Update.
[glibc.git] / linuxthreads / pthread.c
blob628b0cea17bc6669fae582d7304a9e757c23120d
2 /* Linuxthreads - a simple clone()-based implementation of Posix */
3 /* threads for Linux. */
4 /* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */
5 /* */
6 /* This program is free software; you can redistribute it and/or */
7 /* modify it under the terms of the GNU Library General Public License */
8 /* as published by the Free Software Foundation; either version 2 */
9 /* of the License, or (at your option) any later version. */
10 /* */
11 /* This program is distributed in the hope that it will be useful, */
12 /* but WITHOUT ANY WARRANTY; without even the implied warranty of */
13 /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
14 /* GNU Library General Public License for more details. */
16 /* Thread creation, initialization, and basic low-level routines */
18 #include <errno.h>
19 #include <stddef.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <fcntl.h>
25 #include <sys/wait.h>
26 #include <sys/resource.h>
27 #include <sys/sysctl.h>
28 #include <shlib-compat.h>
29 #include "pthread.h"
30 #include "internals.h"
31 #include "spinlock.h"
32 #include "restart.h"
34 /* We need the global/static resolver state here. */
35 #include <resolv.h>
36 #undef _res
38 extern struct __res_state _res;
40 /* Sanity check. */
41 #if __ASSUME_REALTIME_SIGNALS && !defined __SIGRTMIN
42 # error "This must not happen; new kernel assumed but old headers"
43 #endif
45 /* These variables are used by the setup code. */
46 extern int _errno;
47 extern int _h_errno;
49 /* Descriptor of the initial thread */
51 struct _pthread_descr_struct __pthread_initial_thread = {
54 &__pthread_initial_thread /* pthread_descr self */
57 &__pthread_initial_thread, /* pthread_descr p_nextlive */
58 &__pthread_initial_thread, /* pthread_descr p_prevlive */
59 NULL, /* pthread_descr p_nextwaiting */
60 NULL, /* pthread_descr p_nextlock */
61 PTHREAD_THREADS_MAX, /* pthread_t p_tid */
62 0, /* int p_pid */
63 0, /* int p_priority */
64 &__pthread_handles[0].h_lock, /* struct _pthread_fastlock * p_lock */
65 0, /* int p_signal */
66 NULL, /* sigjmp_buf * p_signal_buf */
67 NULL, /* sigjmp_buf * p_cancel_buf */
68 0, /* char p_terminated */
69 0, /* char p_detached */
70 0, /* char p_exited */
71 NULL, /* void * p_retval */
72 0, /* int p_retval */
73 NULL, /* pthread_descr p_joining */
74 NULL, /* struct _pthread_cleanup_buffer * p_cleanup */
75 0, /* char p_cancelstate */
76 0, /* char p_canceltype */
77 0, /* char p_canceled */
78 &_errno, /* int *p_errnop */
79 0, /* int p_errno */
80 &_h_errno, /* int *p_h_errnop */
81 0, /* int p_h_errno */
82 NULL, /* char * p_in_sighandler */
83 0, /* char p_sigwaiting */
84 PTHREAD_START_ARGS_INITIALIZER(NULL),
85 /* struct pthread_start_args p_start_args */
86 {NULL}, /* void ** p_specific[PTHREAD_KEY_1STLEVEL_SIZE] */
87 {NULL}, /* void * p_libc_specific[_LIBC_TSD_KEY_N] */
88 1, /* int p_userstack */
89 NULL, /* void * p_guardaddr */
90 0, /* size_t p_guardsize */
91 0, /* Always index 0 */
92 0, /* int p_report_events */
93 {{{0, }}, 0, NULL}, /* td_eventbuf_t p_eventbuf */
94 ATOMIC_INITIALIZER, /* struct pthread_atomic p_resume_count */
95 0, /* char p_woken_by_cancel */
96 0, /* char p_condvar_avail */
97 0, /* char p_sem_avail */
98 NULL, /* struct pthread_extricate_if *p_extricate */
99 NULL, /* pthread_readlock_info *p_readlock_list; */
100 NULL, /* pthread_readlock_info *p_readlock_free; */
101 0 /* int p_untracked_readlock_count; */
104 /* Descriptor of the manager thread; none of this is used but the error
105 variables, the p_pid and p_priority fields,
106 and the address for identification. */
108 struct _pthread_descr_struct __pthread_manager_thread = {
111 &__pthread_manager_thread /* pthread_descr self */
114 NULL, /* pthread_descr p_nextlive */
115 NULL, /* pthread_descr p_prevlive */
116 NULL, /* pthread_descr p_nextwaiting */
117 NULL, /* pthread_descr p_nextlock */
118 0, /* int p_tid */
119 0, /* int p_pid */
120 0, /* int p_priority */
121 &__pthread_handles[1].h_lock, /* struct _pthread_fastlock * p_lock */
122 0, /* int p_signal */
123 NULL, /* sigjmp_buf * p_signal_buf */
124 NULL, /* sigjmp_buf * p_cancel_buf */
125 0, /* char p_terminated */
126 0, /* char p_detached */
127 0, /* char p_exited */
128 NULL, /* void * p_retval */
129 0, /* int p_retval */
130 NULL, /* pthread_descr p_joining */
131 NULL, /* struct _pthread_cleanup_buffer * p_cleanup */
132 0, /* char p_cancelstate */
133 0, /* char p_canceltype */
134 0, /* char p_canceled */
135 &__pthread_manager_thread.p_errno, /* int *p_errnop */
136 0, /* int p_errno */
137 NULL, /* int *p_h_errnop */
138 0, /* int p_h_errno */
139 NULL, /* char * p_in_sighandler */
140 0, /* char p_sigwaiting */
141 PTHREAD_START_ARGS_INITIALIZER(__pthread_manager),
142 /* struct pthread_start_args p_start_args */
143 {NULL}, /* void ** p_specific[PTHREAD_KEY_1STLEVEL_SIZE] */
144 {NULL}, /* void * p_libc_specific[_LIBC_TSD_KEY_N] */
145 0, /* int p_userstack */
146 NULL, /* void * p_guardaddr */
147 0, /* size_t p_guardsize */
148 1, /* Always index 1 */
149 0, /* int p_report_events */
150 {{{0, }}, 0, NULL}, /* td_eventbuf_t p_eventbuf */
151 ATOMIC_INITIALIZER, /* struct pthread_atomic p_resume_count */
152 0, /* char p_woken_by_cancel */
153 0, /* char p_condvar_avail */
154 0, /* char p_sem_avail */
155 NULL, /* struct pthread_extricate_if *p_extricate */
156 NULL, /* pthread_readlock_info *p_readlock_list; */
157 NULL, /* pthread_readlock_info *p_readlock_free; */
158 0 /* int p_untracked_readlock_count; */
161 /* Pointer to the main thread (the father of the thread manager thread) */
162 /* Originally, this is the initial thread, but this changes after fork() */
164 pthread_descr __pthread_main_thread = &__pthread_initial_thread;
166 /* Limit between the stack of the initial thread (above) and the
167 stacks of other threads (below). Aligned on a STACK_SIZE boundary. */
169 char *__pthread_initial_thread_bos;
171 /* File descriptor for sending requests to the thread manager. */
172 /* Initially -1, meaning that the thread manager is not running. */
174 int __pthread_manager_request = -1;
176 /* Other end of the pipe for sending requests to the thread manager. */
178 int __pthread_manager_reader;
180 /* Limits of the thread manager stack */
182 char *__pthread_manager_thread_bos;
183 char *__pthread_manager_thread_tos;
185 /* For process-wide exit() */
187 int __pthread_exit_requested;
188 int __pthread_exit_code;
190 /* Maximum stack size. */
191 size_t __pthread_max_stacksize;
193 /* Nozero if the machine has more than one processor. */
194 int __pthread_smp_kernel;
197 #if !__ASSUME_REALTIME_SIGNALS
198 /* Pointers that select new or old suspend/resume functions
199 based on availability of rt signals. */
201 void (*__pthread_restart)(pthread_descr) = __pthread_restart_old;
202 void (*__pthread_suspend)(pthread_descr) = __pthread_suspend_old;
203 int (*__pthread_timedsuspend)(pthread_descr, const struct timespec *) = __pthread_timedsuspend_old;
204 #endif /* __ASSUME_REALTIME_SIGNALS */
206 /* Communicate relevant LinuxThreads constants to gdb */
208 const int __pthread_threads_max = PTHREAD_THREADS_MAX;
209 const int __pthread_sizeof_handle = sizeof(struct pthread_handle_struct);
210 const int __pthread_offsetof_descr = offsetof(struct pthread_handle_struct,
211 h_descr);
212 const int __pthread_offsetof_pid = offsetof(struct _pthread_descr_struct,
213 p_pid);
214 const int __linuxthread_pthread_sizeof_descr
215 = sizeof(struct _pthread_descr_struct);
217 /* Forward declarations */
219 static void pthread_exit_process(int retcode, void *arg);
220 static void pthread_handle_sigcancel(int sig);
221 static void pthread_handle_sigrestart(int sig);
222 static void pthread_handle_sigdebug(int sig);
224 /* Signal numbers used for the communication.
225 In these variables we keep track of the used variables. If the
226 platform does not support any real-time signals we will define the
227 values to some unreasonable value which will signal failing of all
228 the functions below. */
229 #ifndef __SIGRTMIN
230 static int current_rtmin = -1;
231 static int current_rtmax = -1;
232 int __pthread_sig_restart = SIGUSR1;
233 int __pthread_sig_cancel = SIGUSR2;
234 int __pthread_sig_debug;
235 #else
236 static int current_rtmin;
237 static int current_rtmax;
239 #if __SIGRTMAX - __SIGRTMIN >= 3
240 int __pthread_sig_restart = __SIGRTMIN;
241 int __pthread_sig_cancel = __SIGRTMIN + 1;
242 int __pthread_sig_debug = __SIGRTMIN + 2;
243 #else
244 int __pthread_sig_restart = SIGUSR1;
245 int __pthread_sig_cancel = SIGUSR2;
246 int __pthread_sig_debug;
247 #endif
249 static int rtsigs_initialized;
251 #include "testrtsig.h"
253 static void
254 init_rtsigs (void)
256 #if !__ASSUME_REALTIME_SIGNALS
257 if (__builtin_expect (!kernel_has_rtsig (), 0))
259 current_rtmin = -1;
260 current_rtmax = -1;
261 # if __SIGRTMAX - __SIGRTMIN >= 3
262 __pthread_sig_restart = SIGUSR1;
263 __pthread_sig_cancel = SIGUSR2;
264 __pthread_sig_debug = 0;
265 # endif
267 else
268 #endif /* __ASSUME_REALTIME_SIGNALS */
270 #if __SIGRTMAX - __SIGRTMIN >= 3
271 current_rtmin = __SIGRTMIN + 3;
272 # if !__ASSUME_REALTIME_SIGNALS
273 __pthread_restart = __pthread_restart_new;
274 __pthread_suspend = __pthread_wait_for_restart_signal;
275 __pthread_timedsuspend = __pthread_timedsuspend_new;
276 # endif /* __ASSUME_REALTIME_SIGNALS */
277 #else
278 current_rtmin = __SIGRTMIN;
279 #endif
281 current_rtmax = __SIGRTMAX;
284 rtsigs_initialized = 1;
286 #endif
288 /* Return number of available real-time signal with highest priority. */
290 __libc_current_sigrtmin (void)
292 #ifdef __SIGRTMIN
293 if (__builtin_expect (!rtsigs_initialized, 0))
294 init_rtsigs ();
295 #endif
296 return current_rtmin;
299 /* Return number of available real-time signal with lowest priority. */
301 __libc_current_sigrtmax (void)
303 #ifdef __SIGRTMIN
304 if (__builtin_expect (!rtsigs_initialized, 0))
305 init_rtsigs ();
306 #endif
307 return current_rtmax;
310 /* Allocate real-time signal with highest/lowest available
311 priority. Please note that we don't use a lock since we assume
312 this function to be called at program start. */
314 __libc_allocate_rtsig (int high)
316 #ifndef __SIGRTMIN
317 return -1;
318 #else
319 if (__builtin_expect (!rtsigs_initialized, 0))
320 init_rtsigs ();
321 if (__builtin_expect (current_rtmin == -1, 0)
322 || __builtin_expect (current_rtmin > current_rtmax, 0))
323 /* We don't have anymore signal available. */
324 return -1;
326 return high ? current_rtmin++ : current_rtmax--;
327 #endif
330 /* The function we use to get the kernel revision. */
331 extern int __sysctl (int *name, int nlen, void *oldval, size_t *oldlenp,
332 void *newval, size_t newlen);
334 /* Test whether the machine has more than one processor. This is not the
335 best test but good enough. More complicated tests would require `malloc'
336 which is not available at that time. */
337 static int
338 is_smp_system (void)
340 static const int sysctl_args[] = { CTL_KERN, KERN_VERSION };
341 char buf[512];
342 size_t reslen = sizeof (buf);
344 /* Try reading the number using `sysctl' first. */
345 if (__sysctl ((int *) sysctl_args,
346 sizeof (sysctl_args) / sizeof (sysctl_args[0]),
347 buf, &reslen, NULL, 0) < 0)
349 /*This was not successful. Now try reading the /proc filesystem. */
350 int fd = __open ("/proc/sys/kernel/version", O_RDONLY);
351 if (__builtin_expect (fd, 0) == -1
352 || (reslen = __read (fd, buf, sizeof (buf))) <= 0)
353 /* This also didn't work. We give up and say it's a UP machine. */
354 buf[0] = '\0';
356 __close (fd);
359 return strstr (buf, "SMP") != NULL;
363 /* Initialize the pthread library.
364 Initialization is split in two functions:
365 - a constructor function that blocks the __pthread_sig_restart signal
366 (must do this very early, since the program could capture the signal
367 mask with e.g. sigsetjmp before creating the first thread);
368 - a regular function called from pthread_create when needed. */
370 static void pthread_initialize(void) __attribute__((constructor));
372 extern void *__dso_handle __attribute__ ((weak));
375 /* Do some minimal initialization which has to be done during the
376 startup of the C library. */
377 void
378 __pthread_initialize_minimal(void)
380 /* If we have special thread_self processing, initialize that for the
381 main thread now. */
382 #ifdef INIT_THREAD_SELF
383 INIT_THREAD_SELF(&__pthread_initial_thread, 0);
384 #endif
388 static void pthread_initialize(void)
390 struct sigaction sa;
391 sigset_t mask;
393 /* If already done (e.g. by a constructor called earlier!), bail out */
394 if (__pthread_initial_thread_bos != NULL) return;
395 #ifdef TEST_FOR_COMPARE_AND_SWAP
396 /* Test if compare-and-swap is available */
397 __pthread_has_cas = compare_and_swap_is_available();
398 #endif
399 /* For the initial stack, reserve at least STACK_SIZE bytes of stack
400 below the current stack address, and align that on a
401 STACK_SIZE boundary. */
402 __pthread_initial_thread_bos =
403 (char *)(((long)CURRENT_STACK_FRAME - 2 * STACK_SIZE) & ~(STACK_SIZE - 1));
404 /* Update the descriptor for the initial thread. */
405 __pthread_initial_thread.p_pid = __getpid();
406 /* Likewise for the resolver state _res. */
407 __pthread_initial_thread.p_resp = &_res;
408 #ifdef __SIGRTMIN
409 /* Initialize real-time signals. */
410 init_rtsigs ();
411 #endif
412 /* Setup signal handlers for the initial thread.
413 Since signal handlers are shared between threads, these settings
414 will be inherited by all other threads. */
415 sa.sa_handler = pthread_handle_sigrestart;
416 sigemptyset(&sa.sa_mask);
417 sa.sa_flags = 0;
418 __libc_sigaction(__pthread_sig_restart, &sa, NULL);
419 sa.sa_handler = pthread_handle_sigcancel;
420 // sa.sa_flags = 0;
421 __libc_sigaction(__pthread_sig_cancel, &sa, NULL);
422 if (__pthread_sig_debug > 0) {
423 sa.sa_handler = pthread_handle_sigdebug;
424 sigemptyset(&sa.sa_mask);
425 // sa.sa_flags = 0;
426 __libc_sigaction(__pthread_sig_debug, &sa, NULL);
428 /* Initially, block __pthread_sig_restart. Will be unblocked on demand. */
429 sigemptyset(&mask);
430 sigaddset(&mask, __pthread_sig_restart);
431 sigprocmask(SIG_BLOCK, &mask, NULL);
432 /* Register an exit function to kill all other threads. */
433 /* Do it early so that user-registered atexit functions are called
434 before pthread_exit_process. */
435 if (__builtin_expect (&__dso_handle != NULL, 1))
436 /* The cast is a bit unclean. The function expects two arguments but
437 we can only pass one. Fortunately this is not a problem since the
438 second argument of `pthread_exit_process' is simply ignored. */
439 __cxa_atexit((void (*) (void *)) pthread_exit_process, NULL, __dso_handle);
440 else
441 __on_exit (pthread_exit_process, NULL);
442 /* How many processors. */
443 __pthread_smp_kernel = is_smp_system ();
446 void __pthread_initialize(void)
448 pthread_initialize();
451 int __pthread_initialize_manager(void)
453 int manager_pipe[2];
454 int pid;
455 struct pthread_request request;
456 struct rlimit limit;
457 int max_stack;
459 getrlimit(RLIMIT_STACK, &limit);
460 #ifdef FLOATING_STACKS
461 if (limit.rlim_cur == RLIM_INFINITY)
462 limit.rlim_cur = ARCH_STACK_MAX_SIZE;
463 # ifdef NEED_SEPARATE_REGISTER_STACK
464 max_stack = limit.rlim_cur / 2;
465 # else
466 max_stack = limit.rlim_cur;
467 #endif
469 __pthread_max_stacksize = max_stack;
470 #else
471 /* Play with the stack size limit to make sure that no stack ever grows
472 beyond STACK_SIZE minus one page (to act as a guard page). */
473 # ifdef NEED_SEPARATE_REGISTER_STACK
474 /* STACK_SIZE bytes hold both the main stack and register backing
475 store. The rlimit value applies to each individually. */
476 max_stack = STACK_SIZE/2 - __getpagesize ();
477 # else
478 max_stack = STACK_SIZE - __getpagesize();
479 # endif
480 if (limit.rlim_cur > max_stack) {
481 limit.rlim_cur = max_stack;
482 setrlimit(RLIMIT_STACK, &limit);
484 #endif
485 /* If basic initialization not done yet (e.g. we're called from a
486 constructor run before our constructor), do it now */
487 if (__pthread_initial_thread_bos == NULL) pthread_initialize();
488 /* Setup stack for thread manager */
489 __pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE);
490 if (__pthread_manager_thread_bos == NULL) return -1;
491 __pthread_manager_thread_tos =
492 __pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE;
493 /* Setup pipe to communicate with thread manager */
494 if (pipe(manager_pipe) == -1) {
495 free(__pthread_manager_thread_bos);
496 return -1;
498 /* Start the thread manager */
499 pid = 0;
500 if (__builtin_expect (__pthread_initial_thread.p_report_events, 0))
502 /* It's a bit more complicated. We have to report the creation of
503 the manager thread. */
504 int idx = __td_eventword (TD_CREATE);
505 uint32_t mask = __td_eventmask (TD_CREATE);
507 if ((mask & (__pthread_threads_events.event_bits[idx]
508 | __pthread_initial_thread.p_eventbuf.eventmask.event_bits[idx]))
509 != 0)
511 __pthread_lock(__pthread_manager_thread.p_lock, NULL);
513 #ifdef NEED_SEPARATE_REGISTER_STACK
514 pid = __clone2(__pthread_manager_event,
515 (void **) __pthread_manager_thread_bos,
516 THREAD_MANAGER_STACK_SIZE,
517 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
518 (void *)(long)manager_pipe[0]);
519 #else
520 pid = __clone(__pthread_manager_event,
521 (void **) __pthread_manager_thread_tos,
522 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
523 (void *)(long)manager_pipe[0]);
524 #endif
526 if (pid != -1)
528 /* Now fill in the information about the new thread in
529 the newly created thread's data structure. We cannot let
530 the new thread do this since we don't know whether it was
531 already scheduled when we send the event. */
532 __pthread_manager_thread.p_eventbuf.eventdata =
533 &__pthread_manager_thread;
534 __pthread_manager_thread.p_eventbuf.eventnum = TD_CREATE;
535 __pthread_last_event = &__pthread_manager_thread;
536 __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
537 __pthread_manager_thread.p_pid = pid;
539 /* Now call the function which signals the event. */
540 __linuxthreads_create_event ();
543 /* Now restart the thread. */
544 __pthread_unlock(__pthread_manager_thread.p_lock);
548 if (__builtin_expect (pid, 0) == 0)
550 #ifdef NEED_SEPARATE_REGISTER_STACK
551 pid = __clone2(__pthread_manager, (void **) __pthread_manager_thread_bos,
552 THREAD_MANAGER_STACK_SIZE,
553 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
554 (void *)(long)manager_pipe[0]);
555 #else
556 pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_tos,
557 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
558 (void *)(long)manager_pipe[0]);
559 #endif
561 if (__builtin_expect (pid, 0) == -1) {
562 free(__pthread_manager_thread_bos);
563 __libc_close(manager_pipe[0]);
564 __libc_close(manager_pipe[1]);
565 return -1;
567 __pthread_manager_request = manager_pipe[1]; /* writing end */
568 __pthread_manager_reader = manager_pipe[0]; /* reading end */
569 __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1;
570 __pthread_manager_thread.p_pid = pid;
571 /* Make gdb aware of new thread manager */
572 if (__builtin_expect (__pthread_threads_debug, 0) && __pthread_sig_debug > 0)
574 raise(__pthread_sig_debug);
575 /* We suspend ourself and gdb will wake us up when it is
576 ready to handle us. */
577 __pthread_wait_for_restart_signal(thread_self());
579 /* Synchronize debugging of the thread manager */
580 request.req_kind = REQ_DEBUG;
581 __libc_write(__pthread_manager_request, (char *) &request, sizeof(request));
582 return 0;
585 /* Thread creation */
587 int __pthread_create_2_1(pthread_t *thread, const pthread_attr_t *attr,
588 void * (*start_routine)(void *), void *arg)
590 pthread_descr self = thread_self();
591 struct pthread_request request;
592 int retval;
593 if (__builtin_expect (__pthread_manager_request, 0) < 0) {
594 if (__pthread_initialize_manager() < 0) return EAGAIN;
596 request.req_thread = self;
597 request.req_kind = REQ_CREATE;
598 request.req_args.create.attr = attr;
599 request.req_args.create.fn = start_routine;
600 request.req_args.create.arg = arg;
601 sigprocmask(SIG_SETMASK, (const sigset_t *) NULL,
602 &request.req_args.create.mask);
603 __libc_write(__pthread_manager_request, (char *) &request, sizeof(request));
604 suspend(self);
605 retval = THREAD_GETMEM(self, p_retcode);
606 if (__builtin_expect (retval, 0) == 0)
607 *thread = (pthread_t) THREAD_GETMEM(self, p_retval);
608 return retval;
611 versioned_symbol (libpthread, __pthread_create_2_1, pthread_create, GLIBC_2_1);
613 #if SHLIB_COMPAT (libpthread, GLIBC_2_0, GLIBC_2_1)
615 int __pthread_create_2_0(pthread_t *thread, const pthread_attr_t *attr,
616 void * (*start_routine)(void *), void *arg)
618 /* The ATTR attribute is not really of type `pthread_attr_t *'. It has
619 the old size and access to the new members might crash the program.
620 We convert the struct now. */
621 pthread_attr_t new_attr;
623 if (attr != NULL)
625 size_t ps = __getpagesize ();
627 memcpy (&new_attr, attr,
628 (size_t) &(((pthread_attr_t*)NULL)->__guardsize));
629 new_attr.__guardsize = ps;
630 new_attr.__stackaddr_set = 0;
631 new_attr.__stackaddr = NULL;
632 new_attr.__stacksize = STACK_SIZE - ps;
633 attr = &new_attr;
635 return __pthread_create_2_1 (thread, attr, start_routine, arg);
637 compat_symbol (libpthread, __pthread_create_2_0, pthread_create, GLIBC_2_0);
638 #endif
640 /* Simple operations on thread identifiers */
642 pthread_t pthread_self(void)
644 pthread_descr self = thread_self();
645 return THREAD_GETMEM(self, p_tid);
648 int pthread_equal(pthread_t thread1, pthread_t thread2)
650 return thread1 == thread2;
653 /* Helper function for thread_self in the case of user-provided stacks */
655 #ifndef THREAD_SELF
657 pthread_descr __pthread_find_self()
659 char * sp = CURRENT_STACK_FRAME;
660 pthread_handle h;
662 /* __pthread_handles[0] is the initial thread, __pthread_handles[1] is
663 the manager threads handled specially in thread_self(), so start at 2 */
664 h = __pthread_handles + 2;
665 while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom)) h++;
666 return h->h_descr;
669 #endif
671 /* Thread scheduling */
673 int pthread_setschedparam(pthread_t thread, int policy,
674 const struct sched_param *param)
676 pthread_handle handle = thread_handle(thread);
677 pthread_descr th;
679 __pthread_lock(&handle->h_lock, NULL);
680 if (__builtin_expect (invalid_handle(handle, thread), 0)) {
681 __pthread_unlock(&handle->h_lock);
682 return ESRCH;
684 th = handle->h_descr;
685 if (__builtin_expect (__sched_setscheduler(th->p_pid, policy, param) == -1,
686 0)) {
687 __pthread_unlock(&handle->h_lock);
688 return errno;
690 th->p_priority = policy == SCHED_OTHER ? 0 : param->sched_priority;
691 __pthread_unlock(&handle->h_lock);
692 if (__pthread_manager_request >= 0)
693 __pthread_manager_adjust_prio(th->p_priority);
694 return 0;
697 int pthread_getschedparam(pthread_t thread, int *policy,
698 struct sched_param *param)
700 pthread_handle handle = thread_handle(thread);
701 int pid, pol;
703 __pthread_lock(&handle->h_lock, NULL);
704 if (__builtin_expect (invalid_handle(handle, thread), 0)) {
705 __pthread_unlock(&handle->h_lock);
706 return ESRCH;
708 pid = handle->h_descr->p_pid;
709 __pthread_unlock(&handle->h_lock);
710 pol = __sched_getscheduler(pid);
711 if (__builtin_expect (pol, 0) == -1) return errno;
712 if (__sched_getparam(pid, param) == -1) return errno;
713 *policy = pol;
714 return 0;
717 int __pthread_yield ()
719 /* For now this is equivalent with the POSIX call. */
720 return sched_yield ();
722 weak_alias (__pthread_yield, pthread_yield)
724 /* Process-wide exit() request */
726 static void pthread_exit_process(int retcode, void *arg)
728 if (__builtin_expect (__pthread_manager_request, 0) >= 0) {
729 struct pthread_request request;
730 pthread_descr self = thread_self();
732 request.req_thread = self;
733 request.req_kind = REQ_PROCESS_EXIT;
734 request.req_args.exit.code = retcode;
735 __libc_write(__pthread_manager_request,
736 (char *) &request, sizeof(request));
737 suspend(self);
738 /* Main thread should accumulate times for thread manager and its
739 children, so that timings for main thread account for all threads. */
740 if (self == __pthread_main_thread)
741 waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE);
745 /* The handler for the RESTART signal just records the signal received
746 in the thread descriptor, and optionally performs a siglongjmp
747 (for pthread_cond_timedwait). */
749 static void pthread_handle_sigrestart(int sig)
751 pthread_descr self = thread_self();
752 THREAD_SETMEM(self, p_signal, sig);
753 if (THREAD_GETMEM(self, p_signal_jmp) != NULL)
754 siglongjmp(*THREAD_GETMEM(self, p_signal_jmp), 1);
757 /* The handler for the CANCEL signal checks for cancellation
758 (in asynchronous mode), for process-wide exit and exec requests.
759 For the thread manager thread, redirect the signal to
760 __pthread_manager_sighandler. */
762 static void pthread_handle_sigcancel(int sig)
764 pthread_descr self = thread_self();
765 sigjmp_buf * jmpbuf;
767 if (self == &__pthread_manager_thread)
769 __pthread_manager_sighandler(sig);
770 return;
772 if (__builtin_expect (__pthread_exit_requested, 0)) {
773 /* Main thread should accumulate times for thread manager and its
774 children, so that timings for main thread account for all threads. */
775 if (self == __pthread_main_thread)
776 waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE);
777 _exit(__pthread_exit_code);
779 if (__builtin_expect (THREAD_GETMEM(self, p_canceled), 0)
780 && THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE) {
781 if (THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS)
782 pthread_exit(PTHREAD_CANCELED);
783 jmpbuf = THREAD_GETMEM(self, p_cancel_jmp);
784 if (jmpbuf != NULL) {
785 THREAD_SETMEM(self, p_cancel_jmp, NULL);
786 siglongjmp(*jmpbuf, 1);
791 /* Handler for the DEBUG signal.
792 The debugging strategy is as follows:
793 On reception of a REQ_DEBUG request (sent by new threads created to
794 the thread manager under debugging mode), the thread manager throws
795 __pthread_sig_debug to itself. The debugger (if active) intercepts
796 this signal, takes into account new threads and continue execution
797 of the thread manager by propagating the signal because it doesn't
798 know what it is specifically done for. In the current implementation,
799 the thread manager simply discards it. */
801 static void pthread_handle_sigdebug(int sig)
803 /* Nothing */
806 /* Reset the state of the thread machinery after a fork().
807 Close the pipe used for requests and set the main thread to the forked
808 thread.
809 Notice that we can't free the stack segments, as the forked thread
810 may hold pointers into them. */
812 void __pthread_reset_main_thread()
814 pthread_descr self = thread_self();
815 struct rlimit limit;
817 if (__pthread_manager_request != -1) {
818 /* Free the thread manager stack */
819 free(__pthread_manager_thread_bos);
820 __pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL;
821 /* Close the two ends of the pipe */
822 __libc_close(__pthread_manager_request);
823 __libc_close(__pthread_manager_reader);
824 __pthread_manager_request = __pthread_manager_reader = -1;
827 /* Update the pid of the main thread */
828 THREAD_SETMEM(self, p_pid, __getpid());
829 /* Make the forked thread the main thread */
830 __pthread_main_thread = self;
831 THREAD_SETMEM(self, p_nextlive, self);
832 THREAD_SETMEM(self, p_prevlive, self);
833 /* Now this thread modifies the global variables. */
834 THREAD_SETMEM(self, p_errnop, &_errno);
835 THREAD_SETMEM(self, p_h_errnop, &_h_errno);
836 THREAD_SETMEM(self, p_resp, &_res);
838 if (getrlimit (RLIMIT_STACK, &limit) == 0
839 && limit.rlim_cur != limit.rlim_max) {
840 limit.rlim_cur = limit.rlim_max;
841 setrlimit (STACK_SIZE, &limit);
845 /* Process-wide exec() request */
847 void __pthread_kill_other_threads_np(void)
849 struct sigaction sa;
850 /* Terminate all other threads and thread manager */
851 pthread_exit_process(0, NULL);
852 /* Make current thread the main thread in case the calling thread
853 changes its mind, does not exec(), and creates new threads instead. */
854 __pthread_reset_main_thread();
856 /* Reset the signal handlers behaviour for the signals the
857 implementation uses since this would be passed to the new
858 process. */
859 sigemptyset(&sa.sa_mask);
860 sa.sa_flags = 0;
861 sa.sa_handler = SIG_DFL;
862 __libc_sigaction(__pthread_sig_restart, &sa, NULL);
863 __libc_sigaction(__pthread_sig_cancel, &sa, NULL);
864 if (__pthread_sig_debug > 0)
865 __libc_sigaction(__pthread_sig_debug, &sa, NULL);
867 weak_alias (__pthread_kill_other_threads_np, pthread_kill_other_threads_np)
869 /* Concurrency symbol level. */
870 static int current_level;
872 int __pthread_setconcurrency(int level)
874 /* We don't do anything unless we have found a useful interpretation. */
875 current_level = level;
876 return 0;
878 weak_alias (__pthread_setconcurrency, pthread_setconcurrency)
880 int __pthread_getconcurrency(void)
882 return current_level;
884 weak_alias (__pthread_getconcurrency, pthread_getconcurrency)
886 /* Primitives for controlling thread execution */
888 void __pthread_wait_for_restart_signal(pthread_descr self)
890 sigset_t mask;
892 sigprocmask(SIG_SETMASK, NULL, &mask); /* Get current signal mask */
893 sigdelset(&mask, __pthread_sig_restart); /* Unblock the restart signal */
894 THREAD_SETMEM(self, p_signal, 0);
895 do {
896 sigsuspend(&mask); /* Wait for signal */
897 } while (THREAD_GETMEM(self, p_signal) !=__pthread_sig_restart);
900 #if !__ASSUME_REALTIME_SIGNALS
901 /* The _old variants are for 2.0 and early 2.1 kernels which don't have RT
902 signals.
903 On these kernels, we use SIGUSR1 and SIGUSR2 for restart and cancellation.
904 Since the restart signal does not queue, we use an atomic counter to create
905 queuing semantics. This is needed to resolve a rare race condition in
906 pthread_cond_timedwait_relative. */
908 void __pthread_restart_old(pthread_descr th)
910 if (atomic_increment(&th->p_resume_count) == -1)
911 kill(th->p_pid, __pthread_sig_restart);
914 void __pthread_suspend_old(pthread_descr self)
916 if (atomic_decrement(&self->p_resume_count) <= 0)
917 __pthread_wait_for_restart_signal(self);
921 __pthread_timedsuspend_old(pthread_descr self, const struct timespec *abstime)
923 sigset_t unblock, initial_mask;
924 int was_signalled = 0;
925 sigjmp_buf jmpbuf;
927 if (atomic_decrement(&self->p_resume_count) == 0) {
928 /* Set up a longjmp handler for the restart signal, unblock
929 the signal and sleep. */
931 if (sigsetjmp(jmpbuf, 1) == 0) {
932 THREAD_SETMEM(self, p_signal_jmp, &jmpbuf);
933 THREAD_SETMEM(self, p_signal, 0);
934 /* Unblock the restart signal */
935 sigemptyset(&unblock);
936 sigaddset(&unblock, __pthread_sig_restart);
937 sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask);
939 while (1) {
940 struct timeval now;
941 struct timespec reltime;
943 /* Compute a time offset relative to now. */
944 __gettimeofday (&now, NULL);
945 reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000;
946 reltime.tv_sec = abstime->tv_sec - now.tv_sec;
947 if (reltime.tv_nsec < 0) {
948 reltime.tv_nsec += 1000000000;
949 reltime.tv_sec -= 1;
952 /* Sleep for the required duration. If woken by a signal,
953 resume waiting as required by Single Unix Specification. */
954 if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0)
955 break;
958 /* Block the restart signal again */
959 sigprocmask(SIG_SETMASK, &initial_mask, NULL);
960 was_signalled = 0;
961 } else {
962 was_signalled = 1;
964 THREAD_SETMEM(self, p_signal_jmp, NULL);
967 /* Now was_signalled is true if we exited the above code
968 due to the delivery of a restart signal. In that case,
969 we know we have been dequeued and resumed and that the
970 resume count is balanced. Otherwise, there are some
971 cases to consider. First, try to bump up the resume count
972 back to zero. If it goes to 1, it means restart() was
973 invoked on this thread. The signal must be consumed
974 and the count bumped down and everything is cool. We
975 can return a 1 to the caller.
976 Otherwise, no restart was delivered yet, so a potential
977 race exists; we return a 0 to the caller which must deal
978 with this race in an appropriate way; for example by
979 atomically removing the thread from consideration for a
980 wakeup---if such a thing fails, it means a restart is
981 being delivered. */
983 if (!was_signalled) {
984 if (atomic_increment(&self->p_resume_count) != -1) {
985 __pthread_wait_for_restart_signal(self);
986 atomic_decrement(&self->p_resume_count); /* should be zero now! */
987 /* woke spontaneously and consumed restart signal */
988 return 1;
990 /* woke spontaneously but did not consume restart---caller must resolve */
991 return 0;
993 /* woken due to restart signal */
994 return 1;
996 #endif /* __ASSUME_REALTIME_SIGNALS */
998 void __pthread_restart_new(pthread_descr th)
1000 kill(th->p_pid, __pthread_sig_restart);
1003 /* There is no __pthread_suspend_new because it would just
1004 be a wasteful wrapper for __pthread_wait_for_restart_signal */
1007 __pthread_timedsuspend_new(pthread_descr self, const struct timespec *abstime)
1009 sigset_t unblock, initial_mask;
1010 int was_signalled = 0;
1011 sigjmp_buf jmpbuf;
1013 if (sigsetjmp(jmpbuf, 1) == 0) {
1014 THREAD_SETMEM(self, p_signal_jmp, &jmpbuf);
1015 THREAD_SETMEM(self, p_signal, 0);
1016 /* Unblock the restart signal */
1017 sigemptyset(&unblock);
1018 sigaddset(&unblock, __pthread_sig_restart);
1019 sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask);
1021 while (1) {
1022 struct timeval now;
1023 struct timespec reltime;
1025 /* Compute a time offset relative to now. */
1026 __gettimeofday (&now, NULL);
1027 reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000;
1028 reltime.tv_sec = abstime->tv_sec - now.tv_sec;
1029 if (reltime.tv_nsec < 0) {
1030 reltime.tv_nsec += 1000000000;
1031 reltime.tv_sec -= 1;
1034 /* Sleep for the required duration. If woken by a signal,
1035 resume waiting as required by Single Unix Specification. */
1036 if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0)
1037 break;
1040 /* Block the restart signal again */
1041 sigprocmask(SIG_SETMASK, &initial_mask, NULL);
1042 was_signalled = 0;
1043 } else {
1044 was_signalled = 1;
1046 THREAD_SETMEM(self, p_signal_jmp, NULL);
1048 /* Now was_signalled is true if we exited the above code
1049 due to the delivery of a restart signal. In that case,
1050 everything is cool. We have been removed from whatever
1051 we were waiting on by the other thread, and consumed its signal.
1053 Otherwise we this thread woke up spontaneously, or due to a signal other
1054 than restart. This is an ambiguous case that must be resolved by
1055 the caller; the thread is still eligible for a restart wakeup
1056 so there is a race. */
1058 return was_signalled;
1062 /* Debugging aid */
1064 #ifdef DEBUG
1065 #include <stdarg.h>
1067 void __pthread_message(char * fmt, ...)
1069 char buffer[1024];
1070 va_list args;
1071 sprintf(buffer, "%05d : ", __getpid());
1072 va_start(args, fmt);
1073 vsnprintf(buffer + 8, sizeof(buffer) - 8, fmt, args);
1074 va_end(args);
1075 __libc_write(2, buffer, strlen(buffer));
1078 #endif
1081 #ifndef SHARED
1082 /* We need a hook to force the cancelation wrappers to be linked in when
1083 static libpthread is used. */
1084 extern const int __pthread_provide_wrappers;
1085 static const int *const __pthread_require_wrappers =
1086 &__pthread_provide_wrappers;
1087 #endif