1 /* Copyright (C) 2002-2017 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
26 #include <sys/types.h>
27 #include <hp-timing.h>
29 #include <lowlevellock.h>
30 #include <pthreaddef.h>
31 #include <dl-sysdep.h>
32 #include "../nptl_db/thread_db.h"
35 #include <bits/types/res_state.h>
36 #include <kernel-features.h>
39 # define TCB_ALIGNMENT sizeof (double)
43 /* We keep thread specific data in a special data structure, a two-level
44 array. The top-level array contains pointers to dynamically allocated
45 arrays of a certain number of data pointers. So we can implement a
46 sparse array. Each dynamic second-level array has
47 PTHREAD_KEY_2NDLEVEL_SIZE
48 entries. This value shouldn't be too large. */
49 #define PTHREAD_KEY_2NDLEVEL_SIZE 32
51 /* We need to address PTHREAD_KEYS_MAX key with PTHREAD_KEY_2NDLEVEL_SIZE
52 keys in each subarray. */
53 #define PTHREAD_KEY_1STLEVEL_SIZE \
54 ((PTHREAD_KEYS_MAX + PTHREAD_KEY_2NDLEVEL_SIZE - 1) \
55 / PTHREAD_KEY_2NDLEVEL_SIZE)
60 /* Internal version of the buffer to store cancellation handler
62 struct pthread_unwind_buf
72 /* This is the placeholder of the public version. */
77 /* Pointer to the previous cleanup buffer. */
78 struct pthread_unwind_buf
*prev
;
80 /* Backward compatibility: state of the old-style cleanup
81 handler at the time of the previous new-style cleanup handler
83 struct _pthread_cleanup_buffer
*cleanup
;
85 /* Cancellation type before the push call. */
92 /* Opcodes and data types for communication with the signal handler to
93 change user/group IDs. */
99 volatile int error
; /* -1: no call yet, 0: success seen, >0: error seen. */
103 /* Data structure used by the kernel to find robust futexes. */
104 struct robust_list_head
107 long int futex_offset
;
108 void *list_op_pending
;
112 /* Data strcture used to handle thread priority protection. */
113 struct priority_protection_data
116 unsigned int priomap
[];
120 /* Thread descriptor data structure. */
126 /* This overlaps the TCB as used for TLS without threads (see tls.h). */
131 /* multiple_threads is enabled either when the process has spawned at
132 least one thread or when a single-threaded process cancels itself.
133 This enables additional code to introduce locking before doing some
134 compare_and_exchange operations and also enable cancellation points.
135 The concepts of multiple threads and cancellation points ideally
136 should be separate, since it is not necessary for multiple threads to
137 have been created for cancellation points to be enabled, as is the
138 case is when single-threaded process cancels itself.
140 Since enabling multiple_threads enables additional code in
141 cancellation points and compare_and_exchange operations, there is a
142 potential for an unneeded performance hit when it is enabled in a
143 single-threaded, self-canceling process. This is OK though, since a
144 single-threaded process will enable async cancellation only when it
145 looks to cancel itself and is hence going to end anyway. */
146 int multiple_threads
;
148 # ifndef __ASSUME_PRIVATE_FUTEX
154 /* This extra padding has no special purpose, and this structure layout
155 is private and subject to change without affecting the official ABI.
156 We just have it here in case it might be convenient for some
157 implementation-specific instrumentation hack or suchlike. */
161 /* This descriptor's link on the `stack_used' or `__stack_user' list. */
164 /* Thread ID - which is also a 'is this thread descriptor (and
165 therefore stack) used' flag. */
171 /* List of robust mutexes the thread is holding. */
172 #ifdef __PTHREAD_MUTEX_HAVE_PREV
174 struct robust_list_head robust_head
;
176 /* The list above is strange. It is basically a double linked list
177 but the pointer to the next/previous element of the list points
178 in the middle of the object, the __next element. Whenever
179 casting to __pthread_list_t we need to adjust the pointer
181 These operations are effectively concurrent code in that the thread
182 can get killed at any point in time and the kernel takes over. Thus,
183 the __next elements are a kind of concurrent list and we need to
184 enforce using compiler barriers that the individual operations happen
185 in such a way that the kernel always sees a consistent list. The
186 backward links (ie, the __prev elements) are not used by the kernel.
187 FIXME We should use relaxed MO atomic operations here and signal fences
188 because this kind of concurrency is similar to synchronizing with a
190 # define QUEUE_PTR_ADJUST (offsetof (__pthread_list_t, __next))
192 # define ENQUEUE_MUTEX_BOTH(mutex, val) \
194 __pthread_list_t *next = (__pthread_list_t *) \
195 ((((uintptr_t) THREAD_GETMEM (THREAD_SELF, robust_head.list)) & ~1ul) \
196 - QUEUE_PTR_ADJUST); \
197 next->__prev = (void *) &mutex->__data.__list.__next; \
198 mutex->__data.__list.__next = THREAD_GETMEM (THREAD_SELF, \
200 mutex->__data.__list.__prev = (void *) &THREAD_SELF->robust_head; \
201 /* Ensure that the new list entry is ready before we insert it. */ \
202 __asm ("" ::: "memory"); \
203 THREAD_SETMEM (THREAD_SELF, robust_head.list, \
204 (void *) (((uintptr_t) &mutex->__data.__list.__next) \
207 # define DEQUEUE_MUTEX(mutex) \
209 __pthread_list_t *next = (__pthread_list_t *) \
210 ((char *) (((uintptr_t) mutex->__data.__list.__next) & ~1ul) \
211 - QUEUE_PTR_ADJUST); \
212 next->__prev = mutex->__data.__list.__prev; \
213 __pthread_list_t *prev = (__pthread_list_t *) \
214 ((char *) (((uintptr_t) mutex->__data.__list.__prev) & ~1ul) \
215 - QUEUE_PTR_ADJUST); \
216 prev->__next = mutex->__data.__list.__next; \
217 /* Ensure that we remove the entry from the list before we change the \
218 __next pointer of the entry, which is read by the kernel. */ \
219 __asm ("" ::: "memory"); \
220 mutex->__data.__list.__prev = NULL; \
221 mutex->__data.__list.__next = NULL; \
226 __pthread_slist_t robust_list
;
227 struct robust_list_head robust_head
;
230 # define ENQUEUE_MUTEX_BOTH(mutex, val) \
232 mutex->__data.__list.__next \
233 = THREAD_GETMEM (THREAD_SELF, robust_list.__next); \
234 /* Ensure that the new list entry is ready before we insert it. */ \
235 __asm ("" ::: "memory"); \
236 THREAD_SETMEM (THREAD_SELF, robust_list.__next, \
237 (void *) (((uintptr_t) &mutex->__data.__list) | val)); \
239 # define DEQUEUE_MUTEX(mutex) \
241 __pthread_slist_t *runp = (__pthread_slist_t *) \
242 (((uintptr_t) THREAD_GETMEM (THREAD_SELF, robust_list.__next)) & ~1ul); \
243 if (runp == &mutex->__data.__list) \
244 THREAD_SETMEM (THREAD_SELF, robust_list.__next, runp->__next); \
247 __pthread_slist_t *next = (__pthread_slist_t *) \
248 (((uintptr_t) runp->__next) & ~1ul); \
249 while (next != &mutex->__data.__list) \
252 next = (__pthread_slist_t *) (((uintptr_t) runp->__next) & ~1ul); \
255 runp->__next = next->__next; \
256 /* Ensure that we remove the entry from the list before we change the \
257 __next pointer of the entry, which is read by the kernel. */ \
258 __asm ("" ::: "memory"); \
259 mutex->__data.__list.__next = NULL; \
263 #define ENQUEUE_MUTEX(mutex) ENQUEUE_MUTEX_BOTH (mutex, 0)
264 #define ENQUEUE_MUTEX_PI(mutex) ENQUEUE_MUTEX_BOTH (mutex, 1)
266 /* List of cleanup buffers. */
267 struct _pthread_cleanup_buffer
*cleanup
;
269 /* Unwind information. */
270 struct pthread_unwind_buf
*cleanup_jmp_buf
;
271 #define HAVE_CLEANUP_JMP_BUF
273 /* Flags determining processing of cancellation. */
275 /* Bit set if cancellation is disabled. */
276 #define CANCELSTATE_BIT 0
277 #define CANCELSTATE_BITMASK (0x01 << CANCELSTATE_BIT)
278 /* Bit set if asynchronous cancellation mode is selected. */
279 #define CANCELTYPE_BIT 1
280 #define CANCELTYPE_BITMASK (0x01 << CANCELTYPE_BIT)
281 /* Bit set if canceling has been initiated. */
282 #define CANCELING_BIT 2
283 #define CANCELING_BITMASK (0x01 << CANCELING_BIT)
284 /* Bit set if canceled. */
285 #define CANCELED_BIT 3
286 #define CANCELED_BITMASK (0x01 << CANCELED_BIT)
287 /* Bit set if thread is exiting. */
288 #define EXITING_BIT 4
289 #define EXITING_BITMASK (0x01 << EXITING_BIT)
290 /* Bit set if thread terminated and TCB is freed. */
291 #define TERMINATED_BIT 5
292 #define TERMINATED_BITMASK (0x01 << TERMINATED_BIT)
293 /* Bit set if thread is supposed to change XID. */
295 #define SETXID_BITMASK (0x01 << SETXID_BIT)
296 /* Mask for the rest. Helps the compiler to optimize. */
297 #define CANCEL_RESTMASK 0xffffff80
299 #define CANCEL_ENABLED_AND_CANCELED(value) \
300 (((value) & (CANCELSTATE_BITMASK | CANCELED_BITMASK | EXITING_BITMASK \
301 | CANCEL_RESTMASK | TERMINATED_BITMASK)) == CANCELED_BITMASK)
302 #define CANCEL_ENABLED_AND_CANCELED_AND_ASYNCHRONOUS(value) \
303 (((value) & (CANCELSTATE_BITMASK | CANCELTYPE_BITMASK | CANCELED_BITMASK \
304 | EXITING_BITMASK | CANCEL_RESTMASK | TERMINATED_BITMASK)) \
305 == (CANCELTYPE_BITMASK | CANCELED_BITMASK))
307 /* Flags. Including those copied from the thread attribute. */
310 /* We allocate one block of references here. This should be enough
311 to avoid allocating any memory dynamically for most applications. */
312 struct pthread_key_data
314 /* Sequence number. We use uintptr_t to not require padding on
315 32- and 64-bit machines. On 64-bit machines it helps to avoid
321 } specific_1stblock
[PTHREAD_KEY_2NDLEVEL_SIZE
];
323 /* Two-level array for the thread-specific data. */
324 struct pthread_key_data
*specific
[PTHREAD_KEY_1STLEVEL_SIZE
];
326 /* Flag which is set when specific data is set. */
329 /* True if events must be reported. */
332 /* True if the user provided the stack. */
335 /* True if thread must stop at startup time. */
338 /* The parent's cancel handling at the time of the pthread_create
339 call. This might be needed to undo the effects of a cancellation. */
340 int parent_cancelhandling
;
342 /* Lock to synchronize access to the descriptor. */
345 /* Lock for synchronizing setxid calls. */
346 unsigned int setxid_futex
;
349 /* Offset of the CPU clock at start thread start time. */
350 hp_timing_t cpuclock_offset
;
353 /* If the thread waits to join another one the ID of the latter is
356 In case a thread is detached this field contains a pointer of the
357 TCB if the thread itself. This is something which cannot happen
358 in normal operation. */
359 struct pthread
*joinid
;
360 /* Check whether a thread is detached. */
361 #define IS_DETACHED(pd) ((pd)->joinid == (pd))
363 /* The result of the thread function. */
366 /* Scheduling parameters for the new thread. */
367 struct sched_param schedparam
;
370 /* Start position of the code to be executed and the argument passed
372 void *(*start_routine
) (void *);
376 td_eventbuf_t eventbuf
;
377 /* Next descriptor with a pending event. */
378 struct pthread
*nextevent
;
380 /* Machine-specific unwind info. */
381 struct _Unwind_Exception exc
;
383 /* If nonzero pointer to area allocated for the stack and its
386 size_t stackblock_size
;
387 /* Size of the included guard area. */
389 /* This is what the user specified and what we will report. */
390 size_t reported_guardsize
;
392 /* Thread Priority Protection data. */
393 struct priority_protection_data
*tpp
;
395 /* Resolver state. */
396 struct __res_state res
;
398 /* This member must be last. */
401 #define PTHREAD_STRUCT_END_PADDING \
402 (sizeof (struct pthread) - offsetof (struct pthread, end_padding))
403 } __attribute ((aligned (TCB_ALIGNMENT
)));