Update miscellaneous files from upstream sources.
[glibc.git] / sysdeps / ieee754 / ldbl-128 / e_log2l.c
blob06bf04f5e3f7d30a1ae7ebfb3b88f01398f11f65
1 /* log2l.c
2 * Base 2 logarithm, 128-bit long double precision
6 * SYNOPSIS:
8 * long double x, y, log2l();
10 * y = log2l( x );
14 * DESCRIPTION:
16 * Returns the base 2 logarithm of x.
18 * The argument is separated into its exponent and fractional
19 * parts. If the exponent is between -1 and +1, the (natural)
20 * logarithm of the fraction is approximated by
22 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24 * Otherwise, setting z = 2(x-1)/x+1),
26 * log(x) = z + z^3 P(z)/Q(z).
30 * ACCURACY:
32 * Relative error:
33 * arithmetic domain # trials peak rms
34 * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35
35 * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35
37 * In the tests over the interval exp(+-10000), the logarithms
38 * of the random arguments were uniformly distributed over
39 * [-10000, +10000].
44 Cephes Math Library Release 2.2: January, 1991
45 Copyright 1984, 1991 by Stephen L. Moshier
46 Adapted for glibc November, 2001
48 This library is free software; you can redistribute it and/or
49 modify it under the terms of the GNU Lesser General Public
50 License as published by the Free Software Foundation; either
51 version 2.1 of the License, or (at your option) any later version.
53 This library is distributed in the hope that it will be useful,
54 but WITHOUT ANY WARRANTY; without even the implied warranty of
55 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
56 Lesser General Public License for more details.
58 You should have received a copy of the GNU Lesser General Public
59 License along with this library; if not, see <http://www.gnu.org/licenses/>.
62 #include <math.h>
63 #include <math_private.h>
65 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
66 * 1/sqrt(2) <= x < sqrt(2)
67 * Theoretical peak relative error = 5.3e-37,
68 * relative peak error spread = 2.3e-14
70 static const _Float128 P[13] =
72 L(1.313572404063446165910279910527789794488E4),
73 L(7.771154681358524243729929227226708890930E4),
74 L(2.014652742082537582487669938141683759923E5),
75 L(3.007007295140399532324943111654767187848E5),
76 L(2.854829159639697837788887080758954924001E5),
77 L(1.797628303815655343403735250238293741397E5),
78 L(7.594356839258970405033155585486712125861E4),
79 L(2.128857716871515081352991964243375186031E4),
80 L(3.824952356185897735160588078446136783779E3),
81 L(4.114517881637811823002128927449878962058E2),
82 L(2.321125933898420063925789532045674660756E1),
83 L(4.998469661968096229986658302195402690910E-1),
84 L(1.538612243596254322971797716843006400388E-6)
86 static const _Float128 Q[12] =
88 L(3.940717212190338497730839731583397586124E4),
89 L(2.626900195321832660448791748036714883242E5),
90 L(7.777690340007566932935753241556479363645E5),
91 L(1.347518538384329112529391120390701166528E6),
92 L(1.514882452993549494932585972882995548426E6),
93 L(1.158019977462989115839826904108208787040E6),
94 L(6.132189329546557743179177159925690841200E5),
95 L(2.248234257620569139969141618556349415120E5),
96 L(5.605842085972455027590989944010492125825E4),
97 L(9.147150349299596453976674231612674085381E3),
98 L(9.104928120962988414618126155557301584078E2),
99 L(4.839208193348159620282142911143429644326E1)
100 /* 1.000000000000000000000000000000000000000E0L, */
103 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
104 * where z = 2(x-1)/(x+1)
105 * 1/sqrt(2) <= x < sqrt(2)
106 * Theoretical peak relative error = 1.1e-35,
107 * relative peak error spread 1.1e-9
109 static const _Float128 R[6] =
111 L(1.418134209872192732479751274970992665513E5),
112 L(-8.977257995689735303686582344659576526998E4),
113 L(2.048819892795278657810231591630928516206E4),
114 L(-2.024301798136027039250415126250455056397E3),
115 L(8.057002716646055371965756206836056074715E1),
116 L(-8.828896441624934385266096344596648080902E-1)
118 static const _Float128 S[6] =
120 L(1.701761051846631278975701529965589676574E6),
121 L(-1.332535117259762928288745111081235577029E6),
122 L(4.001557694070773974936904547424676279307E5),
123 L(-5.748542087379434595104154610899551484314E4),
124 L(3.998526750980007367835804959888064681098E3),
125 L(-1.186359407982897997337150403816839480438E2)
126 /* 1.000000000000000000000000000000000000000E0L, */
129 static const _Float128
130 /* log2(e) - 1 */
131 LOG2EA = L(4.4269504088896340735992468100189213742664595E-1),
132 /* sqrt(2)/2 */
133 SQRTH = L(7.071067811865475244008443621048490392848359E-1);
136 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
138 static _Float128
139 neval (_Float128 x, const _Float128 *p, int n)
141 _Float128 y;
143 p += n;
144 y = *p--;
147 y = y * x + *p--;
149 while (--n > 0);
150 return y;
154 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
156 static _Float128
157 deval (_Float128 x, const _Float128 *p, int n)
159 _Float128 y;
161 p += n;
162 y = x + *p--;
165 y = y * x + *p--;
167 while (--n > 0);
168 return y;
173 _Float128
174 __ieee754_log2l (_Float128 x)
176 _Float128 z;
177 _Float128 y;
178 int e;
179 int64_t hx, lx;
181 /* Test for domain */
182 GET_LDOUBLE_WORDS64 (hx, lx, x);
183 if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
184 return (-1 / fabsl (x)); /* log2l(+-0)=-inf */
185 if (hx < 0)
186 return (x - x) / (x - x);
187 if (hx >= 0x7fff000000000000LL)
188 return (x + x);
190 if (x == 1)
191 return 0;
193 /* separate mantissa from exponent */
195 /* Note, frexp is used so that denormal numbers
196 * will be handled properly.
198 x = __frexpl (x, &e);
201 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
202 * where z = 2(x-1)/x+1)
204 if ((e > 2) || (e < -2))
206 if (x < SQRTH)
207 { /* 2( 2x-1 )/( 2x+1 ) */
208 e -= 1;
209 z = x - L(0.5);
210 y = L(0.5) * z + L(0.5);
212 else
213 { /* 2 (x-1)/(x+1) */
214 z = x - L(0.5);
215 z -= L(0.5);
216 y = L(0.5) * x + L(0.5);
218 x = z / y;
219 z = x * x;
220 y = x * (z * neval (z, R, 5) / deval (z, S, 5));
221 goto done;
225 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
227 if (x < SQRTH)
229 e -= 1;
230 x = 2.0 * x - 1; /* 2x - 1 */
232 else
234 x = x - 1;
236 z = x * x;
237 y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
238 y = y - 0.5 * z;
240 done:
242 /* Multiply log of fraction by log2(e)
243 * and base 2 exponent by 1
245 z = y * LOG2EA;
246 z += x * LOG2EA;
247 z += y;
248 z += x;
249 z += e;
250 return (z);
252 strong_alias (__ieee754_log2l, __log2l_finite)