2 * Base 2 logarithm, 128-bit long double precision
8 * long double x, y, log2l();
16 * Returns the base 2 logarithm of x.
18 * The argument is separated into its exponent and fractional
19 * parts. If the exponent is between -1 and +1, the (natural)
20 * logarithm of the fraction is approximated by
22 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24 * Otherwise, setting z = 2(x-1)/x+1),
26 * log(x) = z + z^3 P(z)/Q(z).
33 * arithmetic domain # trials peak rms
34 * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35
35 * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35
37 * In the tests over the interval exp(+-10000), the logarithms
38 * of the random arguments were uniformly distributed over
44 Cephes Math Library Release 2.2: January, 1991
45 Copyright 1984, 1991 by Stephen L. Moshier
46 Adapted for glibc November, 2001
48 This library is free software; you can redistribute it and/or
49 modify it under the terms of the GNU Lesser General Public
50 License as published by the Free Software Foundation; either
51 version 2.1 of the License, or (at your option) any later version.
53 This library is distributed in the hope that it will be useful,
54 but WITHOUT ANY WARRANTY; without even the implied warranty of
55 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
56 Lesser General Public License for more details.
58 You should have received a copy of the GNU Lesser General Public
59 License along with this library; if not, see <http://www.gnu.org/licenses/>.
63 #include <math_private.h>
65 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
66 * 1/sqrt(2) <= x < sqrt(2)
67 * Theoretical peak relative error = 5.3e-37,
68 * relative peak error spread = 2.3e-14
70 static const _Float128 P
[13] =
72 L(1.313572404063446165910279910527789794488E4
),
73 L(7.771154681358524243729929227226708890930E4
),
74 L(2.014652742082537582487669938141683759923E5
),
75 L(3.007007295140399532324943111654767187848E5
),
76 L(2.854829159639697837788887080758954924001E5
),
77 L(1.797628303815655343403735250238293741397E5
),
78 L(7.594356839258970405033155585486712125861E4
),
79 L(2.128857716871515081352991964243375186031E4
),
80 L(3.824952356185897735160588078446136783779E3
),
81 L(4.114517881637811823002128927449878962058E2
),
82 L(2.321125933898420063925789532045674660756E1
),
83 L(4.998469661968096229986658302195402690910E-1),
84 L(1.538612243596254322971797716843006400388E-6)
86 static const _Float128 Q
[12] =
88 L(3.940717212190338497730839731583397586124E4
),
89 L(2.626900195321832660448791748036714883242E5
),
90 L(7.777690340007566932935753241556479363645E5
),
91 L(1.347518538384329112529391120390701166528E6
),
92 L(1.514882452993549494932585972882995548426E6
),
93 L(1.158019977462989115839826904108208787040E6
),
94 L(6.132189329546557743179177159925690841200E5
),
95 L(2.248234257620569139969141618556349415120E5
),
96 L(5.605842085972455027590989944010492125825E4
),
97 L(9.147150349299596453976674231612674085381E3
),
98 L(9.104928120962988414618126155557301584078E2
),
99 L(4.839208193348159620282142911143429644326E1
)
100 /* 1.000000000000000000000000000000000000000E0L, */
103 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
104 * where z = 2(x-1)/(x+1)
105 * 1/sqrt(2) <= x < sqrt(2)
106 * Theoretical peak relative error = 1.1e-35,
107 * relative peak error spread 1.1e-9
109 static const _Float128 R
[6] =
111 L(1.418134209872192732479751274970992665513E5
),
112 L(-8.977257995689735303686582344659576526998E4
),
113 L(2.048819892795278657810231591630928516206E4
),
114 L(-2.024301798136027039250415126250455056397E3
),
115 L(8.057002716646055371965756206836056074715E1
),
116 L(-8.828896441624934385266096344596648080902E-1)
118 static const _Float128 S
[6] =
120 L(1.701761051846631278975701529965589676574E6
),
121 L(-1.332535117259762928288745111081235577029E6
),
122 L(4.001557694070773974936904547424676279307E5
),
123 L(-5.748542087379434595104154610899551484314E4
),
124 L(3.998526750980007367835804959888064681098E3
),
125 L(-1.186359407982897997337150403816839480438E2
)
126 /* 1.000000000000000000000000000000000000000E0L, */
129 static const _Float128
131 LOG2EA
= L(4.4269504088896340735992468100189213742664595E-1),
133 SQRTH
= L(7.071067811865475244008443621048490392848359E-1);
136 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
139 neval (_Float128 x
, const _Float128
*p
, int n
)
154 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
157 deval (_Float128 x
, const _Float128
*p
, int n
)
174 __ieee754_log2l (_Float128 x
)
181 /* Test for domain */
182 GET_LDOUBLE_WORDS64 (hx
, lx
, x
);
183 if (((hx
& 0x7fffffffffffffffLL
) | lx
) == 0)
184 return (-1 / fabsl (x
)); /* log2l(+-0)=-inf */
186 return (x
- x
) / (x
- x
);
187 if (hx
>= 0x7fff000000000000LL
)
193 /* separate mantissa from exponent */
195 /* Note, frexp is used so that denormal numbers
196 * will be handled properly.
198 x
= __frexpl (x
, &e
);
201 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
202 * where z = 2(x-1)/x+1)
204 if ((e
> 2) || (e
< -2))
207 { /* 2( 2x-1 )/( 2x+1 ) */
210 y
= L(0.5) * z
+ L(0.5);
213 { /* 2 (x-1)/(x+1) */
216 y
= L(0.5) * x
+ L(0.5);
220 y
= x
* (z
* neval (z
, R
, 5) / deval (z
, S
, 5));
225 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
230 x
= 2.0 * x
- 1; /* 2x - 1 */
237 y
= x
* (z
* neval (x
, P
, 12) / deval (x
, Q
, 11));
242 /* Multiply log of fraction by log2(e)
243 * and base 2 exponent by 1
252 strong_alias (__ieee754_log2l
, __log2l_finite
)