Partially based on a patch by Petr Baudis <pasky@suse.cz>.
[glibc.git] / crypt / sha256-crypt.c
blobdbd29e0efd93627a8ab0694757be240ca4f33240
1 /* One way encryption based on SHA256 sum.
2 Copyright (C) 2007 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
21 #include <assert.h>
22 #include <errno.h>
23 #include <stdbool.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/param.h>
28 #include "sha256.h"
31 /* Define our magic string to mark salt for SHA256 "encryption"
32 replacement. */
33 static const char sha256_salt_prefix[] = "$5$";
35 /* Prefix for optional rounds specification. */
36 static const char sha256_rounds_prefix[] = "rounds=";
38 /* Maximum salt string length. */
39 #define SALT_LEN_MAX 16
40 /* Default number of rounds if not explicitly specified. */
41 #define ROUNDS_DEFAULT 5000
42 /* Minimum number of rounds. */
43 #define ROUNDS_MIN 1000
44 /* Maximum number of rounds. */
45 #define ROUNDS_MAX 999999999
47 /* Table with characters for base64 transformation. */
48 static const char b64t[64] =
49 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
52 /* Prototypes for local functions. */
53 extern char *__sha256_crypt_r (const char *key, const char *salt,
54 char *buffer, int buflen);
55 extern char *__sha256_crypt (const char *key, const char *salt);
58 char *
59 __sha256_crypt_r (key, salt, buffer, buflen)
60 const char *key;
61 const char *salt;
62 char *buffer;
63 int buflen;
65 unsigned char alt_result[32]
66 __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
67 unsigned char temp_result[32]
68 __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
69 struct sha256_ctx ctx;
70 struct sha256_ctx alt_ctx;
71 size_t salt_len;
72 size_t key_len;
73 size_t cnt;
74 char *cp;
75 char *copied_key = NULL;
76 char *copied_salt = NULL;
77 char *p_bytes;
78 char *s_bytes;
79 /* Default number of rounds. */
80 size_t rounds = ROUNDS_DEFAULT;
81 bool rounds_custom = false;
83 /* Find beginning of salt string. The prefix should normally always
84 be present. Just in case it is not. */
85 if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
86 /* Skip salt prefix. */
87 salt += sizeof (sha256_salt_prefix) - 1;
89 if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
90 == 0)
92 const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
93 char *endp;
94 unsigned long int srounds = strtoul (num, &endp, 10);
95 if (*endp == '$')
97 salt = endp + 1;
98 rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
99 rounds_custom = true;
103 salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
104 key_len = strlen (key);
106 if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
108 char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t));
109 key = copied_key =
110 memcpy (tmp + __alignof__ (uint32_t)
111 - (tmp - (char *) 0) % __alignof__ (uint32_t),
112 key, key_len);
113 assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0);
116 if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
118 char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
119 salt = copied_salt =
120 memcpy (tmp + __alignof__ (uint32_t)
121 - (tmp - (char *) 0) % __alignof__ (uint32_t),
122 salt, salt_len);
123 assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0);
126 /* Prepare for the real work. */
127 __sha256_init_ctx (&ctx);
129 /* Add the key string. */
130 __sha256_process_bytes (key, key_len, &ctx);
132 /* The last part is the salt string. This must be at most 16
133 characters and it ends at the first `$' character. */
134 __sha256_process_bytes (salt, salt_len, &ctx);
137 /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
138 final result will be added to the first context. */
139 __sha256_init_ctx (&alt_ctx);
141 /* Add key. */
142 __sha256_process_bytes (key, key_len, &alt_ctx);
144 /* Add salt. */
145 __sha256_process_bytes (salt, salt_len, &alt_ctx);
147 /* Add key again. */
148 __sha256_process_bytes (key, key_len, &alt_ctx);
150 /* Now get result of this (32 bytes) and add it to the other
151 context. */
152 __sha256_finish_ctx (&alt_ctx, alt_result);
154 /* Add for any character in the key one byte of the alternate sum. */
155 for (cnt = key_len; cnt > 32; cnt -= 32)
156 __sha256_process_bytes (alt_result, 32, &ctx);
157 __sha256_process_bytes (alt_result, cnt, &ctx);
159 /* Take the binary representation of the length of the key and for every
160 1 add the alternate sum, for every 0 the key. */
161 for (cnt = key_len; cnt > 0; cnt >>= 1)
162 if ((cnt & 1) != 0)
163 __sha256_process_bytes (alt_result, 32, &ctx);
164 else
165 __sha256_process_bytes (key, key_len, &ctx);
167 /* Create intermediate result. */
168 __sha256_finish_ctx (&ctx, alt_result);
170 /* Start computation of P byte sequence. */
171 __sha256_init_ctx (&alt_ctx);
173 /* For every character in the password add the entire password. */
174 for (cnt = 0; cnt < key_len; ++cnt)
175 __sha256_process_bytes (key, key_len, &alt_ctx);
177 /* Finish the digest. */
178 __sha256_finish_ctx (&alt_ctx, temp_result);
180 /* Create byte sequence P. */
181 cp = p_bytes = alloca (key_len);
182 for (cnt = key_len; cnt >= 32; cnt -= 32)
183 cp = mempcpy (cp, temp_result, 32);
184 memcpy (cp, temp_result, cnt);
186 /* Start computation of S byte sequence. */
187 __sha256_init_ctx (&alt_ctx);
189 /* For every character in the password add the entire password. */
190 for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
191 __sha256_process_bytes (salt, salt_len, &alt_ctx);
193 /* Finish the digest. */
194 __sha256_finish_ctx (&alt_ctx, temp_result);
196 /* Create byte sequence S. */
197 cp = s_bytes = alloca (salt_len);
198 for (cnt = salt_len; cnt >= 32; cnt -= 32)
199 cp = mempcpy (cp, temp_result, 32);
200 memcpy (cp, temp_result, cnt);
202 /* Repeatedly run the collected hash value through SHA256 to burn
203 CPU cycles. */
204 for (cnt = 0; cnt < rounds; ++cnt)
206 /* New context. */
207 __sha256_init_ctx (&ctx);
209 /* Add key or last result. */
210 if ((cnt & 1) != 0)
211 __sha256_process_bytes (p_bytes, key_len, &ctx);
212 else
213 __sha256_process_bytes (alt_result, 32, &ctx);
215 /* Add salt for numbers not divisible by 3. */
216 if (cnt % 3 != 0)
217 __sha256_process_bytes (s_bytes, salt_len, &ctx);
219 /* Add key for numbers not divisible by 7. */
220 if (cnt % 7 != 0)
221 __sha256_process_bytes (p_bytes, key_len, &ctx);
223 /* Add key or last result. */
224 if ((cnt & 1) != 0)
225 __sha256_process_bytes (alt_result, 32, &ctx);
226 else
227 __sha256_process_bytes (p_bytes, key_len, &ctx);
229 /* Create intermediate result. */
230 __sha256_finish_ctx (&ctx, alt_result);
233 /* Now we can construct the result string. It consists of three
234 parts. */
235 cp = __stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
236 buflen -= sizeof (sha256_salt_prefix) - 1;
238 if (rounds_custom)
240 int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
241 sha256_rounds_prefix, rounds);
242 cp += n;
243 buflen -= n;
246 cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
247 buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
249 if (buflen > 0)
251 *cp++ = '$';
252 --buflen;
255 #define b64_from_24bit(B2, B1, B0, N) \
256 do { \
257 unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
258 int n = (N); \
259 while (n-- > 0 && buflen > 0) \
261 *cp++ = b64t[w & 0x3f]; \
262 --buflen; \
263 w >>= 6; \
265 } while (0)
267 b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4);
268 b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4);
269 b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4);
270 b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4);
271 b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4);
272 b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4);
273 b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4);
274 b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4);
275 b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4);
276 b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4);
277 b64_from_24bit (0, alt_result[31], alt_result[30], 3);
278 if (buflen <= 0)
280 __set_errno (ERANGE);
281 buffer = NULL;
283 else
284 *cp = '\0'; /* Terminate the string. */
286 /* Clear the buffer for the intermediate result so that people
287 attaching to processes or reading core dumps cannot get any
288 information. We do it in this way to clear correct_words[]
289 inside the SHA256 implementation as well. */
290 __sha256_init_ctx (&ctx);
291 __sha256_finish_ctx (&ctx, alt_result);
292 memset (temp_result, '\0', sizeof (temp_result));
293 memset (p_bytes, '\0', key_len);
294 memset (s_bytes, '\0', salt_len);
295 memset (&ctx, '\0', sizeof (ctx));
296 memset (&alt_ctx, '\0', sizeof (alt_ctx));
297 if (copied_key != NULL)
298 memset (copied_key, '\0', key_len);
299 if (copied_salt != NULL)
300 memset (copied_salt, '\0', salt_len);
302 return buffer;
305 #ifndef _LIBC
306 # define libc_freeres_ptr(decl) decl
307 #endif
308 libc_freeres_ptr (static char *buffer);
310 /* This entry point is equivalent to the `crypt' function in Unix
311 libcs. */
312 char *
313 __sha256_crypt (const char *key, const char *salt)
315 /* We don't want to have an arbitrary limit in the size of the
316 password. We can compute an upper bound for the size of the
317 result in advance and so we can prepare the buffer we pass to
318 `sha256_crypt_r'. */
319 static int buflen;
320 int needed = (sizeof (sha256_salt_prefix) - 1
321 + sizeof (sha256_rounds_prefix) + 9 + 1
322 + strlen (salt) + 1 + 43 + 1);
324 if (buflen < needed)
326 char *new_buffer = (char *) realloc (buffer, needed);
327 if (new_buffer == NULL)
328 return NULL;
330 buffer = new_buffer;
331 buflen = needed;
334 return __sha256_crypt_r (key, salt, buffer, buflen);
337 #ifndef _LIBC
338 static void
339 __attribute__ ((__destructor__))
340 free_mem (void)
342 free (buffer);
344 #endif