1 /* Copyright (C) 2002-2023 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
4 The GNU C Library is free software; you can redistribute it and/or
5 modify it under the terms of the GNU Lesser General Public
6 License as published by the Free Software Foundation; either
7 version 2.1 of the License, or (at your option) any later version.
9 The GNU C Library is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 Lesser General Public License for more details.
14 You should have received a copy of the GNU Lesser General Public
15 License along with the GNU C Library; if not, see
16 <https://www.gnu.org/licenses/>. */
25 #include <sys/types.h>
26 #include <hp-timing.h>
28 #include <lowlevellock.h>
29 #include <pthreaddef.h>
30 #include <dl-sysdep.h>
31 #include <thread_db.h>
34 #include <bits/types/res_state.h>
35 #include <kernel-features.h>
36 #include <tls-internal-struct.h>
38 #include <internal-sigset.h>
41 # define TCB_ALIGNMENT 32
42 #elif TCB_ALIGNMENT < 32
43 # error TCB_ALIGNMENT must be at least 32
47 /* We keep thread specific data in a special data structure, a two-level
48 array. The top-level array contains pointers to dynamically allocated
49 arrays of a certain number of data pointers. So we can implement a
50 sparse array. Each dynamic second-level array has
51 PTHREAD_KEY_2NDLEVEL_SIZE
52 entries. This value shouldn't be too large. */
53 #define PTHREAD_KEY_2NDLEVEL_SIZE 32
55 /* We need to address PTHREAD_KEYS_MAX key with PTHREAD_KEY_2NDLEVEL_SIZE
56 keys in each subarray. */
57 #define PTHREAD_KEY_1STLEVEL_SIZE \
58 ((PTHREAD_KEYS_MAX + PTHREAD_KEY_2NDLEVEL_SIZE - 1) \
59 / PTHREAD_KEY_2NDLEVEL_SIZE)
64 /* Internal version of the buffer to store cancellation handler
66 struct pthread_unwind_buf
76 /* This is the placeholder of the public version. */
81 /* Pointer to the previous cleanup buffer. */
82 struct pthread_unwind_buf
*prev
;
84 /* Backward compatibility: state of the old-style cleanup
85 handler at the time of the previous new-style cleanup handler
87 struct _pthread_cleanup_buffer
*cleanup
;
89 /* Cancellation type before the push call. */
96 /* Opcodes and data types for communication with the signal handler to
97 change user/group IDs. */
101 /* Enforce zero-extension for the pointer argument in
103 int setgroups (size_t size, const gid_t *list);
105 The kernel XID arguments are unsigned and do not require sign
107 unsigned long int id
[3];
109 volatile int error
; /* -1: no call yet, 0: success seen, >0: error seen. */
113 /* Data structure used by the kernel to find robust futexes. */
114 struct robust_list_head
117 long int futex_offset
;
118 void *list_op_pending
;
122 /* Data strcture used to handle thread priority protection. */
123 struct priority_protection_data
126 unsigned int priomap
[];
130 /* Thread descriptor data structure. */
136 /* This overlaps the TCB as used for TLS without threads (see tls.h). */
141 /* multiple_threads is enabled either when the process has spawned at
142 least one thread or when a single-threaded process cancels itself.
143 This enables additional code to introduce locking before doing some
144 compare_and_exchange operations and also enable cancellation points.
145 The concepts of multiple threads and cancellation points ideally
146 should be separate, since it is not necessary for multiple threads to
147 have been created for cancellation points to be enabled, as is the
148 case is when single-threaded process cancels itself.
150 Since enabling multiple_threads enables additional code in
151 cancellation points and compare_and_exchange operations, there is a
152 potential for an unneeded performance hit when it is enabled in a
153 single-threaded, self-canceling process. This is OK though, since a
154 single-threaded process will enable async cancellation only when it
155 looks to cancel itself and is hence going to end anyway. */
156 int multiple_threads
;
161 /* This extra padding has no special purpose, and this structure layout
162 is private and subject to change without affecting the official ABI.
163 We just have it here in case it might be convenient for some
164 implementation-specific instrumentation hack or suchlike. */
168 /* This descriptor's link on the GL (dl_stack_used) or
169 GL (dl_stack_user) list. */
172 /* Thread ID - which is also a 'is this thread descriptor (and
173 therefore stack) used' flag. */
176 /* List of robust mutexes the thread is holding. */
177 #if __PTHREAD_MUTEX_HAVE_PREV
179 struct robust_list_head robust_head
;
181 /* The list above is strange. It is basically a double linked list
182 but the pointer to the next/previous element of the list points
183 in the middle of the object, the __next element. Whenever
184 casting to __pthread_list_t we need to adjust the pointer
186 These operations are effectively concurrent code in that the thread
187 can get killed at any point in time and the kernel takes over. Thus,
188 the __next elements are a kind of concurrent list and we need to
189 enforce using compiler barriers that the individual operations happen
190 in such a way that the kernel always sees a consistent list. The
191 backward links (ie, the __prev elements) are not used by the kernel.
192 FIXME We should use relaxed MO atomic operations here and signal fences
193 because this kind of concurrency is similar to synchronizing with a
195 # define QUEUE_PTR_ADJUST (offsetof (__pthread_list_t, __next))
197 # define ENQUEUE_MUTEX_BOTH(mutex, val) \
199 __pthread_list_t *next = (__pthread_list_t *) \
200 ((((uintptr_t) THREAD_GETMEM (THREAD_SELF, robust_head.list)) & ~1ul) \
201 - QUEUE_PTR_ADJUST); \
202 next->__prev = (void *) &mutex->__data.__list.__next; \
203 mutex->__data.__list.__next = THREAD_GETMEM (THREAD_SELF, \
205 mutex->__data.__list.__prev = (void *) &THREAD_SELF->robust_head; \
206 /* Ensure that the new list entry is ready before we insert it. */ \
207 __asm ("" ::: "memory"); \
208 THREAD_SETMEM (THREAD_SELF, robust_head.list, \
209 (void *) (((uintptr_t) &mutex->__data.__list.__next) \
212 # define DEQUEUE_MUTEX(mutex) \
214 __pthread_list_t *next = (__pthread_list_t *) \
215 ((char *) (((uintptr_t) mutex->__data.__list.__next) & ~1ul) \
216 - QUEUE_PTR_ADJUST); \
217 next->__prev = mutex->__data.__list.__prev; \
218 __pthread_list_t *prev = (__pthread_list_t *) \
219 ((char *) (((uintptr_t) mutex->__data.__list.__prev) & ~1ul) \
220 - QUEUE_PTR_ADJUST); \
221 prev->__next = mutex->__data.__list.__next; \
222 /* Ensure that we remove the entry from the list before we change the \
223 __next pointer of the entry, which is read by the kernel. */ \
224 __asm ("" ::: "memory"); \
225 mutex->__data.__list.__prev = NULL; \
226 mutex->__data.__list.__next = NULL; \
231 __pthread_slist_t robust_list
;
232 struct robust_list_head robust_head
;
235 # define ENQUEUE_MUTEX_BOTH(mutex, val) \
237 mutex->__data.__list.__next \
238 = THREAD_GETMEM (THREAD_SELF, robust_list.__next); \
239 /* Ensure that the new list entry is ready before we insert it. */ \
240 __asm ("" ::: "memory"); \
241 THREAD_SETMEM (THREAD_SELF, robust_list.__next, \
242 (void *) (((uintptr_t) &mutex->__data.__list) | val)); \
244 # define DEQUEUE_MUTEX(mutex) \
246 __pthread_slist_t *runp = (__pthread_slist_t *) \
247 (((uintptr_t) THREAD_GETMEM (THREAD_SELF, robust_list.__next)) & ~1ul); \
248 if (runp == &mutex->__data.__list) \
249 THREAD_SETMEM (THREAD_SELF, robust_list.__next, runp->__next); \
252 __pthread_slist_t *next = (__pthread_slist_t *) \
253 (((uintptr_t) runp->__next) & ~1ul); \
254 while (next != &mutex->__data.__list) \
257 next = (__pthread_slist_t *) (((uintptr_t) runp->__next) & ~1ul); \
260 runp->__next = next->__next; \
261 /* Ensure that we remove the entry from the list before we change the \
262 __next pointer of the entry, which is read by the kernel. */ \
263 __asm ("" ::: "memory"); \
264 mutex->__data.__list.__next = NULL; \
268 #define ENQUEUE_MUTEX(mutex) ENQUEUE_MUTEX_BOTH (mutex, 0)
269 #define ENQUEUE_MUTEX_PI(mutex) ENQUEUE_MUTEX_BOTH (mutex, 1)
271 /* List of cleanup buffers. */
272 struct _pthread_cleanup_buffer
*cleanup
;
274 /* Unwind information. */
275 struct pthread_unwind_buf
*cleanup_jmp_buf
;
276 #define HAVE_CLEANUP_JMP_BUF
278 /* Flags determining processing of cancellation. */
280 /* Bit set if cancellation is disabled. */
281 #define CANCELSTATE_BIT 0
282 #define CANCELSTATE_BITMASK (1 << CANCELSTATE_BIT)
283 /* Bit set if asynchronous cancellation mode is selected. */
284 #define CANCELTYPE_BIT 1
285 #define CANCELTYPE_BITMASK (1 << CANCELTYPE_BIT)
286 /* Bit set if canceling has been initiated. */
287 #define CANCELING_BIT 2
288 #define CANCELING_BITMASK (1 << CANCELING_BIT)
289 /* Bit set if canceled. */
290 #define CANCELED_BIT 3
291 #define CANCELED_BITMASK (1 << CANCELED_BIT)
292 /* Bit set if thread is exiting. */
293 #define EXITING_BIT 4
294 #define EXITING_BITMASK (1 << EXITING_BIT)
295 /* Bit set if thread terminated and TCB is freed. */
296 #define TERMINATED_BIT 5
297 #define TERMINATED_BITMASK (1 << TERMINATED_BIT)
298 /* Bit set if thread is supposed to change XID. */
300 #define SETXID_BITMASK (1 << SETXID_BIT)
302 /* Flags. Including those copied from the thread attribute. */
305 /* We allocate one block of references here. This should be enough
306 to avoid allocating any memory dynamically for most applications. */
307 struct pthread_key_data
309 /* Sequence number. We use uintptr_t to not require padding on
310 32- and 64-bit machines. On 64-bit machines it helps to avoid
316 } specific_1stblock
[PTHREAD_KEY_2NDLEVEL_SIZE
];
318 /* Two-level array for the thread-specific data. */
319 struct pthread_key_data
*specific
[PTHREAD_KEY_1STLEVEL_SIZE
];
321 /* Flag which is set when specific data is set. */
324 /* True if events must be reported. */
327 /* True if the user provided the stack. */
330 /* True if thread must stop at startup time. */
333 /* Indicate that a thread creation setup has failed (for instance the
334 scheduler or affinity). */
337 /* Lock to synchronize access to the descriptor. */
340 /* Lock for synchronizing setxid calls. */
341 unsigned int setxid_futex
;
343 /* If the thread waits to join another one the ID of the latter is
346 In case a thread is detached this field contains a pointer of the
347 TCB if the thread itself. This is something which cannot happen
348 in normal operation. */
349 struct pthread
*joinid
;
350 /* Check whether a thread is detached. */
351 #define IS_DETACHED(pd) ((pd)->joinid == (pd))
353 /* The result of the thread function. */
356 /* Scheduling parameters for the new thread. */
357 struct sched_param schedparam
;
360 /* Start position of the code to be executed and the argument passed
362 void *(*start_routine
) (void *);
366 td_eventbuf_t eventbuf
;
367 /* Next descriptor with a pending event. */
368 struct pthread
*nextevent
;
370 /* Machine-specific unwind info. */
371 struct _Unwind_Exception exc
;
373 /* If nonzero, pointer to the area allocated for the stack and guard. */
375 /* Size of the stackblock area including the guard. */
376 size_t stackblock_size
;
377 /* Size of the included guard area. */
379 /* This is what the user specified and what we will report. */
380 size_t reported_guardsize
;
382 /* Thread Priority Protection data. */
383 struct priority_protection_data
*tpp
;
385 /* Resolver state. */
386 struct __res_state res
;
388 /* Signal mask for the new thread. Used during thread startup to
389 restore the signal mask. (Threads are launched with all signals
391 internal_sigset_t sigmask
;
393 /* Used by the exception handling implementation in the dynamic loader. */
394 struct rtld_catch
*rtld_catch
;
396 /* Indicates whether is a C11 thread created by thrd_creat. */
399 /* Used in __pthread_kill_internal to detected a thread that has
400 exited or is about to exit. exit_lock must only be acquired
401 after blocking signals. */
403 int exit_lock
; /* A low-level lock (for use with __libc_lock_init etc). */
405 /* Used on strsignal. */
406 struct tls_internal_t tls_state
;
408 /* rseq area registered with the kernel. */
409 struct rseq rseq_area
;
411 /* This member must be last. */
414 #define PTHREAD_STRUCT_END_PADDING \
415 (sizeof (struct pthread) - offsetof (struct pthread, end_padding))
416 } __attribute ((aligned (TCB_ALIGNMENT
)));
419 cancel_enabled_and_canceled (int value
)
421 return (value
& (CANCELSTATE_BITMASK
| CANCELED_BITMASK
| EXITING_BITMASK
422 | TERMINATED_BITMASK
))
427 cancel_enabled_and_canceled_and_async (int value
)
429 return ((value
) & (CANCELSTATE_BITMASK
| CANCELTYPE_BITMASK
| CANCELED_BITMASK
430 | EXITING_BITMASK
| TERMINATED_BITMASK
))
431 == (CANCELTYPE_BITMASK
| CANCELED_BITMASK
);
434 /* This yields the pointer that TLS support code calls the thread pointer. */
436 # define TLS_TPADJ(pd) (pd)
438 # define TLS_TPADJ(pd) ((struct pthread *)((char *) (pd) + TLS_PRE_TCB_SIZE))