powerpc64le: Enforce -mabi=ibmlongdouble when -mfloat128 used
[glibc.git] / math / s_csinh_template.c
blob3907c47f5b755c2188d673cb949db31a2ff1ac31
1 /* Complex sine hyperbole function for float types.
2 Copyright (C) 1997-2020 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <https://www.gnu.org/licenses/>. */
20 #include <complex.h>
21 #include <fenv.h>
22 #include <math.h>
23 #include <math_private.h>
24 #include <math-underflow.h>
25 #include <float.h>
27 CFLOAT
28 M_DECL_FUNC (__csinh) (CFLOAT x)
30 CFLOAT retval;
31 int negate = signbit (__real__ x);
32 int rcls = fpclassify (__real__ x);
33 int icls = fpclassify (__imag__ x);
35 __real__ x = M_FABS (__real__ x);
37 if (__glibc_likely (rcls >= FP_ZERO))
39 /* Real part is finite. */
40 if (__glibc_likely (icls >= FP_ZERO))
42 /* Imaginary part is finite. */
43 const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
44 FLOAT sinix, cosix;
46 if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
48 M_SINCOS (__imag__ x, &sinix, &cosix);
50 else
52 sinix = __imag__ x;
53 cosix = 1;
56 if (negate)
57 cosix = -cosix;
59 if (M_FABS (__real__ x) > t)
61 FLOAT exp_t = M_EXP (t);
62 FLOAT rx = M_FABS (__real__ x);
63 if (signbit (__real__ x))
64 cosix = -cosix;
65 rx -= t;
66 sinix *= exp_t / 2;
67 cosix *= exp_t / 2;
68 if (rx > t)
70 rx -= t;
71 sinix *= exp_t;
72 cosix *= exp_t;
74 if (rx > t)
76 /* Overflow (original real part of x > 3t). */
77 __real__ retval = M_MAX * cosix;
78 __imag__ retval = M_MAX * sinix;
80 else
82 FLOAT exp_val = M_EXP (rx);
83 __real__ retval = exp_val * cosix;
84 __imag__ retval = exp_val * sinix;
87 else
89 __real__ retval = M_SINH (__real__ x) * cosix;
90 __imag__ retval = M_COSH (__real__ x) * sinix;
93 math_check_force_underflow_complex (retval);
95 else
97 if (rcls == FP_ZERO)
99 /* Real part is 0.0. */
100 __real__ retval = M_COPYSIGN (0, negate ? -1 : 1);
101 __imag__ retval = __imag__ x - __imag__ x;
103 else
105 __real__ retval = M_NAN;
106 __imag__ retval = M_NAN;
108 feraiseexcept (FE_INVALID);
112 else if (rcls == FP_INFINITE)
114 /* Real part is infinite. */
115 if (__glibc_likely (icls > FP_ZERO))
117 /* Imaginary part is finite. */
118 FLOAT sinix, cosix;
120 if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
122 M_SINCOS (__imag__ x, &sinix, &cosix);
124 else
126 sinix = __imag__ x;
127 cosix = 1;
130 __real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix);
131 __imag__ retval = M_COPYSIGN (M_HUGE_VAL, sinix);
133 if (negate)
134 __real__ retval = -__real__ retval;
136 else if (icls == FP_ZERO)
138 /* Imaginary part is 0.0. */
139 __real__ retval = negate ? -M_HUGE_VAL : M_HUGE_VAL;
140 __imag__ retval = __imag__ x;
142 else
144 __real__ retval = M_HUGE_VAL;
145 __imag__ retval = __imag__ x - __imag__ x;
148 else
150 __real__ retval = M_NAN;
151 __imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN;
154 return retval;
157 declare_mgen_alias (__csinh, csinh)