Fix ldbl-128ibm iscanonical for -mlong-double-64.
[glibc.git] / stdlib / strtod_l.c
blob3d66eac70682c430d211109cbe51cc9a622d4ad9
1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 #include <xlocale.h>
22 extern double ____strtod_l_internal (const char *, char **, int, __locale_t);
24 /* Configuration part. These macros are defined by `strtold.c',
25 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
26 `long double' and `float' versions of the reader. */
27 #ifndef FLOAT
28 # include <math_ldbl_opt.h>
29 # define FLOAT double
30 # define FLT DBL
31 # ifdef USE_WIDE_CHAR
32 # define STRTOF wcstod_l
33 # define __STRTOF __wcstod_l
34 # define STRTOF_NAN __wcstod_nan
35 # else
36 # define STRTOF strtod_l
37 # define __STRTOF __strtod_l
38 # define STRTOF_NAN __strtod_nan
39 # endif
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 #endif
43 /* End of configuration part. */
45 #include <ctype.h>
46 #include <errno.h>
47 #include <float.h>
48 #include "../locale/localeinfo.h"
49 #include <locale.h>
50 #include <math.h>
51 #include <math_private.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <stdint.h>
55 #include <rounding-mode.h>
56 #include <tininess.h>
58 /* The gmp headers need some configuration frobs. */
59 #define HAVE_ALLOCA 1
61 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
62 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
63 #include <gmp-mparam.h>
64 #include <gmp.h>
65 #include "gmp-impl.h"
66 #include "longlong.h"
67 #include "fpioconst.h"
69 #include <assert.h>
72 /* We use this code for the extended locale handling where the
73 function gets as an additional argument the locale which has to be
74 used. To access the values we have to redefine the _NL_CURRENT and
75 _NL_CURRENT_WORD macros. */
76 #undef _NL_CURRENT
77 #define _NL_CURRENT(category, item) \
78 (current->values[_NL_ITEM_INDEX (item)].string)
79 #undef _NL_CURRENT_WORD
80 #define _NL_CURRENT_WORD(category, item) \
81 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
83 #if defined _LIBC || defined HAVE_WCHAR_H
84 # include <wchar.h>
85 #endif
87 #ifdef USE_WIDE_CHAR
88 # include <wctype.h>
89 # define STRING_TYPE wchar_t
90 # define CHAR_TYPE wint_t
91 # define L_(Ch) L##Ch
92 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
93 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
94 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
95 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
96 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
97 # define STRNCASECMP(S1, S2, N) \
98 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
99 #else
100 # define STRING_TYPE char
101 # define CHAR_TYPE char
102 # define L_(Ch) Ch
103 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
104 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
105 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
106 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
107 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
108 # define STRNCASECMP(S1, S2, N) \
109 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
110 #endif
113 /* Constants we need from float.h; select the set for the FLOAT precision. */
114 #define MANT_DIG PASTE(FLT,_MANT_DIG)
115 #define DIG PASTE(FLT,_DIG)
116 #define MAX_EXP PASTE(FLT,_MAX_EXP)
117 #define MIN_EXP PASTE(FLT,_MIN_EXP)
118 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
119 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
120 #define MAX_VALUE PASTE(FLT,_MAX)
121 #define MIN_VALUE PASTE(FLT,_MIN)
123 /* Extra macros required to get FLT expanded before the pasting. */
124 #define PASTE(a,b) PASTE1(a,b)
125 #define PASTE1(a,b) a##b
127 /* Function to construct a floating point number from an MP integer
128 containing the fraction bits, a base 2 exponent, and a sign flag. */
129 extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
131 /* Definitions according to limb size used. */
132 #if BITS_PER_MP_LIMB == 32
133 # define MAX_DIG_PER_LIMB 9
134 # define MAX_FAC_PER_LIMB 1000000000UL
135 #elif BITS_PER_MP_LIMB == 64
136 # define MAX_DIG_PER_LIMB 19
137 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
138 #else
139 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
140 #endif
142 extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1];
144 #ifndef howmany
145 #define howmany(x,y) (((x)+((y)-1))/(y))
146 #endif
147 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
149 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
151 #define RETURN(val,end) \
152 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
153 return val; } while (0)
155 /* Maximum size necessary for mpn integers to hold floating point
156 numbers. The largest number we need to hold is 10^n where 2^-n is
157 1/4 ulp of the smallest representable value (that is, n = MANT_DIG
158 - MIN_EXP + 2). Approximate using 10^3 < 2^10. */
159 #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
160 BITS_PER_MP_LIMB) + 2)
161 /* Declare an mpn integer variable that big. */
162 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
163 /* Copy an mpn integer value. */
164 #define MPN_ASSIGN(dst, src) \
165 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
168 /* Set errno and return an overflowing value with sign specified by
169 NEGATIVE. */
170 static FLOAT
171 overflow_value (int negative)
173 __set_errno (ERANGE);
174 FLOAT result = math_narrow_eval ((negative ? -MAX_VALUE : MAX_VALUE)
175 * MAX_VALUE);
176 return result;
180 /* Set errno and return an underflowing value with sign specified by
181 NEGATIVE. */
182 static FLOAT
183 underflow_value (int negative)
185 __set_errno (ERANGE);
186 FLOAT result = math_narrow_eval ((negative ? -MIN_VALUE : MIN_VALUE)
187 * MIN_VALUE);
188 return result;
192 /* Return a floating point number of the needed type according to the given
193 multi-precision number after possible rounding. */
194 static FLOAT
195 round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
196 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
198 int mode = get_rounding_mode ();
200 if (exponent < MIN_EXP - 1)
202 if (exponent < MIN_EXP - 1 - MANT_DIG)
203 return underflow_value (negative);
205 mp_size_t shift = MIN_EXP - 1 - exponent;
206 bool is_tiny = true;
208 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
209 if (shift == MANT_DIG)
210 /* This is a special case to handle the very seldom case where
211 the mantissa will be empty after the shift. */
213 int i;
215 round_limb = retval[RETURN_LIMB_SIZE - 1];
216 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
217 for (i = 0; i < RETURN_LIMB_SIZE - 1; ++i)
218 more_bits |= retval[i] != 0;
219 MPN_ZERO (retval, RETURN_LIMB_SIZE);
221 else if (shift >= BITS_PER_MP_LIMB)
223 int i;
225 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
226 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
227 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
228 more_bits |= retval[i] != 0;
229 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
230 != 0);
232 /* __mpn_rshift requires 0 < shift < BITS_PER_MP_LIMB. */
233 if ((shift % BITS_PER_MP_LIMB) != 0)
234 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
235 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
236 shift % BITS_PER_MP_LIMB);
237 else
238 for (i = 0; i < RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB); i++)
239 retval[i] = retval[i + (shift / BITS_PER_MP_LIMB)];
240 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
241 shift / BITS_PER_MP_LIMB);
243 else if (shift > 0)
245 if (TININESS_AFTER_ROUNDING && shift == 1)
247 /* Whether the result counts as tiny depends on whether,
248 after rounding to the normal precision, it still has
249 a subnormal exponent. */
250 mp_limb_t retval_normal[RETURN_LIMB_SIZE];
251 if (round_away (negative,
252 (retval[0] & 1) != 0,
253 (round_limb
254 & (((mp_limb_t) 1) << round_bit)) != 0,
255 (more_bits
256 || ((round_limb
257 & ((((mp_limb_t) 1) << round_bit) - 1))
258 != 0)),
259 mode))
261 mp_limb_t cy = __mpn_add_1 (retval_normal, retval,
262 RETURN_LIMB_SIZE, 1);
264 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
265 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
266 ((retval_normal[RETURN_LIMB_SIZE - 1]
267 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
268 != 0)))
269 is_tiny = false;
272 round_limb = retval[0];
273 round_bit = shift - 1;
274 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
276 /* This is a hook for the m68k long double format, where the
277 exponent bias is the same for normalized and denormalized
278 numbers. */
279 #ifndef DENORM_EXP
280 # define DENORM_EXP (MIN_EXP - 2)
281 #endif
282 exponent = DENORM_EXP;
283 if (is_tiny
284 && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
285 || more_bits
286 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
288 __set_errno (ERANGE);
289 FLOAT force_underflow = MIN_VALUE * MIN_VALUE;
290 math_force_eval (force_underflow);
294 if (exponent > MAX_EXP)
295 goto overflow;
297 if (round_away (negative,
298 (retval[0] & 1) != 0,
299 (round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
300 (more_bits
301 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
302 mode))
304 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
306 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
307 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
308 (retval[RETURN_LIMB_SIZE - 1]
309 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
311 ++exponent;
312 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
313 retval[RETURN_LIMB_SIZE - 1]
314 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
316 else if (exponent == DENORM_EXP
317 && (retval[RETURN_LIMB_SIZE - 1]
318 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
319 != 0)
320 /* The number was denormalized but now normalized. */
321 exponent = MIN_EXP - 1;
324 if (exponent > MAX_EXP)
325 overflow:
326 return overflow_value (negative);
328 return MPN2FLOAT (retval, exponent, negative);
332 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
333 into N. Return the size of the number limbs in NSIZE at the first
334 character od the string that is not part of the integer as the function
335 value. If the EXPONENT is small enough to be taken as an additional
336 factor for the resulting number (see code) multiply by it. */
337 static const STRING_TYPE *
338 str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
339 intmax_t *exponent
340 #ifndef USE_WIDE_CHAR
341 , const char *decimal, size_t decimal_len, const char *thousands
342 #endif
346 /* Number of digits for actual limb. */
347 int cnt = 0;
348 mp_limb_t low = 0;
349 mp_limb_t start;
351 *nsize = 0;
352 assert (digcnt > 0);
355 if (cnt == MAX_DIG_PER_LIMB)
357 if (*nsize == 0)
359 n[0] = low;
360 *nsize = 1;
362 else
364 mp_limb_t cy;
365 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
366 cy += __mpn_add_1 (n, n, *nsize, low);
367 if (cy != 0)
369 assert (*nsize < MPNSIZE);
370 n[*nsize] = cy;
371 ++(*nsize);
374 cnt = 0;
375 low = 0;
378 /* There might be thousands separators or radix characters in
379 the string. But these all can be ignored because we know the
380 format of the number is correct and we have an exact number
381 of characters to read. */
382 #ifdef USE_WIDE_CHAR
383 if (*str < L'0' || *str > L'9')
384 ++str;
385 #else
386 if (*str < '0' || *str > '9')
388 int inner = 0;
389 if (thousands != NULL && *str == *thousands
390 && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
391 if (thousands[inner] != str[inner])
392 break;
393 thousands[inner] == '\0'; }))
394 str += inner;
395 else
396 str += decimal_len;
398 #endif
399 low = low * 10 + *str++ - L_('0');
400 ++cnt;
402 while (--digcnt > 0);
404 if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
406 low *= _tens_in_limb[*exponent];
407 start = _tens_in_limb[cnt + *exponent];
408 *exponent = 0;
410 else
411 start = _tens_in_limb[cnt];
413 if (*nsize == 0)
415 n[0] = low;
416 *nsize = 1;
418 else
420 mp_limb_t cy;
421 cy = __mpn_mul_1 (n, n, *nsize, start);
422 cy += __mpn_add_1 (n, n, *nsize, low);
423 if (cy != 0)
425 assert (*nsize < MPNSIZE);
426 n[(*nsize)++] = cy;
430 return str;
434 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
435 with the COUNT most significant bits of LIMB.
437 Implemented as a macro, so that __builtin_constant_p works even at -O0.
439 Tege doesn't like this macro so I have to write it here myself. :)
440 --drepper */
441 #define __mpn_lshift_1(ptr, size, count, limb) \
442 do \
444 mp_limb_t *__ptr = (ptr); \
445 if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \
447 mp_size_t i; \
448 for (i = (size) - 1; i > 0; --i) \
449 __ptr[i] = __ptr[i - 1]; \
450 __ptr[0] = (limb); \
452 else \
454 /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \
455 unsigned int __count = (count); \
456 (void) __mpn_lshift (__ptr, __ptr, size, __count); \
457 __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \
460 while (0)
463 #define INTERNAL(x) INTERNAL1(x)
464 #define INTERNAL1(x) __##x##_internal
465 #ifndef ____STRTOF_INTERNAL
466 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
467 #endif
469 /* This file defines a function to check for correct grouping. */
470 #include "grouping.h"
473 /* Return a floating point number with the value of the given string NPTR.
474 Set *ENDPTR to the character after the last used one. If the number is
475 smaller than the smallest representable number, set `errno' to ERANGE and
476 return 0.0. If the number is too big to be represented, set `errno' to
477 ERANGE and return HUGE_VAL with the appropriate sign. */
478 FLOAT
479 ____STRTOF_INTERNAL (const STRING_TYPE *nptr, STRING_TYPE **endptr, int group,
480 __locale_t loc)
482 int negative; /* The sign of the number. */
483 MPN_VAR (num); /* MP representation of the number. */
484 intmax_t exponent; /* Exponent of the number. */
486 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
487 int base = 10;
489 /* When we have to compute fractional digits we form a fraction with a
490 second multi-precision number (and we sometimes need a second for
491 temporary results). */
492 MPN_VAR (den);
494 /* Representation for the return value. */
495 mp_limb_t retval[RETURN_LIMB_SIZE];
496 /* Number of bits currently in result value. */
497 int bits;
499 /* Running pointer after the last character processed in the string. */
500 const STRING_TYPE *cp, *tp;
501 /* Start of significant part of the number. */
502 const STRING_TYPE *startp, *start_of_digits;
503 /* Points at the character following the integer and fractional digits. */
504 const STRING_TYPE *expp;
505 /* Total number of digit and number of digits in integer part. */
506 size_t dig_no, int_no, lead_zero;
507 /* Contains the last character read. */
508 CHAR_TYPE c;
510 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
511 there. So define it ourselves if it remains undefined. */
512 #ifndef _WINT_T
513 typedef unsigned int wint_t;
514 #endif
515 /* The radix character of the current locale. */
516 #ifdef USE_WIDE_CHAR
517 wchar_t decimal;
518 #else
519 const char *decimal;
520 size_t decimal_len;
521 #endif
522 /* The thousands character of the current locale. */
523 #ifdef USE_WIDE_CHAR
524 wchar_t thousands = L'\0';
525 #else
526 const char *thousands = NULL;
527 #endif
528 /* The numeric grouping specification of the current locale,
529 in the format described in <locale.h>. */
530 const char *grouping;
531 /* Used in several places. */
532 int cnt;
534 struct __locale_data *current = loc->__locales[LC_NUMERIC];
536 if (__glibc_unlikely (group))
538 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
539 if (*grouping <= 0 || *grouping == CHAR_MAX)
540 grouping = NULL;
541 else
543 /* Figure out the thousands separator character. */
544 #ifdef USE_WIDE_CHAR
545 thousands = _NL_CURRENT_WORD (LC_NUMERIC,
546 _NL_NUMERIC_THOUSANDS_SEP_WC);
547 if (thousands == L'\0')
548 grouping = NULL;
549 #else
550 thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
551 if (*thousands == '\0')
553 thousands = NULL;
554 grouping = NULL;
556 #endif
559 else
560 grouping = NULL;
562 /* Find the locale's decimal point character. */
563 #ifdef USE_WIDE_CHAR
564 decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
565 assert (decimal != L'\0');
566 # define decimal_len 1
567 #else
568 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
569 decimal_len = strlen (decimal);
570 assert (decimal_len > 0);
571 #endif
573 /* Prepare number representation. */
574 exponent = 0;
575 negative = 0;
576 bits = 0;
578 /* Parse string to get maximal legal prefix. We need the number of
579 characters of the integer part, the fractional part and the exponent. */
580 cp = nptr - 1;
581 /* Ignore leading white space. */
583 c = *++cp;
584 while (ISSPACE (c));
586 /* Get sign of the result. */
587 if (c == L_('-'))
589 negative = 1;
590 c = *++cp;
592 else if (c == L_('+'))
593 c = *++cp;
595 /* Return 0.0 if no legal string is found.
596 No character is used even if a sign was found. */
597 #ifdef USE_WIDE_CHAR
598 if (c == (wint_t) decimal
599 && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
601 /* We accept it. This funny construct is here only to indent
602 the code correctly. */
604 #else
605 for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
606 if (cp[cnt] != decimal[cnt])
607 break;
608 if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
610 /* We accept it. This funny construct is here only to indent
611 the code correctly. */
613 #endif
614 else if (c < L_('0') || c > L_('9'))
616 /* Check for `INF' or `INFINITY'. */
617 CHAR_TYPE lowc = TOLOWER_C (c);
619 if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
621 /* Return +/- infinity. */
622 if (endptr != NULL)
623 *endptr = (STRING_TYPE *)
624 (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
625 ? 8 : 3));
627 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
630 if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
632 /* Return NaN. */
633 FLOAT retval = NAN;
635 cp += 3;
637 /* Match `(n-char-sequence-digit)'. */
638 if (*cp == L_('('))
640 const STRING_TYPE *startp = cp;
641 STRING_TYPE *endp;
642 retval = STRTOF_NAN (cp + 1, &endp, L_(')'));
643 if (*endp == L_(')'))
644 /* Consume the closing parenthesis. */
645 cp = endp + 1;
646 else
647 /* Only match the NAN part. */
648 cp = startp;
651 if (endptr != NULL)
652 *endptr = (STRING_TYPE *) cp;
654 return retval;
657 /* It is really a text we do not recognize. */
658 RETURN (0.0, nptr);
661 /* First look whether we are faced with a hexadecimal number. */
662 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
664 /* Okay, it is a hexa-decimal number. Remember this and skip
665 the characters. BTW: hexadecimal numbers must not be
666 grouped. */
667 base = 16;
668 cp += 2;
669 c = *cp;
670 grouping = NULL;
673 /* Record the start of the digits, in case we will check their grouping. */
674 start_of_digits = startp = cp;
676 /* Ignore leading zeroes. This helps us to avoid useless computations. */
677 #ifdef USE_WIDE_CHAR
678 while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
679 c = *++cp;
680 #else
681 if (__glibc_likely (thousands == NULL))
682 while (c == '0')
683 c = *++cp;
684 else
686 /* We also have the multibyte thousands string. */
687 while (1)
689 if (c != '0')
691 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
692 if (thousands[cnt] != cp[cnt])
693 break;
694 if (thousands[cnt] != '\0')
695 break;
696 cp += cnt - 1;
698 c = *++cp;
701 #endif
703 /* If no other digit but a '0' is found the result is 0.0.
704 Return current read pointer. */
705 CHAR_TYPE lowc = TOLOWER (c);
706 if (!((c >= L_('0') && c <= L_('9'))
707 || (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
708 || (
709 #ifdef USE_WIDE_CHAR
710 c == (wint_t) decimal
711 #else
712 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
713 if (decimal[cnt] != cp[cnt])
714 break;
715 decimal[cnt] == '\0'; })
716 #endif
717 /* '0x.' alone is not a valid hexadecimal number.
718 '.' alone is not valid either, but that has been checked
719 already earlier. */
720 && (base != 16
721 || cp != start_of_digits
722 || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
723 || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
724 lo >= L_('a') && lo <= L_('f'); })))
725 || (base == 16 && (cp != start_of_digits
726 && lowc == L_('p')))
727 || (base != 16 && lowc == L_('e'))))
729 #ifdef USE_WIDE_CHAR
730 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
731 grouping);
732 #else
733 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
734 grouping);
735 #endif
736 /* If TP is at the start of the digits, there was no correctly
737 grouped prefix of the string; so no number found. */
738 RETURN (negative ? -0.0 : 0.0,
739 tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
742 /* Remember first significant digit and read following characters until the
743 decimal point, exponent character or any non-FP number character. */
744 startp = cp;
745 dig_no = 0;
746 while (1)
748 if ((c >= L_('0') && c <= L_('9'))
749 || (base == 16
750 && ({ CHAR_TYPE lo = TOLOWER (c);
751 lo >= L_('a') && lo <= L_('f'); })))
752 ++dig_no;
753 else
755 #ifdef USE_WIDE_CHAR
756 if (__builtin_expect ((wint_t) thousands == L'\0', 1)
757 || c != (wint_t) thousands)
758 /* Not a digit or separator: end of the integer part. */
759 break;
760 #else
761 if (__glibc_likely (thousands == NULL))
762 break;
763 else
765 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
766 if (thousands[cnt] != cp[cnt])
767 break;
768 if (thousands[cnt] != '\0')
769 break;
770 cp += cnt - 1;
772 #endif
774 c = *++cp;
777 if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
779 /* Check the grouping of the digits. */
780 #ifdef USE_WIDE_CHAR
781 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
782 grouping);
783 #else
784 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
785 grouping);
786 #endif
787 if (cp != tp)
789 /* Less than the entire string was correctly grouped. */
791 if (tp == start_of_digits)
792 /* No valid group of numbers at all: no valid number. */
793 RETURN (0.0, nptr);
795 if (tp < startp)
796 /* The number is validly grouped, but consists
797 only of zeroes. The whole value is zero. */
798 RETURN (negative ? -0.0 : 0.0, tp);
800 /* Recompute DIG_NO so we won't read more digits than
801 are properly grouped. */
802 cp = tp;
803 dig_no = 0;
804 for (tp = startp; tp < cp; ++tp)
805 if (*tp >= L_('0') && *tp <= L_('9'))
806 ++dig_no;
808 int_no = dig_no;
809 lead_zero = 0;
811 goto number_parsed;
815 /* We have the number of digits in the integer part. Whether these
816 are all or any is really a fractional digit will be decided
817 later. */
818 int_no = dig_no;
819 lead_zero = int_no == 0 ? (size_t) -1 : 0;
821 /* Read the fractional digits. A special case are the 'american
822 style' numbers like `16.' i.e. with decimal point but without
823 trailing digits. */
824 if (
825 #ifdef USE_WIDE_CHAR
826 c == (wint_t) decimal
827 #else
828 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
829 if (decimal[cnt] != cp[cnt])
830 break;
831 decimal[cnt] == '\0'; })
832 #endif
835 cp += decimal_len;
836 c = *cp;
837 while ((c >= L_('0') && c <= L_('9')) ||
838 (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
839 lo >= L_('a') && lo <= L_('f'); })))
841 if (c != L_('0') && lead_zero == (size_t) -1)
842 lead_zero = dig_no - int_no;
843 ++dig_no;
844 c = *++cp;
847 assert (dig_no <= (uintmax_t) INTMAX_MAX);
849 /* Remember start of exponent (if any). */
850 expp = cp;
852 /* Read exponent. */
853 lowc = TOLOWER (c);
854 if ((base == 16 && lowc == L_('p'))
855 || (base != 16 && lowc == L_('e')))
857 int exp_negative = 0;
859 c = *++cp;
860 if (c == L_('-'))
862 exp_negative = 1;
863 c = *++cp;
865 else if (c == L_('+'))
866 c = *++cp;
868 if (c >= L_('0') && c <= L_('9'))
870 intmax_t exp_limit;
872 /* Get the exponent limit. */
873 if (base == 16)
875 if (exp_negative)
877 assert (int_no <= (uintmax_t) (INTMAX_MAX
878 + MIN_EXP - MANT_DIG) / 4);
879 exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
881 else
883 if (int_no)
885 assert (lead_zero == 0
886 && int_no <= (uintmax_t) INTMAX_MAX / 4);
887 exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
889 else if (lead_zero == (size_t) -1)
891 /* The number is zero and this limit is
892 arbitrary. */
893 exp_limit = MAX_EXP + 3;
895 else
897 assert (lead_zero
898 <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
899 exp_limit = (MAX_EXP
900 + 4 * (intmax_t) lead_zero
901 + 3);
905 else
907 if (exp_negative)
909 assert (int_no
910 <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
911 exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
913 else
915 if (int_no)
917 assert (lead_zero == 0
918 && int_no <= (uintmax_t) INTMAX_MAX);
919 exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
921 else if (lead_zero == (size_t) -1)
923 /* The number is zero and this limit is
924 arbitrary. */
925 exp_limit = MAX_10_EXP + 1;
927 else
929 assert (lead_zero
930 <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
931 exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
936 if (exp_limit < 0)
937 exp_limit = 0;
941 if (__builtin_expect ((exponent > exp_limit / 10
942 || (exponent == exp_limit / 10
943 && c - L_('0') > exp_limit % 10)), 0))
944 /* The exponent is too large/small to represent a valid
945 number. */
947 FLOAT result;
949 /* We have to take care for special situation: a joker
950 might have written "0.0e100000" which is in fact
951 zero. */
952 if (lead_zero == (size_t) -1)
953 result = negative ? -0.0 : 0.0;
954 else
956 /* Overflow or underflow. */
957 result = (exp_negative
958 ? underflow_value (negative)
959 : overflow_value (negative));
962 /* Accept all following digits as part of the exponent. */
964 ++cp;
965 while (*cp >= L_('0') && *cp <= L_('9'));
967 RETURN (result, cp);
968 /* NOTREACHED */
971 exponent *= 10;
972 exponent += c - L_('0');
974 c = *++cp;
976 while (c >= L_('0') && c <= L_('9'));
978 if (exp_negative)
979 exponent = -exponent;
981 else
982 cp = expp;
985 /* We don't want to have to work with trailing zeroes after the radix. */
986 if (dig_no > int_no)
988 while (expp[-1] == L_('0'))
990 --expp;
991 --dig_no;
993 assert (dig_no >= int_no);
996 if (dig_no == int_no && dig_no > 0 && exponent < 0)
999 while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
1000 --expp;
1002 if (expp[-1] != L_('0'))
1003 break;
1005 --expp;
1006 --dig_no;
1007 --int_no;
1008 exponent += base == 16 ? 4 : 1;
1010 while (dig_no > 0 && exponent < 0);
1012 number_parsed:
1014 /* The whole string is parsed. Store the address of the next character. */
1015 if (endptr)
1016 *endptr = (STRING_TYPE *) cp;
1018 if (dig_no == 0)
1019 return negative ? -0.0 : 0.0;
1021 if (lead_zero)
1023 /* Find the decimal point */
1024 #ifdef USE_WIDE_CHAR
1025 while (*startp != decimal)
1026 ++startp;
1027 #else
1028 while (1)
1030 if (*startp == decimal[0])
1032 for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
1033 if (decimal[cnt] != startp[cnt])
1034 break;
1035 if (decimal[cnt] == '\0')
1036 break;
1038 ++startp;
1040 #endif
1041 startp += lead_zero + decimal_len;
1042 assert (lead_zero <= (base == 16
1043 ? (uintmax_t) INTMAX_MAX / 4
1044 : (uintmax_t) INTMAX_MAX));
1045 assert (lead_zero <= (base == 16
1046 ? ((uintmax_t) exponent
1047 - (uintmax_t) INTMAX_MIN) / 4
1048 : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
1049 exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
1050 dig_no -= lead_zero;
1053 /* If the BASE is 16 we can use a simpler algorithm. */
1054 if (base == 16)
1056 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
1057 4, 4, 4, 4, 4, 4, 4, 4 };
1058 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
1059 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1060 mp_limb_t val;
1062 while (!ISXDIGIT (*startp))
1063 ++startp;
1064 while (*startp == L_('0'))
1065 ++startp;
1066 if (ISDIGIT (*startp))
1067 val = *startp++ - L_('0');
1068 else
1069 val = 10 + TOLOWER (*startp++) - L_('a');
1070 bits = nbits[val];
1071 /* We cannot have a leading zero. */
1072 assert (bits != 0);
1074 if (pos + 1 >= 4 || pos + 1 >= bits)
1076 /* We don't have to care for wrapping. This is the normal
1077 case so we add the first clause in the `if' expression as
1078 an optimization. It is a compile-time constant and so does
1079 not cost anything. */
1080 retval[idx] = val << (pos - bits + 1);
1081 pos -= bits;
1083 else
1085 retval[idx--] = val >> (bits - pos - 1);
1086 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
1087 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
1090 /* Adjust the exponent for the bits we are shifting in. */
1091 assert (int_no <= (uintmax_t) (exponent < 0
1092 ? (INTMAX_MAX - bits + 1) / 4
1093 : (INTMAX_MAX - exponent - bits + 1) / 4));
1094 exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
1096 while (--dig_no > 0 && idx >= 0)
1098 if (!ISXDIGIT (*startp))
1099 startp += decimal_len;
1100 if (ISDIGIT (*startp))
1101 val = *startp++ - L_('0');
1102 else
1103 val = 10 + TOLOWER (*startp++) - L_('a');
1105 if (pos + 1 >= 4)
1107 retval[idx] |= val << (pos - 4 + 1);
1108 pos -= 4;
1110 else
1112 retval[idx--] |= val >> (4 - pos - 1);
1113 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
1114 if (idx < 0)
1116 int rest_nonzero = 0;
1117 while (--dig_no > 0)
1119 if (*startp != L_('0'))
1121 rest_nonzero = 1;
1122 break;
1124 startp++;
1126 return round_and_return (retval, exponent, negative, val,
1127 BITS_PER_MP_LIMB - 1, rest_nonzero);
1130 retval[idx] = val;
1131 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
1135 /* We ran out of digits. */
1136 MPN_ZERO (retval, idx);
1138 return round_and_return (retval, exponent, negative, 0, 0, 0);
1141 /* Now we have the number of digits in total and the integer digits as well
1142 as the exponent and its sign. We can decide whether the read digits are
1143 really integer digits or belong to the fractional part; i.e. we normalize
1144 123e-2 to 1.23. */
1146 intmax_t incr = (exponent < 0
1147 ? MAX (-(intmax_t) int_no, exponent)
1148 : MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent));
1149 int_no += incr;
1150 exponent -= incr;
1153 if (__glibc_unlikely (exponent > MAX_10_EXP + 1 - (intmax_t) int_no))
1154 return overflow_value (negative);
1156 /* 10^(MIN_10_EXP-1) is not normal. Thus, 10^(MIN_10_EXP-1) /
1157 2^MANT_DIG is below half the least subnormal, so anything with a
1158 base-10 exponent less than the base-10 exponent (which is
1159 MIN_10_EXP - 1 - ceil(MANT_DIG*log10(2))) of that value
1160 underflows. DIG is floor((MANT_DIG-1)log10(2)), so an exponent
1161 below MIN_10_EXP - (DIG + 3) underflows. But EXPONENT is
1162 actually an exponent multiplied only by a fractional part, not an
1163 integer part, so an exponent below MIN_10_EXP - (DIG + 2)
1164 underflows. */
1165 if (__glibc_unlikely (exponent < MIN_10_EXP - (DIG + 2)))
1166 return underflow_value (negative);
1168 if (int_no > 0)
1170 /* Read the integer part as a multi-precision number to NUM. */
1171 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
1172 #ifndef USE_WIDE_CHAR
1173 , decimal, decimal_len, thousands
1174 #endif
1177 if (exponent > 0)
1179 /* We now multiply the gained number by the given power of ten. */
1180 mp_limb_t *psrc = num;
1181 mp_limb_t *pdest = den;
1182 int expbit = 1;
1183 const struct mp_power *ttab = &_fpioconst_pow10[0];
1187 if ((exponent & expbit) != 0)
1189 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
1190 mp_limb_t cy;
1191 exponent ^= expbit;
1193 /* FIXME: not the whole multiplication has to be
1194 done. If we have the needed number of bits we
1195 only need the information whether more non-zero
1196 bits follow. */
1197 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
1198 cy = __mpn_mul (pdest, psrc, numsize,
1199 &__tens[ttab->arrayoff
1200 + _FPIO_CONST_OFFSET],
1201 size);
1202 else
1203 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1204 + _FPIO_CONST_OFFSET],
1205 size, psrc, numsize);
1206 numsize += size;
1207 if (cy == 0)
1208 --numsize;
1209 (void) SWAP (psrc, pdest);
1211 expbit <<= 1;
1212 ++ttab;
1214 while (exponent != 0);
1216 if (psrc == den)
1217 memcpy (num, den, numsize * sizeof (mp_limb_t));
1220 /* Determine how many bits of the result we already have. */
1221 count_leading_zeros (bits, num[numsize - 1]);
1222 bits = numsize * BITS_PER_MP_LIMB - bits;
1224 /* Now we know the exponent of the number in base two.
1225 Check it against the maximum possible exponent. */
1226 if (__glibc_unlikely (bits > MAX_EXP))
1227 return overflow_value (negative);
1229 /* We have already the first BITS bits of the result. Together with
1230 the information whether more non-zero bits follow this is enough
1231 to determine the result. */
1232 if (bits > MANT_DIG)
1234 int i;
1235 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
1236 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
1237 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
1238 : least_idx;
1239 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
1240 : least_bit - 1;
1242 if (least_bit == 0)
1243 memcpy (retval, &num[least_idx],
1244 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
1245 else
1247 for (i = least_idx; i < numsize - 1; ++i)
1248 retval[i - least_idx] = (num[i] >> least_bit)
1249 | (num[i + 1]
1250 << (BITS_PER_MP_LIMB - least_bit));
1251 if (i - least_idx < RETURN_LIMB_SIZE)
1252 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
1255 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1256 for (i = 0; num[i] == 0; ++i)
1259 return round_and_return (retval, bits - 1, negative,
1260 num[round_idx], round_bit,
1261 int_no < dig_no || i < round_idx);
1262 /* NOTREACHED */
1264 else if (dig_no == int_no)
1266 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1267 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
1269 if (target_bit == is_bit)
1271 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
1272 numsize * sizeof (mp_limb_t));
1273 /* FIXME: the following loop can be avoided if we assume a
1274 maximal MANT_DIG value. */
1275 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1277 else if (target_bit > is_bit)
1279 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
1280 num, numsize, target_bit - is_bit);
1281 /* FIXME: the following loop can be avoided if we assume a
1282 maximal MANT_DIG value. */
1283 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1285 else
1287 mp_limb_t cy;
1288 assert (numsize < RETURN_LIMB_SIZE);
1290 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1291 num, numsize, is_bit - target_bit);
1292 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1293 /* FIXME: the following loop can be avoided if we assume a
1294 maximal MANT_DIG value. */
1295 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1298 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1299 /* NOTREACHED */
1302 /* Store the bits we already have. */
1303 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1304 #if RETURN_LIMB_SIZE > 1
1305 if (numsize < RETURN_LIMB_SIZE)
1306 # if RETURN_LIMB_SIZE == 2
1307 retval[numsize] = 0;
1308 # else
1309 MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
1310 # endif
1311 #endif
1314 /* We have to compute at least some of the fractional digits. */
1316 /* We construct a fraction and the result of the division gives us
1317 the needed digits. The denominator is 1.0 multiplied by the
1318 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1319 123e-6 gives 123 / 1000000. */
1321 int expbit;
1322 int neg_exp;
1323 int more_bits;
1324 int need_frac_digits;
1325 mp_limb_t cy;
1326 mp_limb_t *psrc = den;
1327 mp_limb_t *pdest = num;
1328 const struct mp_power *ttab = &_fpioconst_pow10[0];
1330 assert (dig_no > int_no
1331 && exponent <= 0
1332 && exponent >= MIN_10_EXP - (DIG + 2));
1334 /* We need to compute MANT_DIG - BITS fractional bits that lie
1335 within the mantissa of the result, the following bit for
1336 rounding, and to know whether any subsequent bit is 0.
1337 Computing a bit with value 2^-n means looking at n digits after
1338 the decimal point. */
1339 if (bits > 0)
1341 /* The bits required are those immediately after the point. */
1342 assert (int_no > 0 && exponent == 0);
1343 need_frac_digits = 1 + MANT_DIG - bits;
1345 else
1347 /* The number is in the form .123eEXPONENT. */
1348 assert (int_no == 0 && *startp != L_('0'));
1349 /* The number is at least 10^(EXPONENT-1), and 10^3 <
1350 2^10. */
1351 int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
1352 /* The number is at least 2^-NEG_EXP_2. We need up to
1353 MANT_DIG bits following that bit. */
1354 need_frac_digits = neg_exp_2 + MANT_DIG;
1355 /* However, we never need bits beyond 1/4 ulp of the smallest
1356 representable value. (That 1/4 ulp bit is only needed to
1357 determine tinyness on machines where tinyness is determined
1358 after rounding.) */
1359 if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
1360 need_frac_digits = MANT_DIG - MIN_EXP + 2;
1361 /* At this point, NEED_FRAC_DIGITS is the total number of
1362 digits needed after the point, but some of those may be
1363 leading 0s. */
1364 need_frac_digits += exponent;
1365 /* Any cases underflowing enough that none of the fractional
1366 digits are needed should have been caught earlier (such
1367 cases are on the order of 10^-n or smaller where 2^-n is
1368 the least subnormal). */
1369 assert (need_frac_digits > 0);
1372 if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
1373 need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
1375 if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
1377 dig_no = int_no + need_frac_digits;
1378 more_bits = 1;
1380 else
1381 more_bits = 0;
1383 neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
1385 /* Construct the denominator. */
1386 densize = 0;
1387 expbit = 1;
1390 if ((neg_exp & expbit) != 0)
1392 mp_limb_t cy;
1393 neg_exp ^= expbit;
1395 if (densize == 0)
1397 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1398 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1399 densize * sizeof (mp_limb_t));
1401 else
1403 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1404 + _FPIO_CONST_OFFSET],
1405 ttab->arraysize - _FPIO_CONST_OFFSET,
1406 psrc, densize);
1407 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1408 if (cy == 0)
1409 --densize;
1410 (void) SWAP (psrc, pdest);
1413 expbit <<= 1;
1414 ++ttab;
1416 while (neg_exp != 0);
1418 if (psrc == num)
1419 memcpy (den, num, densize * sizeof (mp_limb_t));
1421 /* Read the fractional digits from the string. */
1422 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
1423 #ifndef USE_WIDE_CHAR
1424 , decimal, decimal_len, thousands
1425 #endif
1428 /* We now have to shift both numbers so that the highest bit in the
1429 denominator is set. In the same process we copy the numerator to
1430 a high place in the array so that the division constructs the wanted
1431 digits. This is done by a "quasi fix point" number representation.
1433 num: ddddddddddd . 0000000000000000000000
1434 |--- m ---|
1435 den: ddddddddddd n >= m
1436 |--- n ---|
1439 count_leading_zeros (cnt, den[densize - 1]);
1441 if (cnt > 0)
1443 /* Don't call `mpn_shift' with a count of zero since the specification
1444 does not allow this. */
1445 (void) __mpn_lshift (den, den, densize, cnt);
1446 cy = __mpn_lshift (num, num, numsize, cnt);
1447 if (cy != 0)
1448 num[numsize++] = cy;
1451 /* Now we are ready for the division. But it is not necessary to
1452 do a full multi-precision division because we only need a small
1453 number of bits for the result. So we do not use __mpn_divmod
1454 here but instead do the division here by hand and stop whenever
1455 the needed number of bits is reached. The code itself comes
1456 from the GNU MP Library by Torbj\"orn Granlund. */
1458 exponent = bits;
1460 switch (densize)
1462 case 1:
1464 mp_limb_t d, n, quot;
1465 int used = 0;
1467 n = num[0];
1468 d = den[0];
1469 assert (numsize == 1 && n < d);
1473 udiv_qrnnd (quot, n, n, 0, d);
1475 #define got_limb \
1476 if (bits == 0) \
1478 int cnt; \
1479 if (quot == 0) \
1480 cnt = BITS_PER_MP_LIMB; \
1481 else \
1482 count_leading_zeros (cnt, quot); \
1483 exponent -= cnt; \
1484 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1486 used = MANT_DIG + cnt; \
1487 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1488 bits = MANT_DIG + 1; \
1490 else \
1492 /* Note that we only clear the second element. */ \
1493 /* The conditional is determined at compile time. */ \
1494 if (RETURN_LIMB_SIZE > 1) \
1495 retval[1] = 0; \
1496 retval[0] = quot; \
1497 bits = -cnt; \
1500 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1501 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1502 quot); \
1503 else \
1505 used = MANT_DIG - bits; \
1506 if (used > 0) \
1507 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1509 bits += BITS_PER_MP_LIMB
1511 got_limb;
1513 while (bits <= MANT_DIG);
1515 return round_and_return (retval, exponent - 1, negative,
1516 quot, BITS_PER_MP_LIMB - 1 - used,
1517 more_bits || n != 0);
1519 case 2:
1521 mp_limb_t d0, d1, n0, n1;
1522 mp_limb_t quot = 0;
1523 int used = 0;
1525 d0 = den[0];
1526 d1 = den[1];
1528 if (numsize < densize)
1530 if (num[0] >= d1)
1532 /* The numerator of the number occupies fewer bits than
1533 the denominator but the one limb is bigger than the
1534 high limb of the numerator. */
1535 n1 = 0;
1536 n0 = num[0];
1538 else
1540 if (bits <= 0)
1541 exponent -= BITS_PER_MP_LIMB;
1542 else
1544 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1545 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1546 BITS_PER_MP_LIMB, 0);
1547 else
1549 used = MANT_DIG - bits;
1550 if (used > 0)
1551 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1553 bits += BITS_PER_MP_LIMB;
1555 n1 = num[0];
1556 n0 = 0;
1559 else
1561 n1 = num[1];
1562 n0 = num[0];
1565 while (bits <= MANT_DIG)
1567 mp_limb_t r;
1569 if (n1 == d1)
1571 /* QUOT should be either 111..111 or 111..110. We need
1572 special treatment of this rare case as normal division
1573 would give overflow. */
1574 quot = ~(mp_limb_t) 0;
1576 r = n0 + d1;
1577 if (r < d1) /* Carry in the addition? */
1579 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1580 goto have_quot;
1582 n1 = d0 - (d0 != 0);
1583 n0 = -d0;
1585 else
1587 udiv_qrnnd (quot, r, n1, n0, d1);
1588 umul_ppmm (n1, n0, d0, quot);
1591 q_test:
1592 if (n1 > r || (n1 == r && n0 > 0))
1594 /* The estimated QUOT was too large. */
1595 --quot;
1597 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1598 r += d1;
1599 if (r >= d1) /* If not carry, test QUOT again. */
1600 goto q_test;
1602 sub_ddmmss (n1, n0, r, 0, n1, n0);
1604 have_quot:
1605 got_limb;
1608 return round_and_return (retval, exponent - 1, negative,
1609 quot, BITS_PER_MP_LIMB - 1 - used,
1610 more_bits || n1 != 0 || n0 != 0);
1612 default:
1614 int i;
1615 mp_limb_t cy, dX, d1, n0, n1;
1616 mp_limb_t quot = 0;
1617 int used = 0;
1619 dX = den[densize - 1];
1620 d1 = den[densize - 2];
1622 /* The division does not work if the upper limb of the two-limb
1623 numerator is greater than the denominator. */
1624 if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
1625 num[numsize++] = 0;
1627 if (numsize < densize)
1629 mp_size_t empty = densize - numsize;
1630 int i;
1632 if (bits <= 0)
1633 exponent -= empty * BITS_PER_MP_LIMB;
1634 else
1636 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1638 /* We make a difference here because the compiler
1639 cannot optimize the `else' case that good and
1640 this reflects all currently used FLOAT types
1641 and GMP implementations. */
1642 #if RETURN_LIMB_SIZE <= 2
1643 assert (empty == 1);
1644 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1645 BITS_PER_MP_LIMB, 0);
1646 #else
1647 for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
1648 retval[i] = retval[i - empty];
1649 while (i >= 0)
1650 retval[i--] = 0;
1651 #endif
1653 else
1655 used = MANT_DIG - bits;
1656 if (used >= BITS_PER_MP_LIMB)
1658 int i;
1659 (void) __mpn_lshift (&retval[used
1660 / BITS_PER_MP_LIMB],
1661 retval,
1662 (RETURN_LIMB_SIZE
1663 - used / BITS_PER_MP_LIMB),
1664 used % BITS_PER_MP_LIMB);
1665 for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
1666 retval[i] = 0;
1668 else if (used > 0)
1669 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1671 bits += empty * BITS_PER_MP_LIMB;
1673 for (i = numsize; i > 0; --i)
1674 num[i + empty] = num[i - 1];
1675 MPN_ZERO (num, empty + 1);
1677 else
1679 int i;
1680 assert (numsize == densize);
1681 for (i = numsize; i > 0; --i)
1682 num[i] = num[i - 1];
1683 num[0] = 0;
1686 den[densize] = 0;
1687 n0 = num[densize];
1689 while (bits <= MANT_DIG)
1691 if (n0 == dX)
1692 /* This might over-estimate QUOT, but it's probably not
1693 worth the extra code here to find out. */
1694 quot = ~(mp_limb_t) 0;
1695 else
1697 mp_limb_t r;
1699 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1700 umul_ppmm (n1, n0, d1, quot);
1702 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1704 --quot;
1705 r += dX;
1706 if (r < dX) /* I.e. "carry in previous addition?" */
1707 break;
1708 n1 -= n0 < d1;
1709 n0 -= d1;
1713 /* Possible optimization: We already have (q * n0) and (1 * n1)
1714 after the calculation of QUOT. Taking advantage of this, we
1715 could make this loop make two iterations less. */
1717 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1719 if (num[densize] != cy)
1721 cy = __mpn_add_n (num, num, den, densize);
1722 assert (cy != 0);
1723 --quot;
1725 n0 = num[densize] = num[densize - 1];
1726 for (i = densize - 1; i > 0; --i)
1727 num[i] = num[i - 1];
1728 num[0] = 0;
1730 got_limb;
1733 for (i = densize; i >= 0 && num[i] == 0; --i)
1735 return round_and_return (retval, exponent - 1, negative,
1736 quot, BITS_PER_MP_LIMB - 1 - used,
1737 more_bits || i >= 0);
1742 /* NOTREACHED */
1744 #if defined _LIBC && !defined USE_WIDE_CHAR
1745 libc_hidden_def (____STRTOF_INTERNAL)
1746 #endif
1748 /* External user entry point. */
1750 FLOAT
1751 #ifdef weak_function
1752 weak_function
1753 #endif
1754 __STRTOF (const STRING_TYPE *nptr, STRING_TYPE **endptr, __locale_t loc)
1756 return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
1758 #if defined _LIBC
1759 libc_hidden_def (__STRTOF)
1760 libc_hidden_ver (__STRTOF, STRTOF)
1761 #endif
1762 weak_alias (__STRTOF, STRTOF)
1764 #ifdef LONG_DOUBLE_COMPAT
1765 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1766 # ifdef USE_WIDE_CHAR
1767 compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
1768 # else
1769 compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
1770 # endif
1771 # endif
1772 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1773 # ifdef USE_WIDE_CHAR
1774 compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
1775 # else
1776 compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);
1777 # endif
1778 # endif
1779 #endif