3 * Bessel function of order zero
9 * long double x, y, j0l();
17 * Returns Bessel function of first kind, order zero of the argument.
19 * The domain is divided into two major intervals [0, 2] and
20 * (2, infinity). In the first interval the rational approximation
21 * is J0(x) = 1 - x^2 / 4 + x^4 R(x^2)
22 * The second interval is further partitioned into eight equal segments
25 * J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)),
28 * and the auxiliary functions are given by
30 * J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x),
31 * P0(x) = 1 + 1/x^2 R(1/x^2)
33 * Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x),
34 * Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
41 * arithmetic domain # trials peak rms
42 * IEEE 0, 30 100000 1.7e-34 2.4e-35
49 * Bessel function of the second kind, order zero
63 * Returns Bessel function of the second kind, of order
64 * zero, of the argument.
66 * The approximation is the same as for J0(x), and
67 * Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)).
71 * Absolute error, when y0(x) < 1; else relative error:
73 * arithmetic domain # trials peak rms
74 * IEEE 0, 30 100000 3.0e-34 2.7e-35
78 /* Copyright 2001 by Stephen L. Moshier (moshier@na-net.ornl.gov).
80 This library is free software; you can redistribute it and/or
81 modify it under the terms of the GNU Lesser General Public
82 License as published by the Free Software Foundation; either
83 version 2.1 of the License, or (at your option) any later version.
85 This library is distributed in the hope that it will be useful,
86 but WITHOUT ANY WARRANTY; without even the implied warranty of
87 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
88 Lesser General Public License for more details.
90 You should have received a copy of the GNU Lesser General Public
91 License along with this library; if not, see
92 <http://www.gnu.org/licenses/>. */
95 #include <math_private.h>
99 static const _Float128 ONEOSQPI
= L(5.6418958354775628694807945156077258584405E-1);
101 static const _Float128 TWOOPI
= L(6.3661977236758134307553505349005744813784E-1);
102 static const _Float128 zero
= 0;
104 /* J0(x) = 1 - x^2/4 + x^2 x^2 R(x^2)
105 Peak relative error 3.4e-37
108 static const _Float128 J0_2N
[NJ0_2N
+ 1] = {
109 L(3.133239376997663645548490085151484674892E16
),
110 L(-5.479944965767990821079467311839107722107E14
),
111 L(6.290828903904724265980249871997551894090E12
),
112 L(-3.633750176832769659849028554429106299915E10
),
113 L(1.207743757532429576399485415069244807022E8
),
114 L(-2.107485999925074577174305650549367415465E5
),
115 L(1.562826808020631846245296572935547005859E2
),
118 static const _Float128 J0_2D
[NJ0_2D
+ 1] = {
119 L(2.005273201278504733151033654496928968261E18
),
120 L(2.063038558793221244373123294054149790864E16
),
121 L(1.053350447931127971406896594022010524994E14
),
122 L(3.496556557558702583143527876385508882310E11
),
123 L(8.249114511878616075860654484367133976306E8
),
124 L(1.402965782449571800199759247964242790589E6
),
125 L(1.619910762853439600957801751815074787351E3
),
126 /* 1.000000000000000000000000000000000000000E0 */
129 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2),
131 Peak relative error 3.3e-36 */
133 static const _Float128 P16_IN
[NP16_IN
+ 1] = {
134 L(-1.901689868258117463979611259731176301065E-16),
135 L(-1.798743043824071514483008340803573980931E-13),
136 L(-6.481746687115262291873324132944647438959E-11),
137 L(-1.150651553745409037257197798528294248012E-8),
138 L(-1.088408467297401082271185599507222695995E-6),
139 L(-5.551996725183495852661022587879817546508E-5),
140 L(-1.477286941214245433866838787454880214736E-3),
141 L(-1.882877976157714592017345347609200402472E-2),
142 L(-9.620983176855405325086530374317855880515E-2),
143 L(-1.271468546258855781530458854476627766233E-1),
146 static const _Float128 P16_ID
[NP16_ID
+ 1] = {
147 L(2.704625590411544837659891569420764475007E-15),
148 L(2.562526347676857624104306349421985403573E-12),
149 L(9.259137589952741054108665570122085036246E-10),
150 L(1.651044705794378365237454962653430805272E-7),
151 L(1.573561544138733044977714063100859136660E-5),
152 L(8.134482112334882274688298469629884804056E-4),
153 L(2.219259239404080863919375103673593571689E-2),
154 L(2.976990606226596289580242451096393862792E-1),
155 L(1.713895630454693931742734911930937246254E0
),
156 L(3.231552290717904041465898249160757368855E0
),
157 /* 1.000000000000000000000000000000000000000E0 */
160 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
161 0.0625 <= 1/x <= 0.125
162 Peak relative error 2.4e-35 */
164 static const _Float128 P8_16N
[NP8_16N
+ 1] = {
165 L(-2.335166846111159458466553806683579003632E-15),
166 L(-1.382763674252402720401020004169367089975E-12),
167 L(-3.192160804534716696058987967592784857907E-10),
168 L(-3.744199606283752333686144670572632116899E-8),
169 L(-2.439161236879511162078619292571922772224E-6),
170 L(-9.068436986859420951664151060267045346549E-5),
171 L(-1.905407090637058116299757292660002697359E-3),
172 L(-2.164456143936718388053842376884252978872E-2),
173 L(-1.212178415116411222341491717748696499966E-1),
174 L(-2.782433626588541494473277445959593334494E-1),
175 L(-1.670703190068873186016102289227646035035E-1),
178 static const _Float128 P8_16D
[NP8_16D
+ 1] = {
179 L(3.321126181135871232648331450082662856743E-14),
180 L(1.971894594837650840586859228510007703641E-11),
181 L(4.571144364787008285981633719513897281690E-9),
182 L(5.396419143536287457142904742849052402103E-7),
183 L(3.551548222385845912370226756036899901549E-5),
184 L(1.342353874566932014705609788054598013516E-3),
185 L(2.899133293006771317589357444614157734385E-2),
186 L(3.455374978185770197704507681491574261545E-1),
187 L(2.116616964297512311314454834712634820514E0
),
188 L(5.850768316827915470087758636881584174432E0
),
189 L(5.655273858938766830855753983631132928968E0
),
190 /* 1.000000000000000000000000000000000000000E0 */
193 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
194 0.125 <= 1/x <= 0.1875
195 Peak relative error 2.7e-35 */
197 static const _Float128 P5_8N
[NP5_8N
+ 1] = {
198 L(-1.270478335089770355749591358934012019596E-12),
199 L(-4.007588712145412921057254992155810347245E-10),
200 L(-4.815187822989597568124520080486652009281E-8),
201 L(-2.867070063972764880024598300408284868021E-6),
202 L(-9.218742195161302204046454768106063638006E-5),
203 L(-1.635746821447052827526320629828043529997E-3),
204 L(-1.570376886640308408247709616497261011707E-2),
205 L(-7.656484795303305596941813361786219477807E-2),
206 L(-1.659371030767513274944805479908858628053E-1),
207 L(-1.185340550030955660015841796219919804915E-1),
208 L(-8.920026499909994671248893388013790366712E-3),
211 static const _Float128 P5_8D
[NP5_8D
+ 1] = {
212 L(1.806902521016705225778045904631543990314E-11),
213 L(5.728502760243502431663549179135868966031E-9),
214 L(6.938168504826004255287618819550667978450E-7),
215 L(4.183769964807453250763325026573037785902E-5),
216 L(1.372660678476925468014882230851637878587E-3),
217 L(2.516452105242920335873286419212708961771E-2),
218 L(2.550502712902647803796267951846557316182E-1),
219 L(1.365861559418983216913629123778747617072E0
),
220 L(3.523825618308783966723472468855042541407E0
),
221 L(3.656365803506136165615111349150536282434E0
),
222 /* 1.000000000000000000000000000000000000000E0 */
225 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
226 Peak relative error 3.5e-35
227 0.1875 <= 1/x <= 0.25 */
229 static const _Float128 P4_5N
[NP4_5N
+ 1] = {
230 L(-9.791405771694098960254468859195175708252E-10),
231 L(-1.917193059944531970421626610188102836352E-7),
232 L(-1.393597539508855262243816152893982002084E-5),
233 L(-4.881863490846771259880606911667479860077E-4),
234 L(-8.946571245022470127331892085881699269853E-3),
235 L(-8.707474232568097513415336886103899434251E-2),
236 L(-4.362042697474650737898551272505525973766E-1),
237 L(-1.032712171267523975431451359962375617386E0
),
238 L(-9.630502683169895107062182070514713702346E-1),
239 L(-2.251804386252969656586810309252357233320E-1),
242 static const _Float128 P4_5D
[NP4_5D
+ 1] = {
243 L(1.392555487577717669739688337895791213139E-8),
244 L(2.748886559120659027172816051276451376854E-6),
245 L(2.024717710644378047477189849678576659290E-4),
246 L(7.244868609350416002930624752604670292469E-3),
247 L(1.373631762292244371102989739300382152416E-1),
248 L(1.412298581400224267910294815260613240668E0
),
249 L(7.742495637843445079276397723849017617210E0
),
250 L(2.138429269198406512028307045259503811861E1
),
251 L(2.651547684548423476506826951831712762610E1
),
252 L(1.167499382465291931571685222882909166935E1
),
253 /* 1.000000000000000000000000000000000000000E0 */
256 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
257 Peak relative error 2.3e-36
258 0.25 <= 1/x <= 0.3125 */
260 static const _Float128 P3r2_4N
[NP3r2_4N
+ 1] = {
261 L(-2.589155123706348361249809342508270121788E-8),
262 L(-3.746254369796115441118148490849195516593E-6),
263 L(-1.985595497390808544622893738135529701062E-4),
264 L(-5.008253705202932091290132760394976551426E-3),
265 L(-6.529469780539591572179155511840853077232E-2),
266 L(-4.468736064761814602927408833818990271514E-1),
267 L(-1.556391252586395038089729428444444823380E0
),
268 L(-2.533135309840530224072920725976994981638E0
),
269 L(-1.605509621731068453869408718565392869560E0
),
270 L(-2.518966692256192789269859830255724429375E-1),
273 static const _Float128 P3r2_4D
[NP3r2_4D
+ 1] = {
274 L(3.682353957237979993646169732962573930237E-7),
275 L(5.386741661883067824698973455566332102029E-5),
276 L(2.906881154171822780345134853794241037053E-3),
277 L(7.545832595801289519475806339863492074126E-2),
278 L(1.029405357245594877344360389469584526654E0
),
279 L(7.565706120589873131187989560509757626725E0
),
280 L(2.951172890699569545357692207898667665796E1
),
281 L(5.785723537170311456298467310529815457536E1
),
282 L(5.095621464598267889126015412522773474467E1
),
283 L(1.602958484169953109437547474953308401442E1
),
284 /* 1.000000000000000000000000000000000000000E0 */
287 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
288 Peak relative error 1.0e-35
289 0.3125 <= 1/x <= 0.375 */
291 static const _Float128 P2r7_3r2N
[NP2r7_3r2N
+ 1] = {
292 L(-1.917322340814391131073820537027234322550E-7),
293 L(-1.966595744473227183846019639723259011906E-5),
294 L(-7.177081163619679403212623526632690465290E-4),
295 L(-1.206467373860974695661544653741899755695E-2),
296 L(-1.008656452188539812154551482286328107316E-1),
297 L(-4.216016116408810856620947307438823892707E-1),
298 L(-8.378631013025721741744285026537009814161E-1),
299 L(-6.973895635309960850033762745957946272579E-1),
300 L(-1.797864718878320770670740413285763554812E-1),
301 L(-4.098025357743657347681137871388402849581E-3),
304 static const _Float128 P2r7_3r2D
[NP2r7_3r2D
+ 1] = {
305 L(2.726858489303036441686496086962545034018E-6),
306 L(2.840430827557109238386808968234848081424E-4),
307 L(1.063826772041781947891481054529454088832E-2),
308 L(1.864775537138364773178044431045514405468E-1),
309 L(1.665660052857205170440952607701728254211E0
),
310 L(7.723745889544331153080842168958348568395E0
),
311 L(1.810726427571829798856428548102077799835E1
),
312 L(1.986460672157794440666187503833545388527E1
),
313 L(8.645503204552282306364296517220055815488E0
),
314 /* 1.000000000000000000000000000000000000000E0 */
317 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
318 Peak relative error 1.3e-36
319 0.3125 <= 1/x <= 0.4375 */
321 static const _Float128 P2r3_2r7N
[NP2r3_2r7N
+ 1] = {
322 L(-1.594642785584856746358609622003310312622E-6),
323 L(-1.323238196302221554194031733595194539794E-4),
324 L(-3.856087818696874802689922536987100372345E-3),
325 L(-5.113241710697777193011470733601522047399E-2),
326 L(-3.334229537209911914449990372942022350558E-1),
327 L(-1.075703518198127096179198549659283422832E0
),
328 L(-1.634174803414062725476343124267110981807E0
),
329 L(-1.030133247434119595616826842367268304880E0
),
330 L(-1.989811539080358501229347481000707289391E-1),
331 L(-3.246859189246653459359775001466924610236E-3),
334 static const _Float128 P2r3_2r7D
[NP2r3_2r7D
+ 1] = {
335 L(2.267936634217251403663034189684284173018E-5),
336 L(1.918112982168673386858072491437971732237E-3),
337 L(5.771704085468423159125856786653868219522E-2),
338 L(8.056124451167969333717642810661498890507E-1),
339 L(5.687897967531010276788680634413789328776E0
),
340 L(2.072596760717695491085444438270778394421E1
),
341 L(3.801722099819929988585197088613160496684E1
),
342 L(3.254620235902912339534998592085115836829E1
),
343 L(1.104847772130720331801884344645060675036E1
),
344 /* 1.000000000000000000000000000000000000000E0 */
347 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
348 Peak relative error 1.2e-35
349 0.4375 <= 1/x <= 0.5 */
351 static const _Float128 P2_2r3N
[NP2_2r3N
+ 1] = {
352 L(-1.001042324337684297465071506097365389123E-4),
353 L(-6.289034524673365824853547252689991418981E-3),
354 L(-1.346527918018624234373664526930736205806E-1),
355 L(-1.268808313614288355444506172560463315102E0
),
356 L(-5.654126123607146048354132115649177406163E0
),
357 L(-1.186649511267312652171775803270911971693E1
),
358 L(-1.094032424931998612551588246779200724257E1
),
359 L(-3.728792136814520055025256353193674625267E0
),
360 L(-3.000348318524471807839934764596331810608E-1),
363 static const _Float128 P2_2r3D
[NP2_2r3D
+ 1] = {
364 L(1.423705538269770974803901422532055612980E-3),
365 L(9.171476630091439978533535167485230575894E-2),
366 L(2.049776318166637248868444600215942828537E0
),
367 L(2.068970329743769804547326701946144899583E1
),
368 L(1.025103500560831035592731539565060347709E2
),
369 L(2.528088049697570728252145557167066708284E2
),
370 L(2.992160327587558573740271294804830114205E2
),
371 L(1.540193761146551025832707739468679973036E2
),
372 L(2.779516701986912132637672140709452502650E1
),
373 /* 1.000000000000000000000000000000000000000E0 */
376 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
377 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
378 Peak relative error 2.2e-35
381 static const _Float128 Q16_IN
[NQ16_IN
+ 1] = {
382 L(2.343640834407975740545326632205999437469E-18),
383 L(2.667978112927811452221176781536278257448E-15),
384 L(1.178415018484555397390098879501969116536E-12),
385 L(2.622049767502719728905924701288614016597E-10),
386 L(3.196908059607618864801313380896308968673E-8),
387 L(2.179466154171673958770030655199434798494E-6),
388 L(8.139959091628545225221976413795645177291E-5),
389 L(1.563900725721039825236927137885747138654E-3),
390 L(1.355172364265825167113562519307194840307E-2),
391 L(3.928058355906967977269780046844768588532E-2),
392 L(1.107891967702173292405380993183694932208E-2),
395 static const _Float128 Q16_ID
[NQ16_ID
+ 1] = {
396 L(3.199850952578356211091219295199301766718E-17),
397 L(3.652601488020654842194486058637953363918E-14),
398 L(1.620179741394865258354608590461839031281E-11),
399 L(3.629359209474609630056463248923684371426E-9),
400 L(4.473680923894354600193264347733477363305E-7),
401 L(3.106368086644715743265603656011050476736E-5),
402 L(1.198239259946770604954664925153424252622E-3),
403 L(2.446041004004283102372887804475767568272E-2),
404 L(2.403235525011860603014707768815113698768E-1),
405 L(9.491006790682158612266270665136910927149E-1),
406 /* 1.000000000000000000000000000000000000000E0 */
409 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
410 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
411 Peak relative error 5.1e-36
412 0.0625 <= 1/x <= 0.125 */
414 static const _Float128 Q8_16N
[NQ8_16N
+ 1] = {
415 L(1.001954266485599464105669390693597125904E-17),
416 L(7.545499865295034556206475956620160007849E-15),
417 L(2.267838684785673931024792538193202559922E-12),
418 L(3.561909705814420373609574999542459912419E-10),
419 L(3.216201422768092505214730633842924944671E-8),
420 L(1.731194793857907454569364622452058554314E-6),
421 L(5.576944613034537050396518509871004586039E-5),
422 L(1.051787760316848982655967052985391418146E-3),
423 L(1.102852974036687441600678598019883746959E-2),
424 L(5.834647019292460494254225988766702933571E-2),
425 L(1.290281921604364618912425380717127576529E-1),
426 L(7.598886310387075708640370806458926458301E-2),
429 static const _Float128 Q8_16D
[NQ8_16D
+ 1] = {
430 L(1.368001558508338469503329967729951830843E-16),
431 L(1.034454121857542147020549303317348297289E-13),
432 L(3.128109209247090744354764050629381674436E-11),
433 L(4.957795214328501986562102573522064468671E-9),
434 L(4.537872468606711261992676606899273588899E-7),
435 L(2.493639207101727713192687060517509774182E-5),
436 L(8.294957278145328349785532236663051405805E-4),
437 L(1.646471258966713577374948205279380115839E-2),
438 L(1.878910092770966718491814497982191447073E-1),
439 L(1.152641605706170353727903052525652504075E0
),
440 L(3.383550240669773485412333679367792932235E0
),
441 L(3.823875252882035706910024716609908473970E0
),
442 /* 1.000000000000000000000000000000000000000E0 */
445 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
446 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
447 Peak relative error 3.9e-35
448 0.125 <= 1/x <= 0.1875 */
450 static const _Float128 Q5_8N
[NQ5_8N
+ 1] = {
451 L(1.750399094021293722243426623211733898747E-13),
452 L(6.483426211748008735242909236490115050294E-11),
453 L(9.279430665656575457141747875716899958373E-9),
454 L(6.696634968526907231258534757736576340266E-7),
455 L(2.666560823798895649685231292142838188061E-5),
456 L(6.025087697259436271271562769707550594540E-4),
457 L(7.652807734168613251901945778921336353485E-3),
458 L(5.226269002589406461622551452343519078905E-2),
459 L(1.748390159751117658969324896330142895079E-1),
460 L(2.378188719097006494782174902213083589660E-1),
461 L(8.383984859679804095463699702165659216831E-2),
464 static const _Float128 Q5_8D
[NQ5_8D
+ 1] = {
465 L(2.389878229704327939008104855942987615715E-12),
466 L(8.926142817142546018703814194987786425099E-10),
467 L(1.294065862406745901206588525833274399038E-7),
468 L(9.524139899457666250828752185212769682191E-6),
469 L(3.908332488377770886091936221573123353489E-4),
470 L(9.250427033957236609624199884089916836748E-3),
471 L(1.263420066165922645975830877751588421451E-1),
472 L(9.692527053860420229711317379861733180654E-1),
473 L(3.937813834630430172221329298841520707954E0
),
474 L(7.603126427436356534498908111445191312181E0
),
475 L(5.670677653334105479259958485084550934305E0
),
476 /* 1.000000000000000000000000000000000000000E0 */
479 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
480 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
481 Peak relative error 3.2e-35
482 0.1875 <= 1/x <= 0.25 */
484 static const _Float128 Q4_5N
[NQ4_5N
+ 1] = {
485 L(2.233870042925895644234072357400122854086E-11),
486 L(5.146223225761993222808463878999151699792E-9),
487 L(4.459114531468296461688753521109797474523E-7),
488 L(1.891397692931537975547242165291668056276E-5),
489 L(4.279519145911541776938964806470674565504E-4),
490 L(5.275239415656560634702073291768904783989E-3),
491 L(3.468698403240744801278238473898432608887E-2),
492 L(1.138773146337708415188856882915457888274E-1),
493 L(1.622717518946443013587108598334636458955E-1),
494 L(7.249040006390586123760992346453034628227E-2),
495 L(1.941595365256460232175236758506411486667E-3),
498 static const _Float128 Q4_5D
[NQ4_5D
+ 1] = {
499 L(3.049977232266999249626430127217988047453E-10),
500 L(7.120883230531035857746096928889676144099E-8),
501 L(6.301786064753734446784637919554359588859E-6),
502 L(2.762010530095069598480766869426308077192E-4),
503 L(6.572163250572867859316828886203406361251E-3),
504 L(8.752566114841221958200215255461843397776E-2),
505 L(6.487654992874805093499285311075289932664E-1),
506 L(2.576550017826654579451615283022812801435E0
),
507 L(5.056392229924022835364779562707348096036E0
),
508 L(4.179770081068251464907531367859072157773E0
),
509 /* 1.000000000000000000000000000000000000000E0 */
512 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
513 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
514 Peak relative error 1.4e-36
515 0.25 <= 1/x <= 0.3125 */
517 static const _Float128 Q3r2_4N
[NQ3r2_4N
+ 1] = {
518 L(6.126167301024815034423262653066023684411E-10),
519 L(1.043969327113173261820028225053598975128E-7),
520 L(6.592927270288697027757438170153763220190E-6),
521 L(2.009103660938497963095652951912071336730E-4),
522 L(3.220543385492643525985862356352195896964E-3),
523 L(2.774405975730545157543417650436941650990E-2),
524 L(1.258114008023826384487378016636555041129E-1),
525 L(2.811724258266902502344701449984698323860E-1),
526 L(2.691837665193548059322831687432415014067E-1),
527 L(7.949087384900985370683770525312735605034E-2),
528 L(1.229509543620976530030153018986910810747E-3),
531 static const _Float128 Q3r2_4D
[NQ3r2_4D
+ 1] = {
532 L(8.364260446128475461539941389210166156568E-9),
533 L(1.451301850638956578622154585560759862764E-6),
534 L(9.431830010924603664244578867057141839463E-5),
535 L(3.004105101667433434196388593004526182741E-3),
536 L(5.148157397848271739710011717102773780221E-2),
537 L(4.901089301726939576055285374953887874895E-1),
538 L(2.581760991981709901216967665934142240346E0
),
539 L(7.257105880775059281391729708630912791847E0
),
540 L(1.006014717326362868007913423810737369312E1
),
541 L(5.879416600465399514404064187445293212470E0
),
542 /* 1.000000000000000000000000000000000000000E0*/
545 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
546 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
547 Peak relative error 3.8e-36
548 0.3125 <= 1/x <= 0.375 */
550 static const _Float128 Q2r7_3r2N
[NQ2r7_3r2N
+ 1] = {
551 L(7.584861620402450302063691901886141875454E-8),
552 L(9.300939338814216296064659459966041794591E-6),
553 L(4.112108906197521696032158235392604947895E-4),
554 L(8.515168851578898791897038357239630654431E-3),
555 L(8.971286321017307400142720556749573229058E-2),
556 L(4.885856732902956303343015636331874194498E-1),
557 L(1.334506268733103291656253500506406045846E0
),
558 L(1.681207956863028164179042145803851824654E0
),
559 L(8.165042692571721959157677701625853772271E-1),
560 L(9.805848115375053300608712721986235900715E-2),
563 static const _Float128 Q2r7_3r2D
[NQ2r7_3r2D
+ 1] = {
564 L(1.035586492113036586458163971239438078160E-6),
565 L(1.301999337731768381683593636500979713689E-4),
566 L(5.993695702564527062553071126719088859654E-3),
567 L(1.321184892887881883489141186815457808785E-1),
568 L(1.528766555485015021144963194165165083312E0
),
569 L(9.561463309176490874525827051566494939295E0
),
570 L(3.203719484883967351729513662089163356911E1
),
571 L(5.497294687660930446641539152123568668447E1
),
572 L(4.391158169390578768508675452986948391118E1
),
573 L(1.347836630730048077907818943625789418378E1
),
574 /* 1.000000000000000000000000000000000000000E0 */
577 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
578 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
579 Peak relative error 2.2e-35
580 0.375 <= 1/x <= 0.4375 */
582 static const _Float128 Q2r3_2r7N
[NQ2r3_2r7N
+ 1] = {
583 L(4.455027774980750211349941766420190722088E-7),
584 L(4.031998274578520170631601850866780366466E-5),
585 L(1.273987274325947007856695677491340636339E-3),
586 L(1.818754543377448509897226554179659122873E-2),
587 L(1.266748858326568264126353051352269875352E-1),
588 L(4.327578594728723821137731555139472880414E-1),
589 L(6.892532471436503074928194969154192615359E-1),
590 L(4.490775818438716873422163588640262036506E-1),
591 L(8.649615949297322440032000346117031581572E-2),
592 L(7.261345286655345047417257611469066147561E-4),
595 static const _Float128 Q2r3_2r7D
[NQ2r3_2r7D
+ 1] = {
596 L(6.082600739680555266312417978064954793142E-6),
597 L(5.693622538165494742945717226571441747567E-4),
598 L(1.901625907009092204458328768129666975975E-2),
599 L(2.958689532697857335456896889409923371570E-1),
600 L(2.343124711045660081603809437993368799568E0
),
601 L(9.665894032187458293568704885528192804376E0
),
602 L(2.035273104990617136065743426322454881353E1
),
603 L(2.044102010478792896815088858740075165531E1
),
604 L(8.445937177863155827844146643468706599304E0
),
605 /* 1.000000000000000000000000000000000000000E0 */
608 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
609 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
610 Peak relative error 3.1e-36
611 0.4375 <= 1/x <= 0.5 */
613 static const _Float128 Q2_2r3N
[NQ2_2r3N
+ 1] = {
614 L(2.817566786579768804844367382809101929314E-6),
615 L(2.122772176396691634147024348373539744935E-4),
616 L(5.501378031780457828919593905395747517585E-3),
617 L(6.355374424341762686099147452020466524659E-2),
618 L(3.539652320122661637429658698954748337223E-1),
619 L(9.571721066119617436343740541777014319695E-1),
620 L(1.196258777828426399432550698612171955305E0
),
621 L(6.069388659458926158392384709893753793967E-1),
622 L(9.026746127269713176512359976978248763621E-2),
623 L(5.317668723070450235320878117210807236375E-4),
626 static const _Float128 Q2_2r3D
[NQ2_2r3D
+ 1] = {
627 L(3.846924354014260866793741072933159380158E-5),
628 L(3.017562820057704325510067178327449946763E-3),
629 L(8.356305620686867949798885808540444210935E-2),
630 L(1.068314930499906838814019619594424586273E0
),
631 L(6.900279623894821067017966573640732685233E0
),
632 L(2.307667390886377924509090271780839563141E1
),
633 L(3.921043465412723970791036825401273528513E1
),
634 L(3.167569478939719383241775717095729233436E1
),
635 L(1.051023841699200920276198346301543665909E1
),
636 /* 1.000000000000000000000000000000000000000E0*/
640 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
643 neval (_Float128 x
, const _Float128
*p
, int n
)
658 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
661 deval (_Float128 x
, const _Float128
*p
, int n
)
676 /* Bessel function of the first kind, order zero. */
679 __ieee754_j0l (_Float128 x
)
681 _Float128 xx
, xinv
, z
, p
, q
, c
, s
, cc
, ss
;
700 p
= z
* z
* neval (z
, J0_2N
, NJ0_2N
) / deval (z
, J0_2D
, NJ0_2D
);
707 cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
708 = 1/sqrt(2) * (cos(x) + sin(x))
709 sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
710 = 1/sqrt(2) * (sin(x) - cos(x))
711 sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
713 __sincosl (xx
, &s
, &c
);
716 if (xx
<= LDBL_MAX
/ 2)
718 z
= -__cosl (xx
+ xx
);
726 return ONEOSQPI
* cc
/ __ieee754_sqrtl (xx
);
736 p
= neval (z
, P16_IN
, NP16_IN
) / deval (z
, P16_ID
, NP16_ID
);
737 q
= neval (z
, Q16_IN
, NQ16_IN
) / deval (z
, Q16_ID
, NQ16_ID
);
741 p
= neval (z
, P8_16N
, NP8_16N
) / deval (z
, P8_16D
, NP8_16D
);
742 q
= neval (z
, Q8_16N
, NQ8_16N
) / deval (z
, Q8_16D
, NQ8_16D
);
745 else if (xinv
<= 0.1875)
747 p
= neval (z
, P5_8N
, NP5_8N
) / deval (z
, P5_8D
, NP5_8D
);
748 q
= neval (z
, Q5_8N
, NQ5_8N
) / deval (z
, Q5_8D
, NQ5_8D
);
752 p
= neval (z
, P4_5N
, NP4_5N
) / deval (z
, P4_5D
, NP4_5D
);
753 q
= neval (z
, Q4_5N
, NQ4_5N
) / deval (z
, Q4_5D
, NQ4_5D
);
756 else /* if (xinv <= 0.5) */
762 p
= neval (z
, P3r2_4N
, NP3r2_4N
) / deval (z
, P3r2_4D
, NP3r2_4D
);
763 q
= neval (z
, Q3r2_4N
, NQ3r2_4N
) / deval (z
, Q3r2_4D
, NQ3r2_4D
);
767 p
= neval (z
, P2r7_3r2N
, NP2r7_3r2N
)
768 / deval (z
, P2r7_3r2D
, NP2r7_3r2D
);
769 q
= neval (z
, Q2r7_3r2N
, NQ2r7_3r2N
)
770 / deval (z
, Q2r7_3r2D
, NQ2r7_3r2D
);
773 else if (xinv
<= 0.4375)
775 p
= neval (z
, P2r3_2r7N
, NP2r3_2r7N
)
776 / deval (z
, P2r3_2r7D
, NP2r3_2r7D
);
777 q
= neval (z
, Q2r3_2r7N
, NQ2r3_2r7N
)
778 / deval (z
, Q2r3_2r7D
, NQ2r3_2r7D
);
782 p
= neval (z
, P2_2r3N
, NP2_2r3N
) / deval (z
, P2_2r3D
, NP2_2r3D
);
783 q
= neval (z
, Q2_2r3N
, NQ2_2r3N
) / deval (z
, Q2_2r3D
, NQ2_2r3D
);
788 q
= q
- L(0.125) * xinv
;
789 z
= ONEOSQPI
* (p
* cc
- q
* ss
) / __ieee754_sqrtl (xx
);
792 strong_alias (__ieee754_j0l
, __j0l_finite
)
795 /* Y0(x) = 2/pi * log(x) * J0(x) + R(x^2)
796 Peak absolute error 1.7e-36 (relative where Y0 > 1)
799 static const _Float128 Y0_2N
[NY0_2N
+ 1] = {
800 L(-1.062023609591350692692296993537002558155E19
),
801 L(2.542000883190248639104127452714966858866E19
),
802 L(-1.984190771278515324281415820316054696545E18
),
803 L(4.982586044371592942465373274440222033891E16
),
804 L(-5.529326354780295177243773419090123407550E14
),
805 L(3.013431465522152289279088265336861140391E12
),
806 L(-7.959436160727126750732203098982718347785E9
),
807 L(8.230845651379566339707130644134372793322E6
),
810 static const _Float128 Y0_2D
[NY0_2D
+ 1] = {
811 L(1.438972634353286978700329883122253752192E20
),
812 L(1.856409101981569254247700169486907405500E18
),
813 L(1.219693352678218589553725579802986255614E16
),
814 L(5.389428943282838648918475915779958097958E13
),
815 L(1.774125762108874864433872173544743051653E11
),
816 L(4.522104832545149534808218252434693007036E8
),
817 L(8.872187401232943927082914504125234454930E5
),
818 L(1.251945613186787532055610876304669413955E3
),
819 /* 1.000000000000000000000000000000000000000E0 */
822 static const _Float128 U0
= L(-7.3804295108687225274343927948483016310862e-02);
824 /* Bessel function of the second kind, order zero. */
827 __ieee754_y0l(_Float128 x
)
829 _Float128 xx
, xinv
, z
, p
, q
, c
, s
, cc
, ss
;
832 return 1 / (x
+ x
* x
);
836 return (zero
/ (zero
* x
));
837 return -1 / zero
; /* -inf and divide by zero exception. */
841 return U0
+ TWOOPI
* __ieee754_logl (x
);
846 p
= neval (z
, Y0_2N
, NY0_2N
) / deval (z
, Y0_2D
, NY0_2D
);
847 p
= TWOOPI
* __ieee754_logl (x
) * __ieee754_j0l (x
) + p
;
852 cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
853 = 1/sqrt(2) * (cos(x) + sin(x))
854 sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
855 = 1/sqrt(2) * (sin(x) - cos(x))
856 sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
858 __sincosl (x
, &s
, &c
);
861 if (xx
<= LDBL_MAX
/ 2)
871 return ONEOSQPI
* ss
/ __ieee754_sqrtl (x
);
881 p
= neval (z
, P16_IN
, NP16_IN
) / deval (z
, P16_ID
, NP16_ID
);
882 q
= neval (z
, Q16_IN
, NQ16_IN
) / deval (z
, Q16_ID
, NQ16_ID
);
886 p
= neval (z
, P8_16N
, NP8_16N
) / deval (z
, P8_16D
, NP8_16D
);
887 q
= neval (z
, Q8_16N
, NQ8_16N
) / deval (z
, Q8_16D
, NQ8_16D
);
890 else if (xinv
<= 0.1875)
892 p
= neval (z
, P5_8N
, NP5_8N
) / deval (z
, P5_8D
, NP5_8D
);
893 q
= neval (z
, Q5_8N
, NQ5_8N
) / deval (z
, Q5_8D
, NQ5_8D
);
897 p
= neval (z
, P4_5N
, NP4_5N
) / deval (z
, P4_5D
, NP4_5D
);
898 q
= neval (z
, Q4_5N
, NQ4_5N
) / deval (z
, Q4_5D
, NQ4_5D
);
901 else /* if (xinv <= 0.5) */
907 p
= neval (z
, P3r2_4N
, NP3r2_4N
) / deval (z
, P3r2_4D
, NP3r2_4D
);
908 q
= neval (z
, Q3r2_4N
, NQ3r2_4N
) / deval (z
, Q3r2_4D
, NQ3r2_4D
);
912 p
= neval (z
, P2r7_3r2N
, NP2r7_3r2N
)
913 / deval (z
, P2r7_3r2D
, NP2r7_3r2D
);
914 q
= neval (z
, Q2r7_3r2N
, NQ2r7_3r2N
)
915 / deval (z
, Q2r7_3r2D
, NQ2r7_3r2D
);
918 else if (xinv
<= 0.4375)
920 p
= neval (z
, P2r3_2r7N
, NP2r3_2r7N
)
921 / deval (z
, P2r3_2r7D
, NP2r3_2r7D
);
922 q
= neval (z
, Q2r3_2r7N
, NQ2r3_2r7N
)
923 / deval (z
, Q2r3_2r7D
, NQ2r3_2r7D
);
927 p
= neval (z
, P2_2r3N
, NP2_2r3N
) / deval (z
, P2_2r3D
, NP2_2r3D
);
928 q
= neval (z
, Q2_2r3N
, NQ2_2r3N
) / deval (z
, Q2_2r3D
, NQ2_2r3D
);
933 q
= q
- L(0.125) * xinv
;
934 z
= ONEOSQPI
* (p
* ss
+ q
* cc
) / __ieee754_sqrtl (x
);
937 strong_alias (__ieee754_y0l
, __y0l_finite
)