string: Fix tester build with fortify enable with gcc 6
[glibc.git] / elf / dl-tls.c
blob99b83ca6962cf8464c57195ee5ef7fd6723ebc21
1 /* Thread-local storage handling in the ELF dynamic linker. Generic version.
2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
19 #include <assert.h>
20 #include <errno.h>
21 #include <libintl.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <sys/param.h>
26 #include <atomic.h>
28 #include <tls.h>
29 #include <dl-tls.h>
30 #include <ldsodefs.h>
32 #if PTHREAD_IN_LIBC
33 # include <list.h>
34 #endif
36 #define TUNABLE_NAMESPACE rtld
37 #include <dl-tunables.h>
39 /* Surplus static TLS, GLRO(dl_tls_static_surplus), is used for
41 - IE TLS in libc.so for all dlmopen namespaces except in the initial
42 one where libc.so is not loaded dynamically but at startup time,
43 - IE TLS in other libraries which may be dynamically loaded even in the
44 initial namespace,
45 - and optionally for optimizing dynamic TLS access.
47 The maximum number of namespaces is DL_NNS, but to support that many
48 namespaces correctly the static TLS allocation should be significantly
49 increased, which may cause problems with small thread stacks due to the
50 way static TLS is accounted (bug 11787).
52 So there is a rtld.nns tunable limit on the number of supported namespaces
53 that affects the size of the static TLS and by default it's small enough
54 not to cause problems with existing applications. The limit is not
55 enforced or checked: it is the user's responsibility to increase rtld.nns
56 if more dlmopen namespaces are used.
58 Audit modules use their own namespaces, they are not included in rtld.nns,
59 but come on top when computing the number of namespaces. */
61 /* Size of initial-exec TLS in libc.so. This should be the maximum of
62 observed PT_GNU_TLS sizes across all architectures. Some
63 architectures have lower values due to differences in type sizes
64 and link editor capabilities. */
65 #define LIBC_IE_TLS 144
67 /* Size of initial-exec TLS in libraries other than libc.so.
68 This should be large enough to cover runtime libraries of the
69 compiler such as libgomp and libraries in libc other than libc.so. */
70 #define OTHER_IE_TLS 144
72 /* Default number of namespaces. */
73 #define DEFAULT_NNS 4
75 /* Default for dl_tls_static_optional. */
76 #define OPTIONAL_TLS 512
78 /* Compute the static TLS surplus based on the namespace count and the
79 TLS space that can be used for optimizations. */
80 static inline int
81 tls_static_surplus (int nns, int opt_tls)
83 return (nns - 1) * LIBC_IE_TLS + nns * OTHER_IE_TLS + opt_tls;
86 /* This value is chosen so that with default values for the tunables,
87 the computation of dl_tls_static_surplus in
88 _dl_tls_static_surplus_init yields the historic value 1664, for
89 backwards compatibility. */
90 #define LEGACY_TLS (1664 - tls_static_surplus (DEFAULT_NNS, OPTIONAL_TLS))
92 /* Calculate the size of the static TLS surplus, when the given
93 number of audit modules are loaded. Must be called after the
94 number of audit modules is known and before static TLS allocation. */
95 void
96 _dl_tls_static_surplus_init (size_t naudit)
98 size_t nns, opt_tls;
100 nns = TUNABLE_GET (nns, size_t, NULL);
101 opt_tls = TUNABLE_GET (optional_static_tls, size_t, NULL);
102 if (nns > DL_NNS)
103 nns = DL_NNS;
104 if (DL_NNS - nns < naudit)
105 _dl_fatal_printf ("Failed loading %lu audit modules, %lu are supported.\n",
106 (unsigned long) naudit, (unsigned long) (DL_NNS - nns));
107 nns += naudit;
109 GL(dl_tls_static_optional) = opt_tls;
110 assert (LEGACY_TLS >= 0);
111 GLRO(dl_tls_static_surplus) = tls_static_surplus (nns, opt_tls) + LEGACY_TLS;
114 /* Out-of-memory handler. */
115 static void
116 __attribute__ ((__noreturn__))
117 oom (void)
119 _dl_fatal_printf ("cannot allocate memory for thread-local data: ABORT\n");
123 void
124 _dl_assign_tls_modid (struct link_map *l)
126 size_t result;
128 if (__builtin_expect (GL(dl_tls_dtv_gaps), false))
130 size_t disp = 0;
131 struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list);
133 /* Note that this branch will never be executed during program
134 start since there are no gaps at that time. Therefore it
135 does not matter that the dl_tls_dtv_slotinfo is not allocated
136 yet when the function is called for the first times.
138 NB: the offset +1 is due to the fact that DTV[0] is used
139 for something else. */
140 result = GL(dl_tls_static_nelem) + 1;
141 if (result <= GL(dl_tls_max_dtv_idx))
144 while (result - disp < runp->len)
146 if (runp->slotinfo[result - disp].map == NULL)
147 break;
149 ++result;
150 assert (result <= GL(dl_tls_max_dtv_idx) + 1);
153 if (result - disp < runp->len)
155 /* Mark the entry as used, so any dependency see it. */
156 atomic_store_relaxed (&runp->slotinfo[result - disp].map, l);
157 break;
160 disp += runp->len;
162 while ((runp = runp->next) != NULL);
164 if (result > GL(dl_tls_max_dtv_idx))
166 /* The new index must indeed be exactly one higher than the
167 previous high. */
168 assert (result == GL(dl_tls_max_dtv_idx) + 1);
169 /* There is no gap anymore. */
170 GL(dl_tls_dtv_gaps) = false;
172 goto nogaps;
175 else
177 /* No gaps, allocate a new entry. */
178 nogaps:
180 result = GL(dl_tls_max_dtv_idx) + 1;
181 /* Can be read concurrently. */
182 atomic_store_relaxed (&GL(dl_tls_max_dtv_idx), result);
185 l->l_tls_modid = result;
189 size_t
190 _dl_count_modids (void)
192 /* The count is the max unless dlclose or failed dlopen created gaps. */
193 if (__glibc_likely (!GL(dl_tls_dtv_gaps)))
194 return GL(dl_tls_max_dtv_idx);
196 /* We have gaps and are forced to count the non-NULL entries. */
197 size_t n = 0;
198 struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list);
199 while (runp != NULL)
201 for (size_t i = 0; i < runp->len; ++i)
202 if (runp->slotinfo[i].map != NULL)
203 ++n;
205 runp = runp->next;
208 return n;
212 #ifdef SHARED
213 void
214 _dl_determine_tlsoffset (void)
216 size_t max_align = TCB_ALIGNMENT;
217 size_t freetop = 0;
218 size_t freebottom = 0;
220 /* The first element of the dtv slot info list is allocated. */
221 assert (GL(dl_tls_dtv_slotinfo_list) != NULL);
222 /* There is at this point only one element in the
223 dl_tls_dtv_slotinfo_list list. */
224 assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL);
226 struct dtv_slotinfo *slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo;
228 /* Determining the offset of the various parts of the static TLS
229 block has several dependencies. In addition we have to work
230 around bugs in some toolchains.
232 Each TLS block from the objects available at link time has a size
233 and an alignment requirement. The GNU ld computes the alignment
234 requirements for the data at the positions *in the file*, though.
235 I.e, it is not simply possible to allocate a block with the size
236 of the TLS program header entry. The data is laid out assuming
237 that the first byte of the TLS block fulfills
239 p_vaddr mod p_align == &TLS_BLOCK mod p_align
241 This means we have to add artificial padding at the beginning of
242 the TLS block. These bytes are never used for the TLS data in
243 this module but the first byte allocated must be aligned
244 according to mod p_align == 0 so that the first byte of the TLS
245 block is aligned according to p_vaddr mod p_align. This is ugly
246 and the linker can help by computing the offsets in the TLS block
247 assuming the first byte of the TLS block is aligned according to
248 p_align.
250 The extra space which might be allocated before the first byte of
251 the TLS block need not go unused. The code below tries to use
252 that memory for the next TLS block. This can work if the total
253 memory requirement for the next TLS block is smaller than the
254 gap. */
256 #if TLS_TCB_AT_TP
257 /* We simply start with zero. */
258 size_t offset = 0;
260 for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt)
262 assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len);
264 size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset
265 & (slotinfo[cnt].map->l_tls_align - 1));
266 size_t off;
267 max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align);
269 if (freebottom - freetop >= slotinfo[cnt].map->l_tls_blocksize)
271 off = roundup (freetop + slotinfo[cnt].map->l_tls_blocksize
272 - firstbyte, slotinfo[cnt].map->l_tls_align)
273 + firstbyte;
274 if (off <= freebottom)
276 freetop = off;
278 /* XXX For some architectures we perhaps should store the
279 negative offset. */
280 slotinfo[cnt].map->l_tls_offset = off;
281 continue;
285 off = roundup (offset + slotinfo[cnt].map->l_tls_blocksize - firstbyte,
286 slotinfo[cnt].map->l_tls_align) + firstbyte;
287 if (off > offset + slotinfo[cnt].map->l_tls_blocksize
288 + (freebottom - freetop))
290 freetop = offset;
291 freebottom = off - slotinfo[cnt].map->l_tls_blocksize;
293 offset = off;
295 /* XXX For some architectures we perhaps should store the
296 negative offset. */
297 slotinfo[cnt].map->l_tls_offset = off;
300 GL(dl_tls_static_used) = offset;
301 GLRO (dl_tls_static_size) = (roundup (offset + GLRO(dl_tls_static_surplus),
302 max_align)
303 + TLS_TCB_SIZE);
304 #elif TLS_DTV_AT_TP
305 /* The TLS blocks start right after the TCB. */
306 size_t offset = TLS_TCB_SIZE;
308 for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt)
310 assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len);
312 size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset
313 & (slotinfo[cnt].map->l_tls_align - 1));
314 size_t off;
315 max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align);
317 if (slotinfo[cnt].map->l_tls_blocksize <= freetop - freebottom)
319 off = roundup (freebottom, slotinfo[cnt].map->l_tls_align);
320 if (off - freebottom < firstbyte)
321 off += slotinfo[cnt].map->l_tls_align;
322 if (off + slotinfo[cnt].map->l_tls_blocksize - firstbyte <= freetop)
324 slotinfo[cnt].map->l_tls_offset = off - firstbyte;
325 freebottom = (off + slotinfo[cnt].map->l_tls_blocksize
326 - firstbyte);
327 continue;
331 off = roundup (offset, slotinfo[cnt].map->l_tls_align);
332 if (off - offset < firstbyte)
333 off += slotinfo[cnt].map->l_tls_align;
335 slotinfo[cnt].map->l_tls_offset = off - firstbyte;
336 if (off - firstbyte - offset > freetop - freebottom)
338 freebottom = offset;
339 freetop = off - firstbyte;
342 offset = off + slotinfo[cnt].map->l_tls_blocksize - firstbyte;
345 GL(dl_tls_static_used) = offset;
346 GLRO (dl_tls_static_size) = roundup (offset + GLRO(dl_tls_static_surplus),
347 TCB_ALIGNMENT);
348 #else
349 # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
350 #endif
352 /* The alignment requirement for the static TLS block. */
353 GLRO (dl_tls_static_align) = max_align;
355 #endif /* SHARED */
357 static void *
358 allocate_dtv (void *result)
360 dtv_t *dtv;
361 size_t dtv_length;
363 /* Relaxed MO, because the dtv size is later rechecked, not relied on. */
364 size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx));
365 /* We allocate a few more elements in the dtv than are needed for the
366 initial set of modules. This should avoid in most cases expansions
367 of the dtv. */
368 dtv_length = max_modid + DTV_SURPLUS;
369 dtv = calloc (dtv_length + 2, sizeof (dtv_t));
370 if (dtv != NULL)
372 /* This is the initial length of the dtv. */
373 dtv[0].counter = dtv_length;
375 /* The rest of the dtv (including the generation counter) is
376 Initialize with zero to indicate nothing there. */
378 /* Add the dtv to the thread data structures. */
379 INSTALL_DTV (result, dtv);
381 else
382 result = NULL;
384 return result;
387 /* Get size and alignment requirements of the static TLS block. This
388 function is no longer used by glibc itself, but the GCC sanitizers
389 use it despite the GLIBC_PRIVATE status. */
390 void
391 _dl_get_tls_static_info (size_t *sizep, size_t *alignp)
393 *sizep = GLRO (dl_tls_static_size);
394 *alignp = GLRO (dl_tls_static_align);
397 /* Derive the location of the pointer to the start of the original
398 allocation (before alignment) from the pointer to the TCB. */
399 static inline void **
400 tcb_to_pointer_to_free_location (void *tcb)
402 #if TLS_TCB_AT_TP
403 /* The TCB follows the TLS blocks, and the pointer to the front
404 follows the TCB. */
405 void **original_pointer_location = tcb + TLS_TCB_SIZE;
406 #elif TLS_DTV_AT_TP
407 /* The TCB comes first, preceded by the pre-TCB, and the pointer is
408 before that. */
409 void **original_pointer_location = tcb - TLS_PRE_TCB_SIZE - sizeof (void *);
410 #endif
411 return original_pointer_location;
414 void *
415 _dl_allocate_tls_storage (void)
417 void *result;
418 size_t size = GLRO (dl_tls_static_size);
420 #if TLS_DTV_AT_TP
421 /* Memory layout is:
422 [ TLS_PRE_TCB_SIZE ] [ TLS_TCB_SIZE ] [ TLS blocks ]
423 ^ This should be returned. */
424 size += TLS_PRE_TCB_SIZE;
425 #endif
427 /* Perform the allocation. Reserve space for the required alignment
428 and the pointer to the original allocation. */
429 size_t alignment = GLRO (dl_tls_static_align);
430 void *allocated = malloc (size + alignment + sizeof (void *));
431 if (__glibc_unlikely (allocated == NULL))
432 return NULL;
434 /* Perform alignment and allocate the DTV. */
435 #if TLS_TCB_AT_TP
436 /* The TCB follows the TLS blocks, which determine the alignment.
437 (TCB alignment requirements have been taken into account when
438 calculating GLRO (dl_tls_static_align).) */
439 void *aligned = (void *) roundup ((uintptr_t) allocated, alignment);
440 result = aligned + size - TLS_TCB_SIZE;
442 /* Clear the TCB data structure. We can't ask the caller (i.e.
443 libpthread) to do it, because we will initialize the DTV et al. */
444 memset (result, '\0', TLS_TCB_SIZE);
445 #elif TLS_DTV_AT_TP
446 /* Pre-TCB and TCB come before the TLS blocks. The layout computed
447 in _dl_determine_tlsoffset assumes that the TCB is aligned to the
448 TLS block alignment, and not just the TLS blocks after it. This
449 can leave an unused alignment gap between the TCB and the TLS
450 blocks. */
451 result = (void *) roundup
452 (sizeof (void *) + TLS_PRE_TCB_SIZE + (uintptr_t) allocated,
453 alignment);
455 /* Clear the TCB data structure and TLS_PRE_TCB_SIZE bytes before
456 it. We can't ask the caller (i.e. libpthread) to do it, because
457 we will initialize the DTV et al. */
458 memset (result - TLS_PRE_TCB_SIZE, '\0', TLS_PRE_TCB_SIZE + TLS_TCB_SIZE);
459 #endif
461 /* Record the value of the original pointer for later
462 deallocation. */
463 *tcb_to_pointer_to_free_location (result) = allocated;
465 result = allocate_dtv (result);
466 if (result == NULL)
467 free (allocated);
468 return result;
472 #ifndef SHARED
473 extern dtv_t _dl_static_dtv[];
474 # define _dl_initial_dtv (&_dl_static_dtv[1])
475 #endif
477 static dtv_t *
478 _dl_resize_dtv (dtv_t *dtv, size_t max_modid)
480 /* Resize the dtv. */
481 dtv_t *newp;
482 size_t newsize = max_modid + DTV_SURPLUS;
483 size_t oldsize = dtv[-1].counter;
485 if (dtv == GL(dl_initial_dtv))
487 /* This is the initial dtv that was either statically allocated in
488 __libc_setup_tls or allocated during rtld startup using the
489 dl-minimal.c malloc instead of the real malloc. We can't free
490 it, we have to abandon the old storage. */
492 newp = malloc ((2 + newsize) * sizeof (dtv_t));
493 if (newp == NULL)
494 oom ();
495 memcpy (newp, &dtv[-1], (2 + oldsize) * sizeof (dtv_t));
497 else
499 newp = realloc (&dtv[-1],
500 (2 + newsize) * sizeof (dtv_t));
501 if (newp == NULL)
502 oom ();
505 newp[0].counter = newsize;
507 /* Clear the newly allocated part. */
508 memset (newp + 2 + oldsize, '\0',
509 (newsize - oldsize) * sizeof (dtv_t));
511 /* Return the generation counter. */
512 return &newp[1];
516 /* Allocate initial TLS. RESULT should be a non-NULL pointer to storage
517 for the TLS space. The DTV may be resized, and so this function may
518 call malloc to allocate that space. The loader's GL(dl_load_tls_lock)
519 is taken when manipulating global TLS-related data in the loader. */
520 void *
521 _dl_allocate_tls_init (void *result, bool init_tls)
523 if (result == NULL)
524 /* The memory allocation failed. */
525 return NULL;
527 dtv_t *dtv = GET_DTV (result);
528 struct dtv_slotinfo_list *listp;
529 size_t total = 0;
530 size_t maxgen = 0;
532 /* Protects global dynamic TLS related state. */
533 __rtld_lock_lock_recursive (GL(dl_load_tls_lock));
535 /* Check if the current dtv is big enough. */
536 if (dtv[-1].counter < GL(dl_tls_max_dtv_idx))
538 /* Resize the dtv. */
539 dtv = _dl_resize_dtv (dtv, GL(dl_tls_max_dtv_idx));
541 /* Install this new dtv in the thread data structures. */
542 INSTALL_DTV (result, &dtv[-1]);
545 /* We have to prepare the dtv for all currently loaded modules using
546 TLS. For those which are dynamically loaded we add the values
547 indicating deferred allocation. */
548 listp = GL(dl_tls_dtv_slotinfo_list);
549 while (1)
551 size_t cnt;
553 for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt)
555 struct link_map *map;
556 void *dest;
558 /* Check for the total number of used slots. */
559 if (total + cnt > GL(dl_tls_max_dtv_idx))
560 break;
562 map = listp->slotinfo[cnt].map;
563 if (map == NULL)
564 /* Unused entry. */
565 continue;
567 /* Keep track of the maximum generation number. This might
568 not be the generation counter. */
569 assert (listp->slotinfo[cnt].gen <= GL(dl_tls_generation));
570 maxgen = MAX (maxgen, listp->slotinfo[cnt].gen);
572 dtv[map->l_tls_modid].pointer.val = TLS_DTV_UNALLOCATED;
573 dtv[map->l_tls_modid].pointer.to_free = NULL;
575 if (map->l_tls_offset == NO_TLS_OFFSET
576 || map->l_tls_offset == FORCED_DYNAMIC_TLS_OFFSET)
577 continue;
579 assert (map->l_tls_modid == total + cnt);
580 assert (map->l_tls_blocksize >= map->l_tls_initimage_size);
581 #if TLS_TCB_AT_TP
582 assert ((size_t) map->l_tls_offset >= map->l_tls_blocksize);
583 dest = (char *) result - map->l_tls_offset;
584 #elif TLS_DTV_AT_TP
585 dest = (char *) result + map->l_tls_offset;
586 #else
587 # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
588 #endif
590 /* Set up the DTV entry. The simplified __tls_get_addr that
591 some platforms use in static programs requires it. */
592 dtv[map->l_tls_modid].pointer.val = dest;
594 /* Copy the initialization image and clear the BSS part. For
595 audit modules or dependencies with initial-exec TLS, we can not
596 set the initial TLS image on default loader initialization
597 because it would already be set by the audit setup. However,
598 subsequent thread creation would need to follow the default
599 behaviour. */
600 if (map->l_ns != LM_ID_BASE && !init_tls)
601 continue;
602 memset (__mempcpy (dest, map->l_tls_initimage,
603 map->l_tls_initimage_size), '\0',
604 map->l_tls_blocksize - map->l_tls_initimage_size);
607 total += cnt;
608 if (total > GL(dl_tls_max_dtv_idx))
609 break;
611 listp = listp->next;
612 assert (listp != NULL);
614 __rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
616 /* The DTV version is up-to-date now. */
617 dtv[0].counter = maxgen;
619 return result;
621 rtld_hidden_def (_dl_allocate_tls_init)
623 void *
624 _dl_allocate_tls (void *mem)
626 return _dl_allocate_tls_init (mem == NULL
627 ? _dl_allocate_tls_storage ()
628 : allocate_dtv (mem), true);
630 rtld_hidden_def (_dl_allocate_tls)
633 void
634 _dl_deallocate_tls (void *tcb, bool dealloc_tcb)
636 dtv_t *dtv = GET_DTV (tcb);
638 /* We need to free the memory allocated for non-static TLS. */
639 for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt)
640 free (dtv[1 + cnt].pointer.to_free);
642 /* The array starts with dtv[-1]. */
643 if (dtv != GL(dl_initial_dtv))
644 free (dtv - 1);
646 if (dealloc_tcb)
647 free (*tcb_to_pointer_to_free_location (tcb));
649 rtld_hidden_def (_dl_deallocate_tls)
652 #ifdef SHARED
653 /* The __tls_get_addr function has two basic forms which differ in the
654 arguments. The IA-64 form takes two parameters, the module ID and
655 offset. The form used, among others, on IA-32 takes a reference to
656 a special structure which contain the same information. The second
657 form seems to be more often used (in the moment) so we default to
658 it. Users of the IA-64 form have to provide adequate definitions
659 of the following macros. */
660 # ifndef GET_ADDR_ARGS
661 # define GET_ADDR_ARGS tls_index *ti
662 # define GET_ADDR_PARAM ti
663 # endif
664 # ifndef GET_ADDR_MODULE
665 # define GET_ADDR_MODULE ti->ti_module
666 # endif
667 # ifndef GET_ADDR_OFFSET
668 # define GET_ADDR_OFFSET ti->ti_offset
669 # endif
671 /* Allocate one DTV entry. */
672 static struct dtv_pointer
673 allocate_dtv_entry (size_t alignment, size_t size)
675 if (powerof2 (alignment) && alignment <= _Alignof (max_align_t))
677 /* The alignment is supported by malloc. */
678 void *ptr = malloc (size);
679 return (struct dtv_pointer) { ptr, ptr };
682 /* Emulate memalign to by manually aligning a pointer returned by
683 malloc. First compute the size with an overflow check. */
684 size_t alloc_size = size + alignment;
685 if (alloc_size < size)
686 return (struct dtv_pointer) {};
688 /* Perform the allocation. This is the pointer we need to free
689 later. */
690 void *start = malloc (alloc_size);
691 if (start == NULL)
692 return (struct dtv_pointer) {};
694 /* Find the aligned position within the larger allocation. */
695 void *aligned = (void *) roundup ((uintptr_t) start, alignment);
697 return (struct dtv_pointer) { .val = aligned, .to_free = start };
700 static struct dtv_pointer
701 allocate_and_init (struct link_map *map)
703 struct dtv_pointer result = allocate_dtv_entry
704 (map->l_tls_align, map->l_tls_blocksize);
705 if (result.val == NULL)
706 oom ();
708 /* Initialize the memory. */
709 memset (__mempcpy (result.val, map->l_tls_initimage,
710 map->l_tls_initimage_size),
711 '\0', map->l_tls_blocksize - map->l_tls_initimage_size);
713 return result;
717 struct link_map *
718 _dl_update_slotinfo (unsigned long int req_modid)
720 struct link_map *the_map = NULL;
721 dtv_t *dtv = THREAD_DTV ();
723 /* The global dl_tls_dtv_slotinfo array contains for each module
724 index the generation counter current when the entry was created.
725 This array never shrinks so that all module indices which were
726 valid at some time can be used to access it. Before the first
727 use of a new module index in this function the array was extended
728 appropriately. Access also does not have to be guarded against
729 modifications of the array. It is assumed that pointer-size
730 values can be read atomically even in SMP environments. It is
731 possible that other threads at the same time dynamically load
732 code and therefore add to the slotinfo list. This is a problem
733 since we must not pick up any information about incomplete work.
734 The solution to this is to ignore all dtv slots which were
735 created after the one we are currently interested. We know that
736 dynamic loading for this module is completed and this is the last
737 load operation we know finished. */
738 unsigned long int idx = req_modid;
739 struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
741 while (idx >= listp->len)
743 idx -= listp->len;
744 listp = listp->next;
747 if (dtv[0].counter < listp->slotinfo[idx].gen)
749 /* CONCURRENCY NOTES:
751 Here the dtv needs to be updated to new_gen generation count.
753 This code may be called during TLS access when GL(dl_load_tls_lock)
754 is not held. In that case the user code has to synchronize with
755 dlopen and dlclose calls of relevant modules. A module m is
756 relevant if the generation of m <= new_gen and dlclose of m is
757 synchronized: a memory access here happens after the dlopen and
758 before the dlclose of relevant modules. The dtv entries for
759 relevant modules need to be updated, other entries can be
760 arbitrary.
762 This e.g. means that the first part of the slotinfo list can be
763 accessed race free, but the tail may be concurrently extended.
764 Similarly relevant slotinfo entries can be read race free, but
765 other entries are racy. However updating a non-relevant dtv
766 entry does not affect correctness. For a relevant module m,
767 max_modid >= modid of m. */
768 size_t new_gen = listp->slotinfo[idx].gen;
769 size_t total = 0;
770 size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx));
771 assert (max_modid >= req_modid);
773 /* We have to look through the entire dtv slotinfo list. */
774 listp = GL(dl_tls_dtv_slotinfo_list);
777 for (size_t cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt)
779 size_t modid = total + cnt;
781 /* Later entries are not relevant. */
782 if (modid > max_modid)
783 break;
785 size_t gen = atomic_load_relaxed (&listp->slotinfo[cnt].gen);
787 if (gen > new_gen)
788 /* Not relevant. */
789 continue;
791 /* If the entry is older than the current dtv layout we
792 know we don't have to handle it. */
793 if (gen <= dtv[0].counter)
794 continue;
796 /* If there is no map this means the entry is empty. */
797 struct link_map *map
798 = atomic_load_relaxed (&listp->slotinfo[cnt].map);
799 /* Check whether the current dtv array is large enough. */
800 if (dtv[-1].counter < modid)
802 if (map == NULL)
803 continue;
805 /* Resize the dtv. */
806 dtv = _dl_resize_dtv (dtv, max_modid);
808 assert (modid <= dtv[-1].counter);
810 /* Install this new dtv in the thread data
811 structures. */
812 INSTALL_NEW_DTV (dtv);
815 /* If there is currently memory allocate for this
816 dtv entry free it. */
817 /* XXX Ideally we will at some point create a memory
818 pool. */
819 free (dtv[modid].pointer.to_free);
820 dtv[modid].pointer.val = TLS_DTV_UNALLOCATED;
821 dtv[modid].pointer.to_free = NULL;
823 if (modid == req_modid)
824 the_map = map;
827 total += listp->len;
828 if (total > max_modid)
829 break;
831 /* Synchronize with _dl_add_to_slotinfo. Ideally this would
832 be consume MO since we only need to order the accesses to
833 the next node after the read of the address and on most
834 hardware (other than alpha) a normal load would do that
835 because of the address dependency. */
836 listp = atomic_load_acquire (&listp->next);
838 while (listp != NULL);
840 /* This will be the new maximum generation counter. */
841 dtv[0].counter = new_gen;
844 return the_map;
848 static void *
849 __attribute_noinline__
850 tls_get_addr_tail (GET_ADDR_ARGS, dtv_t *dtv, struct link_map *the_map)
852 /* The allocation was deferred. Do it now. */
853 if (the_map == NULL)
855 /* Find the link map for this module. */
856 size_t idx = GET_ADDR_MODULE;
857 struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
859 while (idx >= listp->len)
861 idx -= listp->len;
862 listp = listp->next;
865 the_map = listp->slotinfo[idx].map;
868 /* Make sure that, if a dlopen running in parallel forces the
869 variable into static storage, we'll wait until the address in the
870 static TLS block is set up, and use that. If we're undecided
871 yet, make sure we make the decision holding the lock as well. */
872 if (__glibc_unlikely (the_map->l_tls_offset
873 != FORCED_DYNAMIC_TLS_OFFSET))
875 __rtld_lock_lock_recursive (GL(dl_load_tls_lock));
876 if (__glibc_likely (the_map->l_tls_offset == NO_TLS_OFFSET))
878 the_map->l_tls_offset = FORCED_DYNAMIC_TLS_OFFSET;
879 __rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
881 else if (__glibc_likely (the_map->l_tls_offset
882 != FORCED_DYNAMIC_TLS_OFFSET))
884 #if TLS_TCB_AT_TP
885 void *p = (char *) THREAD_SELF - the_map->l_tls_offset;
886 #elif TLS_DTV_AT_TP
887 void *p = (char *) THREAD_SELF + the_map->l_tls_offset + TLS_PRE_TCB_SIZE;
888 #else
889 # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
890 #endif
891 __rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
893 dtv[GET_ADDR_MODULE].pointer.to_free = NULL;
894 dtv[GET_ADDR_MODULE].pointer.val = p;
896 return (char *) p + GET_ADDR_OFFSET;
898 else
899 __rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
901 struct dtv_pointer result = allocate_and_init (the_map);
902 dtv[GET_ADDR_MODULE].pointer = result;
903 assert (result.to_free != NULL);
905 return (char *) result.val + GET_ADDR_OFFSET;
909 static struct link_map *
910 __attribute_noinline__
911 update_get_addr (GET_ADDR_ARGS)
913 struct link_map *the_map = _dl_update_slotinfo (GET_ADDR_MODULE);
914 dtv_t *dtv = THREAD_DTV ();
916 void *p = dtv[GET_ADDR_MODULE].pointer.val;
918 if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
919 return tls_get_addr_tail (GET_ADDR_PARAM, dtv, the_map);
921 return (void *) p + GET_ADDR_OFFSET;
924 /* For all machines that have a non-macro version of __tls_get_addr, we
925 want to use rtld_hidden_proto/rtld_hidden_def in order to call the
926 internal alias for __tls_get_addr from ld.so. This avoids a PLT entry
927 in ld.so for __tls_get_addr. */
929 #ifndef __tls_get_addr
930 extern void * __tls_get_addr (GET_ADDR_ARGS);
931 rtld_hidden_proto (__tls_get_addr)
932 rtld_hidden_def (__tls_get_addr)
933 #endif
935 /* The generic dynamic and local dynamic model cannot be used in
936 statically linked applications. */
937 void *
938 __tls_get_addr (GET_ADDR_ARGS)
940 dtv_t *dtv = THREAD_DTV ();
942 /* Update is needed if dtv[0].counter < the generation of the accessed
943 module. The global generation counter is used here as it is easier
944 to check. Synchronization for the relaxed MO access is guaranteed
945 by user code, see CONCURRENCY NOTES in _dl_update_slotinfo. */
946 size_t gen = atomic_load_relaxed (&GL(dl_tls_generation));
947 if (__glibc_unlikely (dtv[0].counter != gen))
948 return update_get_addr (GET_ADDR_PARAM);
950 void *p = dtv[GET_ADDR_MODULE].pointer.val;
952 if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
953 return tls_get_addr_tail (GET_ADDR_PARAM, dtv, NULL);
955 return (char *) p + GET_ADDR_OFFSET;
957 #endif
960 /* Look up the module's TLS block as for __tls_get_addr,
961 but never touch anything. Return null if it's not allocated yet. */
962 void *
963 _dl_tls_get_addr_soft (struct link_map *l)
965 if (__glibc_unlikely (l->l_tls_modid == 0))
966 /* This module has no TLS segment. */
967 return NULL;
969 dtv_t *dtv = THREAD_DTV ();
970 /* This may be called without holding the GL(dl_load_tls_lock). Reading
971 arbitrary gen value is fine since this is best effort code. */
972 size_t gen = atomic_load_relaxed (&GL(dl_tls_generation));
973 if (__glibc_unlikely (dtv[0].counter != gen))
975 /* This thread's DTV is not completely current,
976 but it might already cover this module. */
978 if (l->l_tls_modid >= dtv[-1].counter)
979 /* Nope. */
980 return NULL;
982 size_t idx = l->l_tls_modid;
983 struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
984 while (idx >= listp->len)
986 idx -= listp->len;
987 listp = listp->next;
990 /* We've reached the slot for this module.
991 If its generation counter is higher than the DTV's,
992 this thread does not know about this module yet. */
993 if (dtv[0].counter < listp->slotinfo[idx].gen)
994 return NULL;
997 void *data = dtv[l->l_tls_modid].pointer.val;
998 if (__glibc_unlikely (data == TLS_DTV_UNALLOCATED))
999 /* The DTV is current, but this thread has not yet needed
1000 to allocate this module's segment. */
1001 data = NULL;
1003 return data;
1007 void
1008 _dl_add_to_slotinfo (struct link_map *l, bool do_add)
1010 /* Now that we know the object is loaded successfully add
1011 modules containing TLS data to the dtv info table. We
1012 might have to increase its size. */
1013 struct dtv_slotinfo_list *listp;
1014 struct dtv_slotinfo_list *prevp;
1015 size_t idx = l->l_tls_modid;
1017 /* Find the place in the dtv slotinfo list. */
1018 listp = GL(dl_tls_dtv_slotinfo_list);
1019 prevp = NULL; /* Needed to shut up gcc. */
1022 /* Does it fit in the array of this list element? */
1023 if (idx < listp->len)
1024 break;
1025 idx -= listp->len;
1026 prevp = listp;
1027 listp = listp->next;
1029 while (listp != NULL);
1031 if (listp == NULL)
1033 /* When we come here it means we have to add a new element
1034 to the slotinfo list. And the new module must be in
1035 the first slot. */
1036 assert (idx == 0);
1038 listp = (struct dtv_slotinfo_list *)
1039 malloc (sizeof (struct dtv_slotinfo_list)
1040 + TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo));
1041 if (listp == NULL)
1043 /* We ran out of memory while resizing the dtv slotinfo list. */
1044 _dl_signal_error (ENOMEM, "dlopen", NULL, N_("\
1045 cannot create TLS data structures"));
1048 listp->len = TLS_SLOTINFO_SURPLUS;
1049 listp->next = NULL;
1050 memset (listp->slotinfo, '\0',
1051 TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo));
1052 /* Synchronize with _dl_update_slotinfo. */
1053 atomic_store_release (&prevp->next, listp);
1056 /* Add the information into the slotinfo data structure. */
1057 if (do_add)
1059 /* Can be read concurrently. See _dl_update_slotinfo. */
1060 atomic_store_relaxed (&listp->slotinfo[idx].map, l);
1061 atomic_store_relaxed (&listp->slotinfo[idx].gen,
1062 GL(dl_tls_generation) + 1);
1066 #if PTHREAD_IN_LIBC
1067 static inline void __attribute__((always_inline))
1068 init_one_static_tls (struct pthread *curp, struct link_map *map)
1070 # if TLS_TCB_AT_TP
1071 void *dest = (char *) curp - map->l_tls_offset;
1072 # elif TLS_DTV_AT_TP
1073 void *dest = (char *) curp + map->l_tls_offset + TLS_PRE_TCB_SIZE;
1074 # else
1075 # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
1076 # endif
1078 /* Initialize the memory. */
1079 memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size),
1080 '\0', map->l_tls_blocksize - map->l_tls_initimage_size);
1083 void
1084 _dl_init_static_tls (struct link_map *map)
1086 lll_lock (GL (dl_stack_cache_lock), LLL_PRIVATE);
1088 /* Iterate over the list with system-allocated threads first. */
1089 list_t *runp;
1090 list_for_each (runp, &GL (dl_stack_used))
1091 init_one_static_tls (list_entry (runp, struct pthread, list), map);
1093 /* Now the list with threads using user-allocated stacks. */
1094 list_for_each (runp, &GL (dl_stack_user))
1095 init_one_static_tls (list_entry (runp, struct pthread, list), map);
1097 lll_unlock (GL (dl_stack_cache_lock), LLL_PRIVATE);
1099 #endif /* PTHREAD_IN_LIBC */