1 /* Copyright (c) 1998-2022 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published
6 by the Free Software Foundation; version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, see <https://www.gnu.org/licenses/>. */
26 #include <arpa/inet.h>
28 #include <sys/param.h>
37 /* Wrapper functions with error checking for standard functions. */
38 extern void *xcalloc (size_t n
, size_t s
);
41 /* Number of times a value is reloaded without being used. UINT_MAX
43 unsigned int reload_count
= DEFAULT_RELOAD_LIMIT
;
46 static time_t (*const readdfcts
[LASTREQ
]) (struct database_dyn
*,
50 [GETPWBYNAME
] = readdpwbyname
,
51 [GETPWBYUID
] = readdpwbyuid
,
52 [GETGRBYNAME
] = readdgrbyname
,
53 [GETGRBYGID
] = readdgrbygid
,
54 [GETHOSTBYNAME
] = readdhstbyname
,
55 [GETHOSTBYNAMEv6
] = readdhstbynamev6
,
56 [GETHOSTBYADDR
] = readdhstbyaddr
,
57 [GETHOSTBYADDRv6
] = readdhstbyaddrv6
,
59 [INITGROUPS
] = readdinitgroups
,
60 [GETSERVBYNAME
] = readdservbyname
,
61 [GETSERVBYPORT
] = readdservbyport
,
62 [GETNETGRENT
] = readdgetnetgrent
,
63 [INNETGR
] = readdinnetgr
67 /* Search the cache for a matching entry and return it when found. If
68 this fails search the negative cache and return (void *) -1 if this
69 search was successful. Otherwise return NULL.
71 This function must be called with the read-lock held. */
73 cache_search (request_type type
, const void *key
, size_t len
,
74 struct database_dyn
*table
, uid_t owner
)
76 unsigned long int hash
= __nss_hash (key
, len
) % table
->head
->module
;
78 unsigned long int nsearched
= 0;
79 struct datahead
*result
= NULL
;
81 ref_t work
= table
->head
->array
[hash
];
82 while (work
!= ENDREF
)
86 struct hashentry
*here
= (struct hashentry
*) (table
->data
+ work
);
88 if (type
== here
->type
&& len
== here
->len
89 && memcmp (key
, table
->data
+ here
->key
, len
) == 0
90 && here
->owner
== owner
)
92 /* We found the entry. Increment the appropriate counter. */
94 = (struct datahead
*) (table
->data
+ here
->packet
);
96 /* See whether we must ignore the entry. */
99 /* We do not synchronize the memory here. The statistics
100 data is not crucial, we synchronize only once in a while
101 in the cleanup threads. */
103 ++table
->head
->neghit
;
106 ++table
->head
->poshit
;
108 if (dh
->nreloads
!= 0)
120 if (nsearched
> table
->head
->maxnsearched
)
121 table
->head
->maxnsearched
= nsearched
;
126 /* Add a new entry to the cache. The return value is zero if the function
129 This function must be called with the read-lock held.
131 We modify the table but we nevertheless only acquire a read-lock.
132 This is ok since we use operations which would be safe even without
133 locking, given that the `prune_cache' function never runs. Using
134 the readlock reduces the chance of conflicts. */
136 cache_add (int type
, const void *key
, size_t len
, struct datahead
*packet
,
137 bool first
, struct database_dyn
*table
,
138 uid_t owner
, bool prune_wakeup
)
140 if (__glibc_unlikely (debug_level
>= 2))
143 char buf
[INET6_ADDRSTRLEN
+ 1];
144 if (type
== GETHOSTBYADDR
|| type
== GETHOSTBYADDRv6
)
145 str
= inet_ntop (type
== GETHOSTBYADDR
? AF_INET
: AF_INET6
,
146 key
, buf
, sizeof (buf
));
150 dbg_log (_("add new entry \"%s\" of type %s for %s to cache%s"),
151 str
, serv2str
[type
], dbnames
[table
- dbs
],
152 first
? _(" (first)") : "");
155 unsigned long int hash
= __nss_hash (key
, len
) % table
->head
->module
;
156 struct hashentry
*newp
;
158 newp
= mempool_alloc (table
, sizeof (struct hashentry
), 0);
159 /* If we cannot allocate memory, just do not do anything. */
162 /* If necessary mark the entry as unusable so that lookups will
165 packet
->usable
= false;
173 newp
->key
= (char *) key
- table
->data
;
174 assert (newp
->key
+ newp
->len
<= table
->head
->first_free
);
176 newp
->packet
= (char *) packet
- table
->data
;
177 assert ((newp
->packet
& BLOCK_ALIGN_M1
) == 0);
179 /* Put the new entry in the first position. */
180 /* TODO Review concurrency. Use atomic_exchange_release. */
181 newp
->next
= atomic_load_relaxed (&table
->head
->array
[hash
]);
182 while (!atomic_compare_exchange_weak_release (&table
->head
->array
[hash
],
183 (ref_t
*) &newp
->next
,
184 (ref_t
) ((char *) newp
187 /* Update the statistics. */
188 if (packet
->notfound
)
189 ++table
->head
->negmiss
;
191 ++table
->head
->posmiss
;
193 /* We depend on this value being correct and at least as high as the
194 real number of entries. */
195 atomic_increment (&table
->head
->nentries
);
197 /* It does not matter that we are not loading the just increment
198 value, this is just for statistics. */
199 unsigned long int nentries
= table
->head
->nentries
;
200 if (nentries
> table
->head
->maxnentries
)
201 table
->head
->maxnentries
= nentries
;
203 if (table
->persistent
)
205 msync ((void *) table
->head
,
206 (char *) &table
->head
->array
[hash
] - (char *) table
->head
207 + sizeof (ref_t
), MS_ASYNC
);
209 /* We do not have to worry about the pruning thread if we are
210 re-adding the data since this is done by the pruning thread. We
211 also do not have to do anything in case this is not the first
212 time the data is entered since different data heads all have the
214 if (first
&& prune_wakeup
)
216 /* Perhaps the prune thread for the table is not running in a long
217 time. Wake it if necessary. */
218 pthread_mutex_lock (&table
->prune_lock
);
219 time_t next_wakeup
= table
->wakeup_time
;
220 bool do_wakeup
= false;
221 if (next_wakeup
> packet
->timeout
+ CACHE_PRUNE_INTERVAL
)
223 table
->wakeup_time
= packet
->timeout
;
226 pthread_mutex_unlock (&table
->prune_lock
);
228 pthread_cond_signal (&table
->prune_cond
);
234 /* Walk through the table and remove all entries which lifetime ended.
236 We have a problem here. To actually remove the entries we must get
237 the write-lock. But since we want to keep the time we have the
238 lock as short as possible we cannot simply acquire the lock when we
239 start looking for timedout entries.
241 Therefore we do it in two stages: first we look for entries which
242 must be invalidated and remember them. Then we get the lock and
243 actually remove them. This is complicated by the way we have to
244 free the data structures since some hash table entries share the same
247 prune_cache (struct database_dyn
*table
, time_t now
, int fd
)
249 size_t cnt
= table
->head
->module
;
251 /* If this table is not actually used don't do anything. */
256 /* Reply to the INVALIDATE initiator. */
258 writeall (fd
, &resp
, sizeof (resp
));
261 /* No need to do this again anytime soon. */
265 /* If we check for the modification of the underlying file we invalidate
266 the entries also in this case. */
267 if (table
->check_file
&& now
!= LONG_MAX
)
269 struct traced_file
*runp
= table
->traced_files
;
274 if (runp
->inotify_descr
[TRACED_FILE
] == -1)
279 if (stat64 (runp
->fname
, &st
) < 0)
281 /* Print a diagnostic that the traced file was missing.
282 We must not disable tracing since the file might return
283 shortly and we want to reload it at the next pruning.
284 Disabling tracing here would go against the configuration
285 as specified by the user via check-files. */
287 dbg_log (_("checking for monitored file `%s': %s"),
288 runp
->fname
, strerror_r (errno
, buf
, sizeof (buf
)));
292 /* This must be `!=` to catch cases where users turn the
293 clocks back and we still want to detect any time difference
295 if (st
.st_mtime
!= runp
->mtime
)
297 dbg_log (_("monitored file `%s` changed (mtime)"),
299 /* The file changed. Invalidate all entries. */
301 runp
->mtime
= st
.st_mtime
;
303 /* Attempt to install a watch on the file. */
304 install_watches (runp
);
314 /* We run through the table and find values which are not valid anymore.
316 Note that for the initial step, finding the entries to be removed,
317 we don't need to get any lock. It is at all timed assured that the
318 linked lists are set up correctly and that no second thread prunes
321 size_t memory_needed
= cnt
* sizeof (bool);
322 bool mark_use_alloca
;
323 if (__glibc_likely (memory_needed
<= MAX_STACK_USE
))
325 mark
= alloca (cnt
* sizeof (bool));
326 memset (mark
, '\0', memory_needed
);
327 mark_use_alloca
= true;
331 mark
= xcalloc (1, memory_needed
);
332 mark_use_alloca
= false;
334 size_t first
= cnt
+ 1;
336 char *const data
= table
->data
;
339 if (__glibc_unlikely (debug_level
> 2))
340 dbg_log (_("pruning %s cache; time %ld"),
341 dbnames
[table
- dbs
], (long int) now
);
343 #define NO_TIMEOUT LONG_MAX
344 time_t next_timeout
= NO_TIMEOUT
;
347 ref_t run
= table
->head
->array
[--cnt
];
349 while (run
!= ENDREF
)
351 struct hashentry
*runp
= (struct hashentry
*) (data
+ run
);
352 struct datahead
*dh
= (struct datahead
*) (data
+ runp
->packet
);
354 /* Some debug support. */
355 if (__glibc_unlikely (debug_level
> 2))
357 char buf
[INET6_ADDRSTRLEN
];
360 if (runp
->type
== GETHOSTBYADDR
|| runp
->type
== GETHOSTBYADDRv6
)
362 inet_ntop (runp
->type
== GETHOSTBYADDR
? AF_INET
: AF_INET6
,
363 data
+ runp
->key
, buf
, sizeof (buf
));
367 str
= data
+ runp
->key
;
369 dbg_log (_("considering %s entry \"%s\", timeout %" PRIu64
),
370 serv2str
[runp
->type
], str
, dh
->timeout
);
373 /* Check whether the entry timed out. */
374 if (dh
->timeout
< now
)
376 /* This hash bucket could contain entries which need to
380 first
= MIN (first
, cnt
);
381 last
= MAX (last
, cnt
);
383 /* We only have to look at the data of the first entries
384 since the count information is kept in the data part
389 /* At this point there are two choices: we reload the
390 value or we discard it. Do not change NRELOADS if
391 we never not reload the record. */
392 if ((reload_count
!= UINT_MAX
393 && __builtin_expect (dh
->nreloads
>= reload_count
, 0))
394 /* We always remove negative entries. */
396 /* Discard everything if the user explicitly
400 /* Remove the value. */
403 /* We definitely have some garbage entries now. */
408 /* Reload the value. We do this only for the
409 initially used key, not the additionally
410 added derived value. */
411 assert (runp
->type
< LASTREQ
412 && readdfcts
[runp
->type
] != NULL
);
414 time_t timeout
= readdfcts
[runp
->type
] (table
, runp
, dh
);
415 next_timeout
= MIN (next_timeout
, timeout
);
417 /* If the entry has been replaced, we might need
426 next_timeout
= MIN (next_timeout
, dh
->timeout
);
434 if (__glibc_unlikely (fd
!= -1))
436 /* Reply to the INVALIDATE initiator that the cache has been
439 writeall (fd
, &resp
, sizeof (resp
));
444 struct hashentry
*head
= NULL
;
446 /* Now we have to get the write lock since we are about to modify
448 if (__glibc_unlikely (pthread_rwlock_trywrlock (&table
->lock
) != 0))
450 ++table
->head
->wrlockdelayed
;
451 pthread_rwlock_wrlock (&table
->lock
);
454 /* Now we start modifying the data. Make sure all readers of the
455 data are aware of this and temporarily don't use the data. */
456 atomic_fetch_add_relaxed (&table
->head
->gc_cycle
, 1);
457 assert ((table
->head
->gc_cycle
& 1) == 1);
459 while (first
<= last
)
463 ref_t
*old
= &table
->head
->array
[first
];
464 ref_t run
= table
->head
->array
[first
];
466 assert (run
!= ENDREF
);
469 struct hashentry
*runp
= (struct hashentry
*) (data
+ run
);
471 = (struct datahead
*) (data
+ runp
->packet
);
475 /* We need the list only for debugging but it is
476 more costly to avoid creating the list than
478 runp
->dellist
= head
;
481 /* No need for an atomic operation, we have the
483 --table
->head
->nentries
;
485 run
= *old
= runp
->next
;
493 while (run
!= ENDREF
);
499 /* Now we are done modifying the data. */
500 atomic_fetch_add_relaxed (&table
->head
->gc_cycle
, 1);
501 assert ((table
->head
->gc_cycle
& 1) == 0);
504 pthread_rwlock_unlock (&table
->lock
);
506 /* Make sure the data is saved to disk. */
507 if (table
->persistent
)
509 data
+ table
->head
->first_free
- (char *) table
->head
,
512 /* One extra pass if we do debugging. */
513 if (__glibc_unlikely (debug_level
> 0))
515 struct hashentry
*runp
= head
;
519 char buf
[INET6_ADDRSTRLEN
];
522 if (runp
->type
== GETHOSTBYADDR
|| runp
->type
== GETHOSTBYADDRv6
)
524 inet_ntop (runp
->type
== GETHOSTBYADDR
? AF_INET
: AF_INET6
,
525 data
+ runp
->key
, buf
, sizeof (buf
));
529 str
= data
+ runp
->key
;
531 dbg_log ("remove %s entry \"%s\"", serv2str
[runp
->type
], str
);
533 runp
= runp
->dellist
;
538 if (__glibc_unlikely (! mark_use_alloca
))
541 /* Run garbage collection if any entry has been removed or replaced. */
545 /* If there is no entry in the database and we therefore have no new
546 timeout value, tell the caller to wake up in 24 hours. */
547 return next_timeout
== NO_TIMEOUT
? 24 * 60 * 60 : next_timeout
- now
;