2 * Copyright (c) 1985 Regents of the University of California.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 static char sccsid
[] = "@(#)cabs.c 5.6 (Berkeley) 10/9/90";
39 * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
40 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
41 * CODED IN C BY K.C. NG, 11/28/84;
42 * REVISED BY K.C. NG, 7/12/85.
44 * Required system supported functions :
51 * 1. replace x by |x| and y by |y|, and swap x and
52 * y if y > x (hence x is never smaller than y).
53 * 2. Hypot(x,y) is computed by:
57 * hypot = x + -----------------------------
59 * sqrt ( 1 + [x/y] ) + x/y
63 * hypot = x + --------------------------------------------------
66 * (sqrt(2)+1) + (x-y)/y + -----------------------------
68 * sqrt ( 1 + [x/y] ) + sqrt(2)
73 * hypot(x,y) is INF if x or y is +INF or -INF; else
74 * hypot(x,y) is NAN if x or y is NAN.
77 * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
78 * in the last place). See Kahan's "Interval Arithmetic Options in the
79 * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
80 * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
81 * code follows in comments.) In a test run with 500,000 random arguments
82 * on a VAX, the maximum observed error was .959 ulps.
85 * The hexadecimal values are the intended ones for the following constants.
86 * The decimal values may be used, provided that the compiler will convert
87 * from decimal to binary accurately enough to produce the hexadecimal values
92 vc(r2p1hi
, 2.4142135623730950345E0
,8279,411a
,ef32
,99fc
, 2, .9A827999FCEF32
)
93 vc(r2p1lo
, 1.4349369327986523769E-17 ,597d
,2484,754b
,89b3
, -55, .84597D89B3754B
)
94 vc(sqrt2
, 1.4142135623730950622E0
,04f3
,40b5
,de65
,33f9
, 1, .B504F333F9DE65
)
96 ic(r2p1hi
, 2.4142135623730949234E0
, 1, 1.3504F333F9DE6
)
97 ic(r2p1lo
, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5
)
98 ic(sqrt2
, 1.4142135623730951455E0
, 0, 1.6A09E667F3BCD
)
101 #define r2p1hi vccast(r2p1hi)
102 #define r2p1lo vccast(r2p1lo)
103 #define sqrt2 vccast(sqrt2)
110 static const double zero
=0, one
=1,
111 small
=1.0E-18; /* fl(1+small)==1 */
112 static const ibig
=30; /* fl(1+2**(2*ibig))==1 */
123 if(x
== zero
) return(zero
);
124 if(y
== zero
) return(x
);
126 if(exp
-(int)logb(y
) > ibig
)
127 /* raise inexact flag and return |x| */
128 { one
+small
; return(x
); }
130 /* start computing sqrt(x^2 + y^2) */
132 if(r
>y
) { /* x/y > 2 */
135 else { /* 1 <= x/y <= 2 */
137 r
+=t
/(sqrt2
+sqrt(2.0+t
));
138 r
+=r2p1lo
; r
+=r2p1hi
; }
145 else if(y
==y
) /* y is +-INF */
146 return(copysign(y
,one
));
148 return(y
); /* y is NaN and x is finite */
150 else if(x
==x
) /* x is +-INF */
151 return (copysign(x
,one
));
153 return(x
); /* x is NaN, y is finite */
154 #if !defined(vax)&&!defined(tahoe)
155 else if(y
!=y
) return(y
); /* x and y is NaN */
156 #endif /* !defined(vax)&&!defined(tahoe) */
157 else return(copysign(y
,one
)); /* y is INF */
161 * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
162 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
163 * CODED IN C BY K.C. NG, 11/28/84.
164 * REVISED BY K.C. NG, 7/12/85.
166 * Required kernel function :
170 * cabs(z) = hypot(x,y) .
175 struct __cabs_complex z
;
177 return hypot(z
.__x
,z
.__y
);
182 struct __cabs_complex
*z
;
184 return hypot(z
->__x
,z
->__y
);
187 /* A faster but less accurate version of cabs(x,y) */
192 static const double zero
=0, one
=1;
193 small
=1.0E-18; /* fl(1+small)==1 */
194 static const ibig
=30; /* fl(1+2**(2*ibig))==1 */
204 { temp
=x
; x
=y
; y
=temp
; }
205 if(x
== zero
) return(zero
);
206 if(y
== zero
) return(x
);
209 if(exp
-(int)logb(y
) > ibig
)
210 /* raise inexact flag and return |x| */
211 { one
+small
; return(scalb(x
,exp
)); }
212 else y
=scalb(y
,-exp
);
213 return(scalb(sqrt(x
*x
+y
*y
),exp
));
216 else if(y
==y
) /* y is +-INF */
217 return(copysign(y
,one
));
219 return(y
); /* y is NaN and x is finite */
221 else if(x
==x
) /* x is +-INF */
222 return (copysign(x
,one
));
224 return(x
); /* x is NaN, y is finite */
225 else if(y
!=y
) return(y
); /* x and y is NaN */
226 else return(copysign(y
,one
)); /* y is INF */