Updated to fedora-glibc-20050415T0909
[glibc.git] / sysdeps / ia64 / fpu / s_erff.S
blobed0aaac4882021d95bca8608cde8be837487234d
1 .file "erff.s"
4 // Copyright (c) 2001 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2001 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
35 // 
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at 
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 // History
41 //==============================================================
42 // 08/14/01 Initial version
43 // 05/20/02 Cleaned up namespace and sf0 syntax
44 // 02/06/03 Reordered header: .section, .global, .proc, .align
45 // 03/31/05 Reformatted delimiters between data tables
47 // API
48 //==============================================================
49 // float erff(float)
51 // Overview of operation
52 //==============================================================
53 // Background
56 // There are 8 paths:
57 // 1. x = +/-0.0
58 //    Return erff(x) = +/-0.0
60 // 2. 0.0 < |x| < 0.125
61 //    Return erff(x) = x *Pol3(x^2),
62 //    where Pol3(x^2) = C3*x^6 + C2*x^4 + C1*x^2 + C0
64 // 3. 0.125 <= |x| < 4.0
65 //    Return erff(x) = sign(x)*PolD(x)*PolC(|x|) + sign(x)*PolA(|x|),
66 //    where sign(x)*PolD(x) = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4),
67 //          PolC(|x|) = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0,
68 //          PolA(|x|) = A3|x|^3 + A2*x^2 + A1*|x| + A0
70 //    Actually range 0.125<=|x|< 4.0 is splitted to 5 subranges.
71 //    For each subrange there is particular set of coefficients.
72 //    Below is the list of subranges:
73 //    3.1 0.125 <= |x| < 0.25
74 //    3.2 0.25 <= |x| < 0.5
75 //    3.3 0.5 <= |x| < 1.0
76 //    3.4 1.0 <= |x| < 2.0
77 //    3.5 2.0 <= |x| < 4.0
79 // 4. 4.0 <= |x| < +INF
80 //    Return erff(x) = sign(x)*(1.0d - 2^(-52))
82 // 5. |x| = INF
83 //    Return erff(x) = sign(x) * 1.0
85 // 6. x = [S,Q]NaN 
86 //    Return erff(x) = QNaN
88 // 7. x is positive denormal
89 //    Return erff(x) = C0*x - x^2,
90 //    where C0 = 2.0/sqrt(Pi)
92 // 8. x is negative denormal
93 //    Return erff(x) = C0*x + x^2,
94 //    where C0 = 2.0/sqrt(Pi)
96 // Registers used
97 //==============================================================
98 // Floating Point registers used: 
99 // f8, input
100 // f32 -> f59
102 // General registers used:  
103 // r32 -> r45, r2, r3
105 // Predicate registers used:
106 // p0, p6 -> p12, p14, p15
108 // p6           to filter out case when x = [Q,S]NaN or +/-0
109 // p7           to filter out case when x = denormal
110 // p8           set if |x| >= 0.3125, used also to process denormal input
111 // p9           to filter out case when |x| = inf
112 // p10          to filter out case when |x| < 0.125
113 // p11          to filter out case when 0.125 <= |x| < 4.0
114 // p12          to filter out case when |x| >= 4.0
115 // p14          set to 1 for positive x
116 // p15          set to 1 for negative x
118 // Assembly macros
119 //==============================================================
120 rDataPtr           = r2
121 rDataPtr1          = r3
123 rBias              = r33
124 rCoeffAddr3        = r34
125 rCoeffAddr1        = r35
126 rCoeffAddr2        = r36
127 rOffset2           = r37
128 rBias2             = r38
129 rMask              = r39
130 rArg               = r40
131 rBound             = r41
132 rSignBit           = r42
133 rAbsArg            = r43
134 rDataPtr2          = r44
135 rSaturation        = r45
137 //==============================================================
138 fA0                = f32
139 fA1                = f33
140 fA2                = f34
141 fA3                = f35
142 fC0                = f36
143 fC1                = f37
144 fC2                = f38
145 fC3                = f39
146 fD0                = f40
147 fD1                = f41
148 fD2                = f42
149 fB0                = f43
150 fArgSqr            = f44
151 fAbsArg            = f45
152 fSignumX           = f46
153 fArg4              = f47
154 fArg4Sgn           = f48
155 fArg3              = f49
156 fArg3Sgn           = f50
157 fArg7Sgn           = f51
158 fArg6Sgn           = f52
159 fPolC              = f53
160 fPolCTmp           = f54
161 fPolA              = f55
162 fPolATmp           = f56
163 fPolD              = f57
164 fPolDTmp           = f58
165 fArgSqrSgn         = f59
167 // Data tables
168 //==============================================================
170 RODATA
172 .align 16
174 LOCAL_OBJECT_START(erff_data)
175 // Polynomial coefficients for the erf(x), 0.125 <= |x| < 0.25
176 data8 0xBE4218BB56B49E66 // C0
177 data8 0x3F7AFB8315DA322B // C1
178 data8 0x3F615D6EBEE0CA32 // C2
179 data8 0xBF468D71CF4F0918 // C3
180 data8 0x40312115B0932F24 // D0
181 data8 0xC0160D6CD0991EA3 // D1
182 data8 0xBFE04A567A6DBE4A // D2
183 data8 0xBF4207BC640D1509 // B0   
184 // Polynomial coefficients for the erf(x), 0.25 <= |x| < 0.5
185 data8 0x3F90849356383F58 // C0
186 data8 0x3F830BD5BA240F09 // C1
187 data8 0xBF3FA4970E2BCE23 // C2
188 data8 0xBF6061798E58D0FD // C3
189 data8 0xBF68C0D83DD22E02 // D0
190 data8 0x401C0A9EE4108F94 // D1
191 data8 0xC01056F9B5E387F5 // D2
192 data8 0x3F1C9744E36A5706 // B0
193 // Polynomial coefficients for the erf(x), 0.5 <= |x| < 1.0
194 data8 0x3F85F7D419A13DE3 // C0
195 data8 0x3F791A13FF66D45A // C1
196 data8 0x3F46B17B16B5929F // C2
197 data8 0xBF5124947A8BF45E // C3
198 data8 0x3FA1B3FD95EA9564 // D0
199 data8 0x40250CECD79A020A // D1
200 data8 0xC0190DC96FF66CCD // D2
201 data8 0x3F4401AE28BA4DD5 // B0
202 // Polynomial coefficients for the erf(x), 1.0 <= |x| < 2.0
203 data8 0xBF49E07E3584C3AE // C0
204 data8 0x3F3166621131445C // C1
205 data8 0xBF65B7FC1EAC2099 // C2
206 data8 0x3F508C6BD211D736 // C3
207 data8 0xC053FABD70601067 // D0
208 data8 0x404A06640EE87808 // D1
209 data8 0xC0283F30817A3F08 // D2
210 data8 0xBF2F6DBBF4D6257F // B0
211 // Polynomial coefficients for the erf(x), 2.0 <= |x| < 4.0
212 data8 0xBF849855D67E9407 // C0
213 data8 0x3F5ECA5FEC01C70C // C1
214 data8 0xBF483110C30FABA4 // C2
215 data8 0x3F1618DA72860403 // C3
216 data8 0xC08A5C9D5FE8B9F6 // D0
217 data8 0x406EFF5F088CEC4B // D1
218 data8 0xC03A5743DF38FDE0 // D2
219 data8 0xBEE397A9FA5686A2 // B0
220 // Polynomial coefficients for the erf(x), -0.125 < x < 0.125 
221 data8 0x3FF20DD7504270CB // C0
222 data8 0xBFD8127465AFE719 // C1
223 data8 0x3FBCE2D77791DD77 // C2
224 data8 0xBF9B582755CDF345 // C3
225 // Polynomial coefficients for the erf(x), 0.125 <= |x| < 0.25
226 data8 0xBD54E7E451AF0E36 // A0
227 data8 0x3FF20DD75043FE20 // A1
228 data8 0xBE05680ACF8280E4 // A2
229 data8 0xBFD812745E92C3D3 // A3
230 // Polynomial coefficients for the erf(x), 0.25 <= |x| < 0.5
231 data8 0xBE1ACEC2859CB55F // A0
232 data8 0x3FF20DD75E8D2B64 // A1
233 data8 0xBEABC6A83208FCFC // A2
234 data8 0xBFD81253E42E7B99 // A3
235 // Polynomial coefficients for the erf(x), 0.5 <= |x| < 1.0
236 data8 0x3EABD5A2482B4979 // A0
237 data8 0x3FF20DCAA52085D5 // A1
238 data8 0x3F13A994A348795B // A2
239 data8 0xBFD8167B2DFCDE44 // A3
240 // Polynomial coefficients for the erf(x), 1.0 <= |x| < 2.0
241 data8 0xBF5BA377DDAB4E17 // A0
242 data8 0x3FF2397F1D8FC0ED // A1
243 data8 0xBF9945BFC1915C21 // A2
244 data8 0xBFD747AAABB690D8 // A3
245 // Polynomial coefficients for the erf(x), 2.0 <= |x| < 4.0
246 data8 0x3FF0E2920E0391AF // A0
247 data8 0xC00D249D1A95A5AE // A1
248 data8 0x40233905061C3803 // A2
249 data8 0xC027560B851F7690 // A3
251 data8 0x3FEFFFFFFFFFFFFF // 1.0 - epsilon
252 data8 0x3FF20DD750429B6D // C0 = 2.0/sqrt(Pi)
253 LOCAL_OBJECT_END(erff_data)
256 .section .text
257 GLOBAL_LIBM_ENTRY(erff)
259 { .mfi
260       alloc          r32 = ar.pfs, 0, 14, 0, 0
261       fmerge.s       fAbsArg = f1, f8             // |x|
262       addl           rMask = 0x806, r0
264 { .mfi
265       addl           rDataPtr = @ltoff(erff_data), gp
266       fma.s1         fArgSqr = f8, f8, f0         // x^2
267       adds           rSignBit = 0x1, r0
271 { .mfi
272       getf.s         rArg = f8                    // x in GR 
273       fclass.m       p7,p0 = f8, 0x0b             // is x denormal ?
274       // sign bit and 2 most bits in significand
275       shl            rMask = rMask, 20               
277 { .mfi
278       ld8            rDataPtr = [rDataPtr]
279       nop.f          0
280       adds           rBias2 = 0x1F0, r0
284 { .mfi
285       nop.m          0
286       fmerge.s       fSignumX = f8, f1            // signum(x)
287       shl            rSignBit = rSignBit, 31      // mask for sign bit
289 { .mfi
290       adds           rBound = 0x3E0, r0
291       nop.f          0
292       adds           rSaturation = 0x408, r0
296 { .mfi
297       andcm          rOffset2 = rArg, rMask
298       fclass.m       p6,p0 = f8, 0xc7             // is x [S,Q]NaN or +/-0 ?
299       shl            rBound = rBound, 20          // 0.125f in GR 
301 { .mfb
302       andcm          rAbsArg = rArg, rSignBit     // |x| in GR
303       nop.f          0
304 (p7)  br.cond.spnt   erff_denormal               // branch out if x is denormal
308 { .mfi
309       adds           rCoeffAddr2 = 352, rDataPtr
310       fclass.m       p9,p0 = f8, 0x23            // is x +/- inf?
311       shr            rOffset2 = rOffset2, 21
313 { .mfi
314       cmp.lt         p10, p8 = rAbsArg, rBound   // |x| < 0.125? 
315       nop.f          0
316       adds           rCoeffAddr3 = 16, rDataPtr
320 { .mfi
321 (p8)  sub            rBias = rOffset2, rBias2
322       fma.s1         fArg4 = fArgSqr, fArgSqr, f0 // x^4
323       shl            rSaturation = rSaturation, 20// 4.0 in GR (saturation bound)
325 { .mfb
326 (p10) adds           rBias = 0x14, r0
327 (p6)  fma.s.s0       f8 = f8,f1,f8                // NaN or +/-0
328 (p6)  br.ret.spnt    b0                           // exit for x = NaN or +/-0
332 { .mfi
333       shladd         rCoeffAddr1 = rBias, 4, rDataPtr
334       fma.s1         fArg3Sgn = fArgSqr, f8, f0  // sign(x)*|x|^3
335       // is |x| < 4.0? 
336       cmp.lt         p11, p12 = rAbsArg, rSaturation  
338 { .mfi
339       shladd         rCoeffAddr3 = rBias, 4, rCoeffAddr3
340       fma.s1         fArg3 = fArgSqr, fAbsArg, f0 // |x|^3
341       shladd         rCoeffAddr2 = rBias, 3, rCoeffAddr2
345 { .mfi
346 (p11) ldfpd          fC0, fC1 = [rCoeffAddr1]
347 (p9)  fmerge.s       f8 = f8,f1                   // +/- inf
348 (p12) adds           rDataPtr = 512, rDataPtr 
350 { .mfb
351 (p11) ldfpd          fC2, fC3 = [rCoeffAddr3], 16
352       nop.f          0
353 (p9)  br.ret.spnt    b0                           // exit for x = +/- inf
357 { .mfi
358 (p11) ldfpd          fA0, fA1 = [rCoeffAddr2], 16
359       nop.f          0
360       nop.i          0
362 { .mfi
363       add            rCoeffAddr1 = 48, rCoeffAddr1
364       nop.f          0
365       nop.i          0
369 { .mfi
370 (p11) ldfpd          fD0, fD1 = [rCoeffAddr3]
371       nop.f          0
372       nop.i          0
374 { .mfb
375 (p11) ldfpd          fD2, fB0 = [rCoeffAddr1]
376       // sign(x)*|x|^2
377       fma.s1         fArgSqrSgn = fArgSqr, fSignumX, f0
378 (p10) br.cond.spnt   erff_near_zero
382 { .mfi
383 (p11) ldfpd          fA2, fA3 = [rCoeffAddr2], 16
384       fcmp.lt.s1     p15, p14 = f8,f0
385       nop.i          0
387 { .mfb
388 (p12) ldfd           fA0 = [rDataPtr]
389       fma.s1         fArg4Sgn = fArg4, fSignumX, f0 // sign(x)*|x|^4
390 (p12) br.cond.spnt   erff_saturation
393 { .mfi
394       nop.m          0
395       fma.s1         fArg7Sgn = fArg4, fArg3Sgn, f0  // sign(x)*|x|^7
396       nop.i          0
398 { .mfi
399       nop.m          0
400       fma.s1         fArg6Sgn = fArg3, fArg3Sgn, f0  // sign(x)*|x|^6
401       nop.i          0
405 { .mfi
406       nop.m          0
407       fma.s1         fPolC = fC3, fAbsArg, fC2    // C3*|x| + C2
408       nop.i          0
410 { .mfi
411       nop.m          0
412       fma.s1         fPolCTmp = fC1, fAbsArg, fC0 // C1*|x| + C0
413       nop.i          0
416 { .mfi
417       nop.m          0
418       fma.s1         fPolA = fA1, fAbsArg, fA0    // A1*|x| + A0
419       nop.i          0
423 { .mfi
424       nop.m          0
425       fma.s1         fPolD = fD1, fAbsArg, fD0    // D1*|x| + D0
426       nop.i          0
428 { .mfi
429       nop.m          0
430       // sign(x)*(|x|^7 + D2*x^6)
431       fma.s1         fPolDTmp = fArg6Sgn, fD2, fArg7Sgn
432       nop.i          0
435 { .mfi
436       nop.m          0
437       fma.s1         fPolATmp = fA3, fAbsArg, fA2  // A3*|x| + A2 
438       nop.i          0
440 { .mfi
441       nop.m          0
442       fma.s1         fB0 = fB0, fArg4, f0          // B0*x^4
443       nop.i          0
446 { .mfi
447       nop.m          0
448       // C3*|x|^3 + C2*x^2 + C1*|x| + C0
449       fma.s1         fPolC = fPolC, fArgSqr, fPolCTmp  
450       nop.i          0
454 { .mfi
455       nop.m          0
456       // PolD = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4)
457       fma.d.s1       fPolD = fPolD, fArg4Sgn, fPolDTmp  
458       nop.i          0
462 { .mfi
463       nop.m          0
464       // PolA = A3|x|^3 + A2*x^2 + A1*|x| + A0 
465       fma.d.s1       fPolA = fPolATmp, fArgSqr, fPolA 
466       nop.i          0
468 ;;                 
470 { .mfi
471       nop.m          0
472       // PolC = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0 
473       fma.d.s1       fPolC = fPolC, f1, fB0 
474       nop.i          0
476 ;;     
478 { .mfi
479       nop.m          0
480 (p14) fma.s.s0       f8 = fPolC, fPolD, fPolA     // for positive x
481       nop.i          0                           
483 { .mfb
484       nop.m          0
485 (p15) fms.s.s0       f8 = fPolC, fPolD, fPolA     // for negative x
486       br.ret.sptk    b0                           // Exit for 0.125 <=|x|< 4.0
490 // Here if |x| < 0.125
491 erff_near_zero:
492 { .mfi
493       nop.m          0
494       fma.s1         fPolC = fC3, fArgSqr, fC2    // C3*x^2 + C2
495       nop.i          0
497 { .mfi
498       nop.m          0
499       fma.s1         fPolCTmp = fC1, fArgSqr, fC0  // C1*x^2 + C0
500       nop.i          0
503 { .mfi
504       nop.m          0
505       fma.s1         fPolC = fPolC, fArg4, fPolCTmp // C3*x^6 + C2*x^4 + C1*x^2 + C0
506       nop.i          0
509 { .mfb
510       nop.m          0
511       // x*(C3*x^6 + C2*x^4 + C1*x^2 + C0)
512       fma.s.s0       f8 = fPolC, f8, f0
513       br.ret.sptk    b0                           // Exit for |x| < 0.125
516 // Here if 4.0 <= |x| < +inf
517 erff_saturation:
518 { .mfb
519       nop.m          0
520       fma.s.s0       f8 = fA0, fSignumX, f0       // sign(x)*(1.0d - 2^(-52))
521       // Exit for 4.0 <= |x| < +inf
522       br.ret.sptk    b0                           // Exit for 4.0 <=|x|< +inf
525       
526 // Here if x is single precision denormal
527 erff_denormal:
528 { .mfi
529       adds           rDataPtr = 520, rDataPtr     // address of C0
530       fclass.m       p7,p8 = f8, 0x0a             // is x -denormal ?
531       nop.i          0
534 { .mfi
535       ldfd           fC0 = [rDataPtr]             // C0
536       nop.f          0
537       nop.i          0
540 { .mfi
541       nop.m          0
542       fma.s1         fC0 = fC0,f8,f0              // C0*x
543       nop.i          0
546 { .mfi
547       nop.m          0
548 (p7)  fma.s.s0       f8 = f8,f8,fC0               // -denormal
549       nop.i          0
551 { .mfb
552       nop.m          0
553 (p8)  fnma.s.s0      f8 = f8,f8,fC0               // +denormal
554       br.ret.sptk    b0                           // Exit for denormal
558 GLOBAL_LIBM_END(erff)