Update miscellaneous files from upstream sources.
[glibc.git] / sysdeps / ieee754 / ldbl-128 / e_logl.c
blob8672047e4312d72be6be8c4e1c7aeae3ecbca7db
1 /* logll.c
3 * Natural logarithm for 128-bit long double precision.
7 * SYNOPSIS:
9 * long double x, y, logl();
11 * y = logl( x );
15 * DESCRIPTION:
17 * Returns the base e (2.718...) logarithm of x.
19 * The argument is separated into its exponent and fractional
20 * parts. Use of a lookup table increases the speed of the routine.
21 * The program uses logarithms tabulated at intervals of 1/128 to
22 * cover the domain from approximately 0.7 to 1.4.
24 * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
25 * log(1+x) = x - 0.5 x^2 + x^3 P(x) .
29 * ACCURACY:
31 * Relative error:
32 * arithmetic domain # trials peak rms
33 * IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35
34 * IEEE 0.125, 8 100000 1.2e-34 4.1e-35
37 * WARNING:
39 * This program uses integer operations on bit fields of floating-point
40 * numbers. It does not work with data structures other than the
41 * structure assumed.
45 /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
47 This library is free software; you can redistribute it and/or
48 modify it under the terms of the GNU Lesser General Public
49 License as published by the Free Software Foundation; either
50 version 2.1 of the License, or (at your option) any later version.
52 This library is distributed in the hope that it will be useful,
53 but WITHOUT ANY WARRANTY; without even the implied warranty of
54 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
55 Lesser General Public License for more details.
57 You should have received a copy of the GNU Lesser General Public
58 License along with this library; if not, see
59 <http://www.gnu.org/licenses/>. */
61 #include <math.h>
62 #include <math_private.h>
64 /* log(1+x) = x - .5 x^2 + x^3 l(x)
65 -.0078125 <= x <= +.0078125
66 peak relative error 1.2e-37 */
67 static const _Float128
68 l3 = L(3.333333333333333333333333333333336096926E-1),
69 l4 = L(-2.499999999999999999999999999486853077002E-1),
70 l5 = L(1.999999999999999999999999998515277861905E-1),
71 l6 = L(-1.666666666666666666666798448356171665678E-1),
72 l7 = L(1.428571428571428571428808945895490721564E-1),
73 l8 = L(-1.249999999999999987884655626377588149000E-1),
74 l9 = L(1.111111111111111093947834982832456459186E-1),
75 l10 = L(-1.000000000000532974938900317952530453248E-1),
76 l11 = L(9.090909090915566247008015301349979892689E-2),
77 l12 = L(-8.333333211818065121250921925397567745734E-2),
78 l13 = L(7.692307559897661630807048686258659316091E-2),
79 l14 = L(-7.144242754190814657241902218399056829264E-2),
80 l15 = L(6.668057591071739754844678883223432347481E-2);
82 /* Lookup table of ln(t) - (t-1)
83 t = 0.5 + (k+26)/128)
84 k = 0, ..., 91 */
85 static const _Float128 logtbl[92] = {
86 L(-5.5345593589352099112142921677820359632418E-2),
87 L(-5.2108257402767124761784665198737642086148E-2),
88 L(-4.8991686870576856279407775480686721935120E-2),
89 L(-4.5993270766361228596215288742353061431071E-2),
90 L(-4.3110481649613269682442058976885699556950E-2),
91 L(-4.0340872319076331310838085093194799765520E-2),
92 L(-3.7682072451780927439219005993827431503510E-2),
93 L(-3.5131785416234343803903228503274262719586E-2),
94 L(-3.2687785249045246292687241862699949178831E-2),
95 L(-3.0347913785027239068190798397055267411813E-2),
96 L(-2.8110077931525797884641940838507561326298E-2),
97 L(-2.5972247078357715036426583294246819637618E-2),
98 L(-2.3932450635346084858612873953407168217307E-2),
99 L(-2.1988775689981395152022535153795155900240E-2),
100 L(-2.0139364778244501615441044267387667496733E-2),
101 L(-1.8382413762093794819267536615342902718324E-2),
102 L(-1.6716169807550022358923589720001638093023E-2),
103 L(-1.5138929457710992616226033183958974965355E-2),
104 L(-1.3649036795397472900424896523305726435029E-2),
105 L(-1.2244881690473465543308397998034325468152E-2),
106 L(-1.0924898127200937840689817557742469105693E-2),
107 L(-9.6875626072830301572839422532631079809328E-3),
108 L(-8.5313926245226231463436209313499745894157E-3),
109 L(-7.4549452072765973384933565912143044991706E-3),
110 L(-6.4568155251217050991200599386801665681310E-3),
111 L(-5.5356355563671005131126851708522185605193E-3),
112 L(-4.6900728132525199028885749289712348829878E-3),
113 L(-3.9188291218610470766469347968659624282519E-3),
114 L(-3.2206394539524058873423550293617843896540E-3),
115 L(-2.5942708080877805657374888909297113032132E-3),
116 L(-2.0385211375711716729239156839929281289086E-3),
117 L(-1.5522183228760777967376942769773768850872E-3),
118 L(-1.1342191863606077520036253234446621373191E-3),
119 L(-7.8340854719967065861624024730268350459991E-4),
120 L(-4.9869831458030115699628274852562992756174E-4),
121 L(-2.7902661731604211834685052867305795169688E-4),
122 L(-1.2335696813916860754951146082826952093496E-4),
123 L(-3.0677461025892873184042490943581654591817E-5),
124 #define ZERO logtbl[38]
125 L(0.0000000000000000000000000000000000000000E0),
126 L(-3.0359557945051052537099938863236321874198E-5),
127 L(-1.2081346403474584914595395755316412213151E-4),
128 L(-2.7044071846562177120083903771008342059094E-4),
129 L(-4.7834133324631162897179240322783590830326E-4),
130 L(-7.4363569786340080624467487620270965403695E-4),
131 L(-1.0654639687057968333207323853366578860679E-3),
132 L(-1.4429854811877171341298062134712230604279E-3),
133 L(-1.8753781835651574193938679595797367137975E-3),
134 L(-2.3618380914922506054347222273705859653658E-3),
135 L(-2.9015787624124743013946600163375853631299E-3),
136 L(-3.4938307889254087318399313316921940859043E-3),
137 L(-4.1378413103128673800485306215154712148146E-3),
138 L(-4.8328735414488877044289435125365629849599E-3),
139 L(-5.5782063183564351739381962360253116934243E-3),
140 L(-6.3731336597098858051938306767880719015261E-3),
141 L(-7.2169643436165454612058905294782949315193E-3),
142 L(-8.1090214990427641365934846191367315083867E-3),
143 L(-9.0486422112807274112838713105168375482480E-3),
144 L(-1.0035177140880864314674126398350812606841E-2),
145 L(-1.1067990155502102718064936259435676477423E-2),
146 L(-1.2146457974158024928196575103115488672416E-2),
147 L(-1.3269969823361415906628825374158424754308E-2),
148 L(-1.4437927104692837124388550722759686270765E-2),
149 L(-1.5649743073340777659901053944852735064621E-2),
150 L(-1.6904842527181702880599758489058031645317E-2),
151 L(-1.8202661505988007336096407340750378994209E-2),
152 L(-1.9542647000370545390701192438691126552961E-2),
153 L(-2.0924256670080119637427928803038530924742E-2),
154 L(-2.2346958571309108496179613803760727786257E-2),
155 L(-2.3810230892650362330447187267648486279460E-2),
156 L(-2.5313561699385640380910474255652501521033E-2),
157 L(-2.6856448685790244233704909690165496625399E-2),
158 L(-2.8438398935154170008519274953860128449036E-2),
159 L(-3.0058928687233090922411781058956589863039E-2),
160 L(-3.1717563112854831855692484086486099896614E-2),
161 L(-3.3413836095418743219397234253475252001090E-2),
162 L(-3.5147290019036555862676702093393332533702E-2),
163 L(-3.6917475563073933027920505457688955423688E-2),
164 L(-3.8723951502862058660874073462456610731178E-2),
165 L(-4.0566284516358241168330505467000838017425E-2),
166 L(-4.2444048996543693813649967076598766917965E-2),
167 L(-4.4356826869355401653098777649745233339196E-2),
168 L(-4.6304207416957323121106944474331029996141E-2),
169 L(-4.8285787106164123613318093945035804818364E-2),
170 L(-5.0301169421838218987124461766244507342648E-2),
171 L(-5.2349964705088137924875459464622098310997E-2),
172 L(-5.4431789996103111613753440311680967840214E-2),
173 L(-5.6546268881465384189752786409400404404794E-2),
174 L(-5.8693031345788023909329239565012647817664E-2),
175 L(-6.0871713627532018185577188079210189048340E-2),
176 L(-6.3081958078862169742820420185833800925568E-2),
177 L(-6.5323413029406789694910800219643791556918E-2),
178 L(-6.7595732653791419081537811574227049288168E-2)
181 /* ln(2) = ln2a + ln2b with extended precision. */
182 static const _Float128
183 ln2a = L(6.93145751953125e-1),
184 ln2b = L(1.4286068203094172321214581765680755001344E-6);
186 _Float128
187 __ieee754_logl(_Float128 x)
189 _Float128 z, y, w;
190 ieee854_long_double_shape_type u, t;
191 unsigned int m;
192 int k, e;
194 u.value = x;
195 m = u.parts32.w0;
197 /* Check for IEEE special cases. */
198 k = m & 0x7fffffff;
199 /* log(0) = -infinity. */
200 if ((k | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
202 return L(-0.5) / ZERO;
204 /* log ( x < 0 ) = NaN */
205 if (m & 0x80000000)
207 return (x - x) / ZERO;
209 /* log (infinity or NaN) */
210 if (k >= 0x7fff0000)
212 return x + x;
215 /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */
216 u.value = __frexpl (x, &e);
217 m = u.parts32.w0 & 0xffff;
218 m |= 0x10000;
219 /* Find lookup table index k from high order bits of the significand. */
220 if (m < 0x16800)
222 k = (m - 0xff00) >> 9;
223 /* t is the argument 0.5 + (k+26)/128
224 of the nearest item to u in the lookup table. */
225 t.parts32.w0 = 0x3fff0000 + (k << 9);
226 t.parts32.w1 = 0;
227 t.parts32.w2 = 0;
228 t.parts32.w3 = 0;
229 u.parts32.w0 += 0x10000;
230 e -= 1;
231 k += 64;
233 else
235 k = (m - 0xfe00) >> 10;
236 t.parts32.w0 = 0x3ffe0000 + (k << 10);
237 t.parts32.w1 = 0;
238 t.parts32.w2 = 0;
239 t.parts32.w3 = 0;
241 /* On this interval the table is not used due to cancellation error. */
242 if ((x <= L(1.0078125)) && (x >= L(0.9921875)))
244 if (x == 1)
245 return 0;
246 z = x - 1;
247 k = 64;
248 t.value = 1;
249 e = 0;
251 else
253 /* log(u) = log( t u/t ) = log(t) + log(u/t)
254 log(t) is tabulated in the lookup table.
255 Express log(u/t) = log(1+z), where z = u/t - 1 = (u-t)/t.
256 cf. Cody & Waite. */
257 z = (u.value - t.value) / t.value;
259 /* Series expansion of log(1+z). */
260 w = z * z;
261 y = ((((((((((((l15 * z
262 + l14) * z
263 + l13) * z
264 + l12) * z
265 + l11) * z
266 + l10) * z
267 + l9) * z
268 + l8) * z
269 + l7) * z
270 + l6) * z
271 + l5) * z
272 + l4) * z
273 + l3) * z * w;
274 y -= 0.5 * w;
275 y += e * ln2b; /* Base 2 exponent offset times ln(2). */
276 y += z;
277 y += logtbl[k-26]; /* log(t) - (t-1) */
278 y += (t.value - 1);
279 y += e * ln2a;
280 return y;
282 strong_alias (__ieee754_logl, __logl_finite)