1 /* Floating point output for `printf'.
2 Copyright (C) 1995-1999, 2000 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* The gmp headers need some configuration frobs. */
32 #include <gmp-mparam.h>
33 #include <stdlib/gmp.h>
34 #include <stdlib/gmp-impl.h>
35 #include <stdlib/longlong.h>
36 #include <stdlib/fpioconst.h>
37 #include <locale/localeinfo.h>
47 # define NDEBUG /* Undefine this for debugging assertions. */
51 /* This defines make it possible to use the same code for GNU C library and
52 the GNU I/O library. */
54 # define PUT(f, s, n) _IO_sputn (f, s, n)
55 # define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n))
56 /* We use this file GNU C library and GNU I/O library. So make
59 # define putc(c, f) (wide \
60 ? _IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
61 # define size_t _IO_size_t
62 # define FILE _IO_FILE
63 #else /* ! USE_IN_LIBIO */
64 # define PUT(f, s, n) fwrite (s, 1, n, f)
65 # define PAD(f, c, n) __printf_pad (f, c, n)
66 ssize_t __printf_pad
__P ((FILE *, char pad
, int n
)); /* In vfprintf.c. */
67 #endif /* USE_IN_LIBIO */
69 /* Macros for doing the actual output. */
74 register const int outc = (ch); \
75 if (putc (outc, fp) == EOF) \
80 #define PRINT(ptr, wptr, len) \
83 register size_t outlen = (len); \
86 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
94 while (outlen-- > 0) \
97 while (outlen-- > 0) \
102 #define PADN(ch, len) \
105 if (PAD (fp, ch, len) != len) \
111 /* We use the GNU MP library to handle large numbers.
113 An MP variable occupies a varying number of entries in its array. We keep
114 track of this number for efficiency reasons. Otherwise we would always
115 have to process the whole array. */
116 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
118 #define MPN_ASSIGN(dst,src) \
119 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
120 #define MPN_GE(u,v) \
121 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
123 extern int __isinfl (long double), __isnanl (long double);
125 extern mp_size_t
__mpn_extract_double (mp_ptr res_ptr
, mp_size_t size
,
126 int *expt
, int *is_neg
,
128 extern mp_size_t
__mpn_extract_long_double (mp_ptr res_ptr
, mp_size_t size
,
129 int *expt
, int *is_neg
,
131 extern unsigned int __guess_grouping (unsigned int intdig_max
,
132 const char *grouping
);
135 static wchar_t *group_number (wchar_t *buf
, wchar_t *bufend
,
136 unsigned int intdig_no
, const char *grouping
,
137 wchar_t thousands_sep
, int ngroups
)
142 __printf_fp (FILE *fp
,
143 const struct printf_info
*info
,
144 const void *const *args
)
146 /* The floating-point value to output. */
150 __long_double_t ldbl
;
154 /* Locale-dependent representation of decimal point. */
158 /* Locale-dependent thousands separator and grouping specification. */
159 const char *thousands_sep
= NULL
;
160 wchar_t thousands_sepwc
= 0;
161 const char *grouping
;
163 /* "NaN" or "Inf" for the special cases. */
164 const char *special
= NULL
;
165 const wchar_t *wspecial
= NULL
;
167 /* We need just a few limbs for the input before shifting to the right
169 mp_limb_t fp_input
[(LDBL_MANT_DIG
+ BITS_PER_MP_LIMB
- 1) / BITS_PER_MP_LIMB
];
170 /* We need to shift the contents of fp_input by this amount of bits. */
173 /* The fraction of the floting-point value in question */
175 /* and the exponent. */
177 /* Sign of the exponent. */
179 /* Sign of float number. */
182 /* Scaling factor. */
185 /* Temporary bignum value. */
188 /* Digit which is result of last hack_digit() call. */
191 /* The type of output format that will be used: 'e'/'E' or 'f'. */
194 /* Counter for number of written characters. */
197 /* General helper (carry limb). */
200 /* Nonzero if this is output on a wide character stream. */
201 int wide
= info
->wide
;
203 wchar_t hack_digit (void)
207 if (expsign
!= 0 && type
== 'f' && exponent
-- > 0)
209 else if (scalesize
== 0)
211 hi
= frac
[fracsize
- 1];
212 cy
= __mpn_mul_1 (frac
, frac
, fracsize
- 1, 10);
213 frac
[fracsize
- 1] = cy
;
217 if (fracsize
< scalesize
)
221 hi
= mpn_divmod (tmp
, frac
, fracsize
, scale
, scalesize
);
222 tmp
[fracsize
- scalesize
] = hi
;
225 fracsize
= scalesize
;
226 while (fracsize
!= 0 && frac
[fracsize
- 1] == 0)
230 /* We're not prepared for an mpn variable with zero
237 cy
= __mpn_mul_1 (frac
, frac
, fracsize
, 10);
239 frac
[fracsize
++] = cy
;
246 /* Figure out the decimal point character. */
247 if (info
->extra
== 0)
249 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
250 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
254 decimal
= _NL_CURRENT (LC_MONETARY
, MON_DECIMAL_POINT
);
255 decimalwc
= _NL_CURRENT_WORD (LC_MONETARY
,
256 _NL_MONETARY_DECIMAL_POINT_WC
);
258 /* The decimal point character must not be zero. */
259 assert (*decimal
!= L
'\0');
263 if (info
->extra
== 0)
264 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
266 grouping
= _NL_CURRENT (LC_MONETARY
, MON_GROUPING
);
268 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
272 /* Figure out the thousands separator character. */
275 if (info
->extra
== 0)
277 _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_THOUSANDS_SEP_WC
);
280 _NL_CURRENT_WORD (LC_MONETARY
,
281 _NL_MONETARY_THOUSANDS_SEP_WC
);
285 if (info
->extra
== 0)
286 thousands_sep
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
288 thousands_sep
= _NL_CURRENT (LC_MONETARY
, MON_THOUSANDS_SEP
);
291 if ((wide
&& thousands_sepwc
== L
'\0')
292 || (! wide
&& *thousands_sep
== '\0'))
294 else if (thousands_sepwc
== L
'\0')
295 /* If we are printing multibyte characters and there is a
296 multibyte representation for the thousands separator,
297 we must ensure the wide character thousands separator
298 is available, even if it is fake. */
299 thousands_sepwc
= 0xfffffffe;
305 /* Fetch the argument value. */
306 #ifndef __NO_LONG_DOUBLE_MATH
307 if (info
->is_long_double
&& sizeof (long double) > sizeof (double))
309 fpnum
.ldbl
= *(const long double *) args
[0];
311 /* Check for special values: not a number or infinity. */
312 if (__isnanl (fpnum
.ldbl
))
314 if (isupper (info
->spec
))
326 else if (__isinfl (fpnum
.ldbl
))
328 if (isupper (info
->spec
))
338 is_neg
= fpnum
.ldbl
< 0;
342 fracsize
= __mpn_extract_long_double (fp_input
,
344 sizeof (fp_input
[0])),
347 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- LDBL_MANT_DIG
;
351 #endif /* no long double */
353 fpnum
.dbl
= *(const double *) args
[0];
355 /* Check for special values: not a number or infinity. */
356 if (__isnan (fpnum
.dbl
))
358 if (isupper (info
->spec
))
370 else if (__isinf (fpnum
.dbl
))
372 if (isupper (info
->spec
))
382 is_neg
= fpnum
.dbl
< 0;
386 fracsize
= __mpn_extract_double (fp_input
,
388 / sizeof (fp_input
[0])),
389 &exponent
, &is_neg
, fpnum
.dbl
);
390 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- DBL_MANT_DIG
;
396 int width
= info
->width
;
398 if (is_neg
|| info
->showsign
|| info
->space
)
402 if (!info
->left
&& width
> 0)
407 else if (info
->showsign
)
409 else if (info
->space
)
412 PRINT (special
, wspecial
, 3);
414 if (info
->left
&& width
> 0)
421 /* We need three multiprecision variables. Now that we have the exponent
422 of the number we can allocate the needed memory. It would be more
423 efficient to use variables of the fixed maximum size but because this
424 would be really big it could lead to memory problems. */
426 mp_size_t bignum_size
= ((ABS (exponent
) + BITS_PER_MP_LIMB
- 1)
427 / BITS_PER_MP_LIMB
+ 4) * sizeof (mp_limb_t
);
428 frac
= (mp_limb_t
*) alloca (bignum_size
);
429 tmp
= (mp_limb_t
*) alloca (bignum_size
);
430 scale
= (mp_limb_t
*) alloca (bignum_size
);
433 /* We now have to distinguish between numbers with positive and negative
434 exponents because the method used for the one is not applicable/efficient
441 int explog
= LDBL_MAX_10_EXP_LOG
;
443 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
446 if ((exponent
+ to_shift
) % BITS_PER_MP_LIMB
== 0)
448 MPN_COPY_DECR (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
450 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
454 cy
= __mpn_lshift (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
456 (exponent
+ to_shift
) % BITS_PER_MP_LIMB
);
457 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
459 frac
[fracsize
++] = cy
;
461 MPN_ZERO (frac
, (exponent
+ to_shift
) / BITS_PER_MP_LIMB
);
463 assert (powers
> &_fpioconst_pow10
[0]);
468 /* The number of the product of two binary numbers with n and m
469 bits respectively has m+n or m+n-1 bits. */
470 if (exponent
>= scaleexpo
+ powers
->p_expo
- 1)
474 #ifndef __NO_LONG_DOUBLE_MATH
475 if (LDBL_MANT_DIG
> _FPIO_CONST_OFFSET
* BITS_PER_MP_LIMB
476 && info
->is_long_double
)
478 #define _FPIO_CONST_SHIFT \
479 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
480 - _FPIO_CONST_OFFSET)
481 /* 64bit const offset is not enough for
482 IEEE quad long double. */
483 tmpsize
= powers
->arraysize
+ _FPIO_CONST_SHIFT
;
484 memcpy (tmp
+ _FPIO_CONST_SHIFT
,
485 &__tens
[powers
->arrayoff
],
486 tmpsize
* sizeof (mp_limb_t
));
487 MPN_ZERO (tmp
, _FPIO_CONST_SHIFT
);
492 tmpsize
= powers
->arraysize
;
493 memcpy (tmp
, &__tens
[powers
->arrayoff
],
494 tmpsize
* sizeof (mp_limb_t
));
499 cy
= __mpn_mul (tmp
, scale
, scalesize
,
500 &__tens
[powers
->arrayoff
501 + _FPIO_CONST_OFFSET
],
502 powers
->arraysize
- _FPIO_CONST_OFFSET
);
503 tmpsize
= scalesize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
508 if (MPN_GE (frac
, tmp
))
511 MPN_ASSIGN (scale
, tmp
);
512 count_leading_zeros (cnt
, scale
[scalesize
- 1]);
513 scaleexpo
= (scalesize
- 2) * BITS_PER_MP_LIMB
- cnt
- 1;
514 exp10
|= 1 << explog
;
519 while (powers
> &_fpioconst_pow10
[0]);
522 /* Optimize number representations. We want to represent the numbers
523 with the lowest number of bytes possible without losing any
524 bytes. Also the highest bit in the scaling factor has to be set
525 (this is a requirement of the MPN division routines). */
528 /* Determine minimum number of zero bits at the end of
530 for (i
= 0; scale
[i
] == 0 && frac
[i
] == 0; i
++)
533 /* Determine number of bits the scaling factor is misplaced. */
534 count_leading_zeros (cnt_h
, scale
[scalesize
- 1]);
538 /* The highest bit of the scaling factor is already set. So
539 we only have to remove the trailing empty limbs. */
542 MPN_COPY_INCR (scale
, scale
+ i
, scalesize
- i
);
544 MPN_COPY_INCR (frac
, frac
+ i
, fracsize
- i
);
552 count_trailing_zeros (cnt_l
, scale
[i
]);
556 count_trailing_zeros (cnt_l2
, frac
[i
]);
562 count_trailing_zeros (cnt_l
, frac
[i
]);
564 /* Now shift the numbers to their optimal position. */
565 if (i
== 0 && BITS_PER_MP_LIMB
- cnt_h
> cnt_l
)
567 /* We cannot save any memory. So just roll both numbers
568 so that the scaling factor has its highest bit set. */
570 (void) __mpn_lshift (scale
, scale
, scalesize
, cnt_h
);
571 cy
= __mpn_lshift (frac
, frac
, fracsize
, cnt_h
);
573 frac
[fracsize
++] = cy
;
575 else if (BITS_PER_MP_LIMB
- cnt_h
<= cnt_l
)
577 /* We can save memory by removing the trailing zero limbs
578 and by packing the non-zero limbs which gain another
581 (void) __mpn_rshift (scale
, scale
+ i
, scalesize
- i
,
582 BITS_PER_MP_LIMB
- cnt_h
);
584 (void) __mpn_rshift (frac
, frac
+ i
, fracsize
- i
,
585 BITS_PER_MP_LIMB
- cnt_h
);
586 fracsize
-= frac
[fracsize
- i
- 1] == 0 ? i
+ 1 : i
;
590 /* We can only save the memory of the limbs which are zero.
591 The non-zero parts occupy the same number of limbs. */
593 (void) __mpn_rshift (scale
, scale
+ (i
- 1),
595 BITS_PER_MP_LIMB
- cnt_h
);
597 (void) __mpn_rshift (frac
, frac
+ (i
- 1),
599 BITS_PER_MP_LIMB
- cnt_h
);
600 fracsize
-= frac
[fracsize
- (i
- 1) - 1] == 0 ? i
: i
- 1;
605 else if (exponent
< 0)
609 int explog
= LDBL_MAX_10_EXP_LOG
;
610 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
611 mp_size_t used_limbs
= fracsize
- 1;
613 /* Now shift the input value to its right place. */
614 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, to_shift
);
615 frac
[fracsize
++] = cy
;
616 assert (cy
== 1 || (frac
[fracsize
- 2] == 0 && frac
[0] == 0));
619 exponent
= -exponent
;
621 assert (powers
!= &_fpioconst_pow10
[0]);
626 if (exponent
>= powers
->m_expo
)
628 int i
, incr
, cnt_h
, cnt_l
;
631 /* The __mpn_mul function expects the first argument to be
632 bigger than the second. */
633 if (fracsize
< powers
->arraysize
- _FPIO_CONST_OFFSET
)
634 cy
= __mpn_mul (tmp
, &__tens
[powers
->arrayoff
635 + _FPIO_CONST_OFFSET
],
636 powers
->arraysize
- _FPIO_CONST_OFFSET
,
639 cy
= __mpn_mul (tmp
, frac
, fracsize
,
640 &__tens
[powers
->arrayoff
+ _FPIO_CONST_OFFSET
],
641 powers
->arraysize
- _FPIO_CONST_OFFSET
);
642 tmpsize
= fracsize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
646 count_leading_zeros (cnt_h
, tmp
[tmpsize
- 1]);
647 incr
= (tmpsize
- fracsize
) * BITS_PER_MP_LIMB
648 + BITS_PER_MP_LIMB
- 1 - cnt_h
;
650 assert (incr
<= powers
->p_expo
);
652 /* If we increased the exponent by exactly 3 we have to test
653 for overflow. This is done by comparing with 10 shifted
654 to the right position. */
655 if (incr
== exponent
+ 3)
657 if (cnt_h
<= BITS_PER_MP_LIMB
- 4)
661 = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4 - cnt_h
);
665 topval
[0] = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4);
667 (void) __mpn_lshift (topval
, topval
, 2,
668 BITS_PER_MP_LIMB
- cnt_h
);
672 /* We have to be careful when multiplying the last factor.
673 If the result is greater than 1.0 be have to test it
674 against 10.0. If it is greater or equal to 10.0 the
675 multiplication was not valid. This is because we cannot
676 determine the number of bits in the result in advance. */
677 if (incr
< exponent
+ 3
678 || (incr
== exponent
+ 3 &&
679 (tmp
[tmpsize
- 1] < topval
[1]
680 || (tmp
[tmpsize
- 1] == topval
[1]
681 && tmp
[tmpsize
- 2] < topval
[0]))))
683 /* The factor is right. Adapt binary and decimal
686 exp10
|= 1 << explog
;
688 /* If this factor yields a number greater or equal to
689 1.0, we must not shift the non-fractional digits down. */
693 /* Now we optimize the number representation. */
694 for (i
= 0; tmp
[i
] == 0; ++i
);
695 if (cnt_h
== BITS_PER_MP_LIMB
- 1)
697 MPN_COPY (frac
, tmp
+ i
, tmpsize
- i
);
698 fracsize
= tmpsize
- i
;
702 count_trailing_zeros (cnt_l
, tmp
[i
]);
704 /* Now shift the numbers to their optimal position. */
705 if (i
== 0 && BITS_PER_MP_LIMB
- 1 - cnt_h
> cnt_l
)
707 /* We cannot save any memory. Just roll the
708 number so that the leading digit is in a
711 cy
= __mpn_lshift (frac
, tmp
, tmpsize
, cnt_h
+ 1);
712 fracsize
= tmpsize
+ 1;
713 frac
[fracsize
- 1] = cy
;
715 else if (BITS_PER_MP_LIMB
- 1 - cnt_h
<= cnt_l
)
717 (void) __mpn_rshift (frac
, tmp
+ i
, tmpsize
- i
,
718 BITS_PER_MP_LIMB
- 1 - cnt_h
);
719 fracsize
= tmpsize
- i
;
723 /* We can only save the memory of the limbs which
724 are zero. The non-zero parts occupy the same
727 (void) __mpn_rshift (frac
, tmp
+ (i
- 1),
729 BITS_PER_MP_LIMB
- 1 - cnt_h
);
730 fracsize
= tmpsize
- (i
- 1);
733 used_limbs
= fracsize
- 1;
738 while (powers
!= &_fpioconst_pow10
[1] && exponent
> 0);
739 /* All factors but 10^-1 are tested now. */
744 cy
= __mpn_mul_1 (tmp
, frac
, fracsize
, 10);
746 assert (cy
== 0 || tmp
[tmpsize
- 1] < 20);
748 count_trailing_zeros (cnt_l
, tmp
[0]);
749 if (cnt_l
< MIN (4, exponent
))
751 cy
= __mpn_lshift (frac
, tmp
, tmpsize
,
752 BITS_PER_MP_LIMB
- MIN (4, exponent
));
754 frac
[tmpsize
++] = cy
;
757 (void) __mpn_rshift (frac
, tmp
, tmpsize
, MIN (4, exponent
));
760 assert (frac
[fracsize
- 1] < 10);
766 /* This is a special case. We don't need a factor because the
767 numbers are in the range of 0.0 <= fp < 8.0. We simply
768 shift it to the right place and divide it by 1.0 to get the
769 leading digit. (Of course this division is not really made.) */
770 assert (0 <= exponent
&& exponent
< 3 &&
771 exponent
+ to_shift
< BITS_PER_MP_LIMB
);
773 /* Now shift the input value to its right place. */
774 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, (exponent
+ to_shift
));
775 frac
[fracsize
++] = cy
;
780 int width
= info
->width
;
781 wchar_t *wbuffer
, *wstartp
, *wcp
;
785 int intdig_max
, intdig_no
= 0;
786 int fracdig_min
, fracdig_max
, fracdig_no
= 0;
791 if (_tolower (info
->spec
) == 'e')
795 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
796 chars_needed
= 1 + 1 + fracdig_max
+ 1 + 1 + 4;
797 /* d . ddd e +- ddd */
798 dig_max
= INT_MAX
; /* Unlimited. */
799 significant
= 1; /* Does not matter here. */
801 else if (info
->spec
== 'f')
804 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
807 intdig_max
= exponent
+ 1;
808 /* This can be really big! */ /* XXX Maybe malloc if too big? */
809 chars_needed
= exponent
+ 1 + 1 + fracdig_max
;
814 chars_needed
= 1 + 1 + fracdig_max
;
816 dig_max
= INT_MAX
; /* Unlimited. */
817 significant
= 1; /* Does not matter here. */
821 dig_max
= info
->prec
< 0 ? 6 : (info
->prec
== 0 ? 1 : info
->prec
);
822 if ((expsign
== 0 && exponent
>= dig_max
)
823 || (expsign
!= 0 && exponent
> 4))
825 if ('g' - 'G' == 'e' - 'E')
826 type
= 'E' + (info
->spec
- 'G');
828 type
= isupper (info
->spec
) ? 'E' : 'e';
829 fracdig_max
= dig_max
- 1;
831 chars_needed
= 1 + 1 + fracdig_max
+ 1 + 1 + 4;
836 intdig_max
= expsign
== 0 ? exponent
+ 1 : 0;
837 fracdig_max
= dig_max
- intdig_max
;
838 /* We need space for the significant digits and perhaps for
839 leading zeros when < 1.0. Pessimistic guess: dig_max. */
840 chars_needed
= dig_max
+ dig_max
+ 1;
842 fracdig_min
= info
->alt
? fracdig_max
: 0;
843 significant
= 0; /* We count significant digits. */
848 /* Guess the number of groups we will make, and thus how
849 many spaces we need for separator characters. */
850 ngroups
= __guess_grouping (intdig_max
, grouping
);
851 chars_needed
+= ngroups
;
854 /* Allocate buffer for output. We need two more because while rounding
855 it is possible that we need two more characters in front of all the
856 other output. If the amount of memory we have to allocate is too
857 large use `malloc' instead of `alloca'. */
858 buffer_malloced
= chars_needed
> 5000;
861 wbuffer
= (wchar_t *) malloc ((2 + chars_needed
) * sizeof (wchar_t));
863 /* Signal an error to the caller. */
867 wbuffer
= (wchar_t *) alloca ((2 + chars_needed
) * sizeof (wchar_t));
868 wcp
= wstartp
= wbuffer
+ 2; /* Let room for rounding. */
870 /* Do the real work: put digits in allocated buffer. */
871 if (expsign
== 0 || type
!= 'f')
873 assert (expsign
== 0 || intdig_max
== 1);
874 while (intdig_no
< intdig_max
)
877 *wcp
++ = hack_digit ();
882 || (fracdig_max
> 0 && (fracsize
> 1 || frac
[0] != 0)))
887 /* |fp| < 1.0 and the selected type is 'f', so put "0."
894 /* Generate the needed number of fractional digits. */
895 while (fracdig_no
< fracdig_min
896 || (fracdig_no
< fracdig_max
&& (fracsize
> 1 || frac
[0] != 0)))
899 *wcp
= hack_digit ();
902 else if (significant
== 0)
912 digit
= hack_digit ();
917 if (digit
== L
'5' && (*(wcp
- 1) & 1) == 0)
919 /* This is the critical case. */
920 if (fracsize
== 1 && frac
[0] == 0)
921 /* Rest of the number is zero -> round to even.
922 (IEEE 754-1985 4.1 says this is the default rounding.) */
924 else if (scalesize
== 0)
926 /* Here we have to see whether all limbs are zero since no
927 normalization happened. */
928 size_t lcnt
= fracsize
;
929 while (lcnt
>= 1 && frac
[lcnt
- 1] == 0)
932 /* Rest of the number is zero -> round to even.
933 (IEEE 754-1985 4.1 says this is the default rounding.) */
940 /* Process fractional digits. Terminate if not rounded or
941 radix character is reached. */
942 while (*--wtp
!= decimalwc
&& *wtp
== L
'9')
944 if (*wtp
!= decimalwc
)
949 if (fracdig_no
== 0 || *wtp
== decimalwc
)
951 /* Round the integer digits. */
952 if (*(wtp
- 1) == decimalwc
)
955 while (--wtp
>= wstartp
&& *wtp
== L
'9')
962 /* It is more critical. All digits were 9's. */
967 exponent
+= expsign
== 0 ? 1 : -1;
969 else if (intdig_no
== dig_max
)
971 /* This is the case where for type %g the number fits
972 really in the range for %f output but after rounding
973 the number of digits is too big. */
974 *--wstartp
= decimalwc
;
977 if (info
->alt
|| fracdig_no
> 0)
979 /* Overwrite the old radix character. */
980 wstartp
[intdig_no
+ 2] = L
'0';
984 fracdig_no
+= intdig_no
;
986 fracdig_max
= intdig_max
- intdig_no
;
988 /* Now we must print the exponent. */
989 type
= isupper (info
->spec
) ? 'E' : 'e';
993 /* We can simply add another another digit before the
999 /* While rounding the number of digits can change.
1000 If the number now exceeds the limits remove some
1001 fractional digits. */
1002 if (intdig_no
+ fracdig_no
> dig_max
)
1004 wcp
-= intdig_no
+ fracdig_no
- dig_max
;
1005 fracdig_no
-= intdig_no
+ fracdig_no
- dig_max
;
1012 /* Now remove unnecessary '0' at the end of the string. */
1013 while (fracdig_no
> fracdig_min
&& *(wcp
- 1) == L
'0')
1018 /* If we eliminate all fractional digits we perhaps also can remove
1019 the radix character. */
1020 if (fracdig_no
== 0 && !info
->alt
&& *(wcp
- 1) == decimalwc
)
1024 /* Add in separator characters, overwriting the same buffer. */
1025 wcp
= group_number (wstartp
, wcp
, intdig_no
, grouping
, thousands_sepwc
,
1028 /* Write the exponent if it is needed. */
1031 *wcp
++ = (wchar_t) type
;
1032 *wcp
++ = expsign
? L
'-' : L
'+';
1034 /* Find the magnitude of the exponent. */
1036 while (expscale
<= exponent
)
1040 /* Exponent always has at least two digits. */
1046 *wcp
++ = L
'0' + (exponent
/ expscale
);
1047 exponent
%= expscale
;
1049 while (expscale
> 10);
1050 *wcp
++ = L
'0' + exponent
;
1053 /* Compute number of characters which must be filled with the padding
1055 if (is_neg
|| info
->showsign
|| info
->space
)
1057 width
-= wcp
- wstartp
;
1059 if (!info
->left
&& info
->pad
!= '0' && width
> 0)
1060 PADN (info
->pad
, width
);
1064 else if (info
->showsign
)
1066 else if (info
->space
)
1069 if (!info
->left
&& info
->pad
== '0' && width
> 0)
1073 char *buffer
= NULL
;
1078 /* Create the single byte string. */
1079 const char *decimal
;
1081 size_t thousands_sep_len
;
1084 if (info
->extra
== 0)
1085 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
1087 decimal
= _NL_CURRENT (LC_MONETARY
, MON_DECIMAL_POINT
);
1088 decimal_len
= strlen (decimal
);
1090 if (thousands_sep
== NULL
)
1091 thousands_sep_len
= 0;
1093 thousands_sep_len
= strlen (thousands_sep
);
1095 if (buffer_malloced
)
1097 buffer
= (char *) malloc (2 + chars_needed
+ decimal_len
1098 + ngroups
* thousands_sep_len
);
1100 /* Signal an error to the caller. */
1104 buffer
= (char *) alloca (2 + chars_needed
+ decimal_len
1105 + ngroups
* thousands_sep_len
);
1107 /* Now copy the wide character string. Since the character
1108 (except for the decimal point and thousands separator) must
1109 be coming from the ASCII range we can esily convert the
1110 string without mapping tables. */
1111 for (cp
= buffer
, copywc
= wstartp
; copywc
< wcp
; ++copywc
)
1112 if (*copywc
== decimalwc
)
1113 cp
= (char *) __mempcpy (cp
, decimal
, decimal_len
);
1114 else if (*copywc
== thousands_sepwc
)
1115 cp
= (char *) __mempcpy (cp
, thousands_sep
, thousands_sep_len
);
1117 *cp
++ = (char) *copywc
;
1120 PRINT (buffer
, wstartp
, wide
? wcp
- wstartp
: cp
- buffer
);
1122 /* Free the memory if necessary. */
1123 if (buffer_malloced
)
1130 if (info
->left
&& width
> 0)
1131 PADN (info
->pad
, width
);
1136 /* Return the number of extra grouping characters that will be inserted
1137 into a number with INTDIG_MAX integer digits. */
1140 __guess_grouping (unsigned int intdig_max
, const char *grouping
)
1142 unsigned int groups
;
1144 /* We treat all negative values like CHAR_MAX. */
1146 if (*grouping
== CHAR_MAX
|| *grouping
<= 0)
1147 /* No grouping should be done. */
1151 while (intdig_max
> (unsigned int) *grouping
)
1154 intdig_max
-= *grouping
++;
1156 if (*grouping
== CHAR_MAX
1161 /* No more grouping should be done. */
1163 else if (*grouping
== 0)
1165 /* Same grouping repeats. */
1166 groups
+= (intdig_max
- 1) / grouping
[-1];
1174 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1175 There is guaranteed enough space past BUFEND to extend it.
1176 Return the new end of buffer. */
1180 group_number (wchar_t *buf
, wchar_t *bufend
, unsigned int intdig_no
,
1181 const char *grouping
, wchar_t thousands_sep
, int ngroups
)
1188 /* Move the fractional part down. */
1189 wmemmove (buf
+ intdig_no
+ ngroups
, buf
+ intdig_no
,
1190 bufend
- (buf
+ intdig_no
));
1192 p
= buf
+ intdig_no
+ ngroups
- 1;
1195 unsigned int len
= *grouping
++;
1197 *p
-- = buf
[--intdig_no
];
1199 *p
-- = thousands_sep
;
1201 if (*grouping
== CHAR_MAX
1206 /* No more grouping should be done. */
1208 else if (*grouping
== 0)
1209 /* Same grouping repeats. */
1211 } while (intdig_no
> (unsigned int) *grouping
);
1213 /* Copy the remaining ungrouped digits. */
1215 *p
-- = buf
[--intdig_no
];
1218 return bufend
+ ngroups
;