 # define ALWAYS_INLINE
120 # define ALWAYS_INLINE __attribute__ ((always_inline))
122 static inline ALWAYS_INLINE
void
123 prepare_test_buffer (unsigned char *buf
)
125 for (unsigned int i
= 0; i
< PATTERN_REPS
; i
++)
126 memcpy (buf
+ i
*PATTERN_SIZE
, test_pattern
, PATTERN_SIZE
);
128 if (swapcontext (&uc_co
, &uc_main
))
131 /* Force the compiler to really copy the pattern to buf. */
132 if (use_test_buffer (buf
))
137 setup_no_clear (void)
139 unsigned char buf
[TEST_BUFFER_SIZE
];
140 prepare_test_buffer (buf
);
144 setup_ordinary_clear (void)
146 unsigned char buf
[TEST_BUFFER_SIZE
];
147 prepare_test_buffer (buf
);
148 memset (buf
, 0, TEST_BUFFER_SIZE
);
152 setup_explicit_clear (void)
154 unsigned char buf
[TEST_BUFFER_SIZE
];
155 prepare_test_buffer (buf
);
156 explicit_bzero (buf
, TEST_BUFFER_SIZE
);
159 enum test_expectation
161 EXPECT_NONE
, EXPECT_SOME
, EXPECT_ALL
, NO_EXPECTATIONS
165 void (*setup_subtest
) (void);
167 enum test_expectation expected
;
169 static const struct subtest
*cur_subtest
;
171 static const struct subtest subtests
[] =
173 { setup_no_clear
, "no clear", EXPECT_SOME
},
174 /* The memset may happen or not, depending on compiler
176 { setup_ordinary_clear
, "ordinary clear", NO_EXPECTATIONS
},
177 { setup_explicit_clear
, "explicit clear", EXPECT_NONE
},
182 test_coroutine (void)
184 while (cur_subtest
->setup_subtest
)
186 cur_subtest
->setup_subtest ();
187 if (swapcontext (&uc_co
, &uc_main
))
192 /* All the code above this point runs on the coroutine stack.
193 All the code below this point runs on the main stack. */
195 static int test_status
;
196 static unsigned char *co_stack_buffer
;
197 static size_t co_stack_size
;
200 count_test_patterns (unsigned char *buf
, size_t bufsiz
)
202 unsigned char *first
= memmem (buf
, bufsiz
, test_pattern
, PATTERN_SIZE
);
205 unsigned int cnt
= 0;
206 for (unsigned int i
= 0; i
< PATTERN_REPS
; i
++)
208 unsigned char *p
= first
+ i
*PATTERN_SIZE
;
209 if (p
+ PATTERN_SIZE
- buf
> bufsiz
)
211 if (memcmp (p
, test_pattern
, PATTERN_SIZE
) == 0)
218 check_test_buffer (enum test_expectation expected
,
219 const char *label
, const char *stage
)
221 unsigned int cnt
= count_test_patterns (co_stack_buffer
, co_stack_size
);
226 printf ("PASS: %s/%s: expected 0 got %d\n", label
, stage
, cnt
);
229 printf ("FAIL: %s/%s: expected 0 got %d\n", label
, stage
, cnt
);
236 printf ("PASS: %s/%s: expected some got %d\n", label
, stage
, cnt
);
239 printf ("FAIL: %s/%s: expected some got 0\n", label
, stage
);
245 if (cnt
== PATTERN_REPS
)
246 printf ("PASS: %s/%s: expected %d got %d\n", label
, stage
,
250 printf ("FAIL: %s/%s: expected %d got %d\n", label
, stage
,
256 case NO_EXPECTATIONS
:
257 printf ("INFO: %s/%s: found %d patterns%s\n", label
, stage
, cnt
,
258 cnt
== 0 ? " (memset not eliminated)" : "");
262 printf ("ERROR: %s/%s: invalid value for 'expected' = %d\n",
263 label
, stage
, (int)expected
);
271 cur_subtest
= subtests
;
272 while (cur_subtest
->setup_subtest
)
274 if (swapcontext (&uc_main
, &uc_co
))
276 check_test_buffer (EXPECT_ALL
, cur_subtest
->label
, "prepare");
277 if (swapcontext (&uc_main
, &uc_co
))
279 check_test_buffer (cur_subtest
->expected
, cur_subtest
->label
, "test");
282 /* Terminate the coroutine. */
283 if (swapcontext (&uc_main
, &uc_co
))
290 size_t page_alignment
= sysconf (_SC_PAGESIZE
);
291 if (page_alignment
< sizeof (void *))
292 page_alignment
= sizeof (void *);
294 co_stack_size
= SIGSTKSZ
+ TEST_BUFFER_SIZE
;
295 if (co_stack_size
< page_alignment
* 4)
296 co_stack_size
= page_alignment
* 4;
299 int err
= posix_memalign (&p
, page_alignment
, co_stack_size
);
302 printf ("ERROR: allocating alt stack: %s\n", strerror (err
));
307 if (getcontext (&uc_co
))
309 printf ("ERROR: allocating coroutine context: %s\n", strerror (err
));
312 uc_co
.uc_stack
.ss_sp
= co_stack_buffer
;
313 uc_co
.uc_stack
.ss_size
= co_stack_size
;
314 uc_co
.uc_link
= &uc_main
;
315 makecontext (&uc_co
, test_coroutine
, 0);
321 #include <support/test-driver.c>