Update.
[glibc.git] / crypt / crypt_util.c
blobae6174e6f72a19b6413ff610b869f8e3baf000ca
1 /*
2 * UFC-crypt: ultra fast crypt(3) implementation
4 * Copyright (C) 1991, 92, 93, 96, 97, 98, 2000 Free Software Foundation, Inc.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; see the file COPYING.LIB. If not,
18 * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 02111-1307, USA.
21 * @(#)crypt_util.c 2.56 12/20/96
23 * Support routines
27 #ifdef DEBUG
28 #include <stdio.h>
29 #endif
30 #include <string.h>
32 #ifndef STATIC
33 #define STATIC static
34 #endif
36 #ifndef DOS
37 #include "ufc-crypt.h"
38 #else
40 * Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein)
41 * for DOS patches
43 #include "pl.h"
44 #include "ufc.h"
45 #endif
46 #include "crypt.h"
47 #include "crypt-private.h"
49 /* Prototypes for local functions. */
50 #if __STDC__ - 0
51 #ifndef __GNU_LIBRARY__
52 void _ufc_clearmem (char *start, int cnt);
53 void _ufc_copymem (char *from, char *to, int cnt);
54 #endif
55 #ifdef _UFC_32_
56 STATIC void shuffle_sb (long32 *k, ufc_long saltbits);
57 #else
58 STATIC void shuffle_sb (long64 *k, ufc_long saltbits);
59 #endif
60 #endif
64 * Permutation done once on the 56 bit
65 * key derived from the original 8 byte ASCII key.
67 static const int pc1[56] = {
68 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
69 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
70 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
71 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
75 * How much to rotate each 28 bit half of the pc1 permutated
76 * 56 bit key before using pc2 to give the i' key
78 static const int rots[16] = {
79 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
83 * Permutation giving the key
84 * of the i' DES round
86 static const int pc2[48] = {
87 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
88 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
89 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
90 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
94 * The E expansion table which selects
95 * bits from the 32 bit intermediate result.
97 static const int esel[48] = {
98 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
99 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
100 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
101 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
105 * Permutation done on the
106 * result of sbox lookups
108 static const int perm32[32] = {
109 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
110 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
114 * The sboxes
116 static const int sbox[8][4][16]= {
117 { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
118 { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
119 { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
120 { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
123 { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
124 { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
125 { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
126 { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
129 { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
130 { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
131 { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
132 { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
135 { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
136 { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
137 { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
138 { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
141 { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
142 { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
143 { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
144 { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
147 { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
148 { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
149 { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
150 { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
153 { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
154 { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
155 { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
156 { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
159 { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
160 { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
161 { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
162 { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
167 * This is the initial
168 * permutation matrix
170 static const int initial_perm[64] = {
171 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
172 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
173 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
174 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
178 * This is the final
179 * permutation matrix
181 static const int final_perm[64] = {
182 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
183 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
184 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
185 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
188 #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
189 #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
191 static const ufc_long BITMASK[24] = {
192 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000,
193 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000,
194 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
195 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008
198 static const unsigned char bytemask[8] = {
199 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
202 static const ufc_long longmask[32] = {
203 0x80000000, 0x40000000, 0x20000000, 0x10000000,
204 0x08000000, 0x04000000, 0x02000000, 0x01000000,
205 0x00800000, 0x00400000, 0x00200000, 0x00100000,
206 0x00080000, 0x00040000, 0x00020000, 0x00010000,
207 0x00008000, 0x00004000, 0x00002000, 0x00001000,
208 0x00000800, 0x00000400, 0x00000200, 0x00000100,
209 0x00000080, 0x00000040, 0x00000020, 0x00000010,
210 0x00000008, 0x00000004, 0x00000002, 0x00000001
214 * do_pc1: permform pc1 permutation in the key schedule generation.
216 * The first index is the byte number in the 8 byte ASCII key
217 * - second - - the two 28 bits halfs of the result
218 * - third - selects the 7 bits actually used of each byte
220 * The result is kept with 28 bit per 32 bit with the 4 most significant
221 * bits zero.
223 static ufc_long do_pc1[8][2][128];
226 * do_pc2: permform pc2 permutation in the key schedule generation.
228 * The first index is the septet number in the two 28 bit intermediate values
229 * - second - - - septet values
231 * Knowledge of the structure of the pc2 permutation is used.
233 * The result is kept with 28 bit per 32 bit with the 4 most significant
234 * bits zero.
236 static ufc_long do_pc2[8][128];
239 * eperm32tab: do 32 bit permutation and E selection
241 * The first index is the byte number in the 32 bit value to be permuted
242 * - second - is the value of this byte
243 * - third - selects the two 32 bit values
245 * The table is used and generated internally in init_des to speed it up
247 static ufc_long eperm32tab[4][256][2];
250 * efp: undo an extra e selection and do final
251 * permutation giving the DES result.
253 * Invoked 6 bit a time on two 48 bit values
254 * giving two 32 bit longs.
256 static ufc_long efp[16][64][2];
259 * For use by the old, non-reentrant routines
260 * (crypt/encrypt/setkey)
262 struct crypt_data _ufc_foobar;
264 #ifdef __GNU_LIBRARY__
265 #include <bits/libc-lock.h>
267 __libc_lock_define_initialized (static, _ufc_tables_lock)
268 #endif
270 #ifdef DEBUG
272 void
273 _ufc_prbits(a, n)
274 ufc_long *a;
275 int n;
277 ufc_long i, j, t, tmp;
278 n /= 8;
279 for(i = 0; i < n; i++) {
280 tmp=0;
281 for(j = 0; j < 8; j++) {
282 t=8*i+j;
283 tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0;
285 (void)printf("%02x ",tmp);
287 printf(" ");
290 static void
291 _ufc_set_bits(v, b)
292 ufc_long v;
293 ufc_long *b;
295 ufc_long i;
296 *b = 0;
297 for(i = 0; i < 24; i++) {
298 if(v & longmask[8 + i])
299 *b |= BITMASK[i];
303 #endif
305 #ifndef __GNU_LIBRARY__
307 * Silly rewrites of 'bzero'/'memset'. I do so
308 * because some machines don't have
309 * bzero and some don't have memset.
312 void
313 _ufc_clearmem(start, cnt)
314 char *start;
315 int cnt;
317 while(cnt--)
318 *start++ = '\0';
321 void
322 _ufc_copymem(from, to, cnt)
323 char *from, *to;
324 int cnt;
326 while(cnt--)
327 *to++ = *from++;
329 #else
330 #define _ufc_clearmem(start, cnt) memset(start, 0, cnt)
331 #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt)
332 #endif
334 /* lookup a 6 bit value in sbox */
336 #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
339 * Initialize unit - may be invoked directly
340 * by fcrypt users.
343 void
344 __init_des_r(__data)
345 struct crypt_data * __restrict __data;
347 int comes_from_bit;
348 int bit, sg;
349 ufc_long j;
350 ufc_long mask1, mask2;
351 int e_inverse[64];
352 static volatile int small_tables_initialized = 0;
354 #ifdef _UFC_32_
355 long32 *sb[4];
356 sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1;
357 sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3;
358 #endif
359 #ifdef _UFC_64_
360 long64 *sb[4];
361 sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1;
362 sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3;
363 #endif
365 if(small_tables_initialized == 0) {
366 #ifdef __GNU_LIBRARY__
367 __libc_lock_lock (_ufc_tables_lock);
368 if(small_tables_initialized)
369 goto small_tables_done;
370 #endif
373 * Create the do_pc1 table used
374 * to affect pc1 permutation
375 * when generating keys
377 _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1));
378 for(bit = 0; bit < 56; bit++) {
379 comes_from_bit = pc1[bit] - 1;
380 mask1 = bytemask[comes_from_bit % 8 + 1];
381 mask2 = longmask[bit % 28 + 4];
382 for(j = 0; j < 128; j++) {
383 if(j & mask1)
384 do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
389 * Create the do_pc2 table used
390 * to affect pc2 permutation when
391 * generating keys
393 _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2));
394 for(bit = 0; bit < 48; bit++) {
395 comes_from_bit = pc2[bit] - 1;
396 mask1 = bytemask[comes_from_bit % 7 + 1];
397 mask2 = BITMASK[bit % 24];
398 for(j = 0; j < 128; j++) {
399 if(j & mask1)
400 do_pc2[comes_from_bit / 7][j] |= mask2;
405 * Now generate the table used to do combined
406 * 32 bit permutation and e expansion
408 * We use it because we have to permute 16384 32 bit
409 * longs into 48 bit in order to initialize sb.
411 * Looping 48 rounds per permutation becomes
412 * just too slow...
416 _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab));
417 for(bit = 0; bit < 48; bit++) {
418 ufc_long mask1,comes_from;
419 comes_from = perm32[esel[bit]-1]-1;
420 mask1 = bytemask[comes_from % 8];
421 for(j = 256; j--;) {
422 if(j & mask1)
423 eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24];
428 * Create an inverse matrix for esel telling
429 * where to plug out bits if undoing it
431 for(bit=48; bit--;) {
432 e_inverse[esel[bit] - 1 ] = bit;
433 e_inverse[esel[bit] - 1 + 32] = bit + 48;
437 * create efp: the matrix used to
438 * undo the E expansion and effect final permutation
440 _ufc_clearmem((char*)efp, (int)sizeof efp);
441 for(bit = 0; bit < 64; bit++) {
442 int o_bit, o_long;
443 ufc_long word_value, mask1, mask2;
444 int comes_from_f_bit, comes_from_e_bit;
445 int comes_from_word, bit_within_word;
447 /* See where bit i belongs in the two 32 bit long's */
448 o_long = bit / 32; /* 0..1 */
449 o_bit = bit % 32; /* 0..31 */
452 * And find a bit in the e permutated value setting this bit.
454 * Note: the e selection may have selected the same bit several
455 * times. By the initialization of e_inverse, we only look
456 * for one specific instance.
458 comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
459 comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
460 comes_from_word = comes_from_e_bit / 6; /* 0..15 */
461 bit_within_word = comes_from_e_bit % 6; /* 0..5 */
463 mask1 = longmask[bit_within_word + 26];
464 mask2 = longmask[o_bit];
466 for(word_value = 64; word_value--;) {
467 if(word_value & mask1)
468 efp[comes_from_word][word_value][o_long] |= mask2;
471 small_tables_initialized = 1;
472 #ifdef __GNU_LIBRARY__
473 small_tables_done:
474 __libc_lock_unlock(_ufc_tables_lock);
475 #endif
479 * Create the sb tables:
481 * For each 12 bit segment of an 48 bit intermediate
482 * result, the sb table precomputes the two 4 bit
483 * values of the sbox lookups done with the two 6
484 * bit halves, shifts them to their proper place,
485 * sends them through perm32 and finally E expands
486 * them so that they are ready for the next
487 * DES round.
491 _ufc_clearmem((char*)__data->sb0, (int)sizeof(__data->sb0));
492 _ufc_clearmem((char*)__data->sb1, (int)sizeof(__data->sb1));
493 _ufc_clearmem((char*)__data->sb2, (int)sizeof(__data->sb2));
494 _ufc_clearmem((char*)__data->sb3, (int)sizeof(__data->sb3));
496 for(sg = 0; sg < 4; sg++) {
497 int j1, j2;
498 int s1, s2;
500 for(j1 = 0; j1 < 64; j1++) {
501 s1 = s_lookup(2 * sg, j1);
502 for(j2 = 0; j2 < 64; j2++) {
503 ufc_long to_permute, inx;
505 s2 = s_lookup(2 * sg + 1, j2);
506 to_permute = (((ufc_long)s1 << 4) |
507 (ufc_long)s2) << (24 - 8 * (ufc_long)sg);
509 #ifdef _UFC_32_
510 inx = ((j1 << 6) | j2) << 1;
511 sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
512 sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
513 sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
514 sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
515 sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
516 sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
517 sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
518 sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
519 #endif
520 #ifdef _UFC_64_
521 inx = ((j1 << 6) | j2);
522 sb[sg][inx] =
523 ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
524 (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
525 sb[sg][inx] |=
526 ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
527 (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
528 sb[sg][inx] |=
529 ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
530 (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
531 sb[sg][inx] |=
532 ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
533 (long64)eperm32tab[3][(to_permute) & 0xff][1];
534 #endif
539 __data->initialized++;
542 void
543 __init_des()
545 __init_des_r(&_ufc_foobar);
549 * Process the elements of the sb table permuting the
550 * bits swapped in the expansion by the current salt.
553 #ifdef _UFC_32_
554 STATIC void
555 shuffle_sb(k, saltbits)
556 long32 *k;
557 ufc_long saltbits;
559 ufc_long j;
560 long32 x;
561 for(j=4096; j--;) {
562 x = (k[0] ^ k[1]) & (long32)saltbits;
563 *k++ ^= x;
564 *k++ ^= x;
567 #endif
569 #ifdef _UFC_64_
570 STATIC void
571 shuffle_sb(k, saltbits)
572 long64 *k;
573 ufc_long saltbits;
575 ufc_long j;
576 long64 x;
577 for(j=4096; j--;) {
578 x = ((*k >> 32) ^ *k) & (long64)saltbits;
579 *k++ ^= (x << 32) | x;
582 #endif
585 * Setup the unit for a new salt
586 * Hopefully we'll not see a new salt in each crypt call.
589 void
590 _ufc_setup_salt_r(s, __data)
591 __const char *s;
592 struct crypt_data * __restrict __data;
594 ufc_long i, j, saltbits;
596 if(__data->initialized == 0)
597 __init_des_r(__data);
599 if(s[0] == __data->current_salt[0] && s[1] == __data->current_salt[1])
600 return;
601 __data->current_salt[0] = s[0]; __data->current_salt[1] = s[1];
604 * This is the only crypt change to DES:
605 * entries are swapped in the expansion table
606 * according to the bits set in the salt.
608 saltbits = 0;
609 for(i = 0; i < 2; i++) {
610 long c=ascii_to_bin(s[i]);
611 for(j = 0; j < 6; j++) {
612 if((c >> j) & 0x1)
613 saltbits |= BITMASK[6 * i + j];
618 * Permute the sb table values
619 * to reflect the changed e
620 * selection table
622 #ifdef _UFC_32_
623 #define LONGG long32*
624 #endif
625 #ifdef _UFC_64_
626 #define LONGG long64*
627 #endif
629 shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits);
630 shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits);
631 shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits);
632 shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits);
634 __data->current_saltbits = saltbits;
637 void
638 _ufc_mk_keytab_r(key, __data)
639 const char *key;
640 struct crypt_data * __restrict __data;
642 ufc_long v1, v2, *k1;
643 int i;
644 #ifdef _UFC_32_
645 long32 v, *k2;
646 k2 = (long32*)__data->keysched;
647 #endif
648 #ifdef _UFC_64_
649 long64 v, *k2;
650 k2 = (long64*)__data->keysched;
651 #endif
653 v1 = v2 = 0; k1 = &do_pc1[0][0][0];
654 for(i = 8; i--;) {
655 v1 |= k1[*key & 0x7f]; k1 += 128;
656 v2 |= k1[*key++ & 0x7f]; k1 += 128;
659 for(i = 0; i < 16; i++) {
660 k1 = &do_pc2[0][0];
662 v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
663 v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
664 v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
665 v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
666 v |= k1[(v1 ) & 0x7f]; k1 += 128;
668 #ifdef _UFC_32_
669 *k2++ = (v | 0x00008000);
670 v = 0;
671 #endif
672 #ifdef _UFC_64_
673 v = (v << 32);
674 #endif
676 v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
677 v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
678 v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
679 v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
680 v |= k1[(v2 ) & 0x7f];
682 #ifdef _UFC_32_
683 *k2++ = (v | 0x00008000);
684 #endif
685 #ifdef _UFC_64_
686 *k2++ = v | 0x0000800000008000l;
687 #endif
690 __data->direction = 0;
694 * Undo an extra E selection and do final permutations
697 void
698 _ufc_dofinalperm_r(res, __data)
699 ufc_long *res;
700 struct crypt_data * __restrict __data;
702 ufc_long v1, v2, x;
703 ufc_long l1,l2,r1,r2;
705 l1 = res[0]; l2 = res[1];
706 r1 = res[2]; r2 = res[3];
708 x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x;
709 x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x;
711 v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
713 v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
714 v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
715 v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
716 v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
718 v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
719 v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
720 v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
721 v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
723 v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
724 v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
725 v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
726 v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
728 v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
729 v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
730 v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
731 v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
733 res[0] = v1; res[1] = v2;
737 * crypt only: convert from 64 bit to 11 bit ASCII
738 * prefixing with the salt
741 void
742 _ufc_output_conversion_r(v1, v2, salt, __data)
743 ufc_long v1, v2;
744 __const char *salt;
745 struct crypt_data * __restrict __data;
747 int i, s, shf;
749 __data->crypt_3_buf[0] = salt[0];
750 __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0];
752 for(i = 0; i < 5; i++) {
753 shf = (26 - 6 * i); /* to cope with MSC compiler bug */
754 __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
757 s = (v2 & 0xf) << 2;
758 v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
760 for(i = 5; i < 10; i++) {
761 shf = (56 - 6 * i);
762 __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
765 __data->crypt_3_buf[12] = bin_to_ascii(s);
766 __data->crypt_3_buf[13] = 0;
771 * UNIX encrypt function. Takes a bitvector
772 * represented by one byte per bit and
773 * encrypt/decrypt according to edflag
776 void
777 __encrypt_r(__block, __edflag, __data)
778 char *__block;
779 int __edflag;
780 struct crypt_data * __restrict __data;
782 ufc_long l1, l2, r1, r2, res[4];
783 int i;
784 #ifdef _UFC_32_
785 long32 *kt;
786 kt = (long32*)__data->keysched;
787 #endif
788 #ifdef _UFC_64_
789 long64 *kt;
790 kt = (long64*)__data->keysched;
791 #endif
794 * Undo any salt changes to E expansion
796 _ufc_setup_salt_r("..", __data);
799 * Reverse key table if
800 * changing operation (encrypt/decrypt)
802 if((__edflag == 0) != (__data->direction == 0)) {
803 for(i = 0; i < 8; i++) {
804 #ifdef _UFC_32_
805 long32 x;
806 x = kt[2 * (15-i)];
807 kt[2 * (15-i)] = kt[2 * i];
808 kt[2 * i] = x;
810 x = kt[2 * (15-i) + 1];
811 kt[2 * (15-i) + 1] = kt[2 * i + 1];
812 kt[2 * i + 1] = x;
813 #endif
814 #ifdef _UFC_64_
815 long64 x;
816 x = kt[15-i];
817 kt[15-i] = kt[i];
818 kt[i] = x;
819 #endif
821 __data->direction = __edflag;
825 * Do initial permutation + E expansion
827 i = 0;
828 for(l1 = 0; i < 24; i++) {
829 if(__block[initial_perm[esel[i]-1]-1])
830 l1 |= BITMASK[i];
832 for(l2 = 0; i < 48; i++) {
833 if(__block[initial_perm[esel[i]-1]-1])
834 l2 |= BITMASK[i-24];
837 i = 0;
838 for(r1 = 0; i < 24; i++) {
839 if(__block[initial_perm[esel[i]-1+32]-1])
840 r1 |= BITMASK[i];
842 for(r2 = 0; i < 48; i++) {
843 if(__block[initial_perm[esel[i]-1+32]-1])
844 r2 |= BITMASK[i-24];
848 * Do DES inner loops + final conversion
850 res[0] = l1; res[1] = l2;
851 res[2] = r1; res[3] = r2;
852 _ufc_doit_r((ufc_long)1, __data, &res[0]);
855 * Do final permutations
857 _ufc_dofinalperm_r(res, __data);
860 * And convert to bit array
862 l1 = res[0]; r1 = res[1];
863 for(i = 0; i < 32; i++) {
864 *__block++ = (l1 & longmask[i]) != 0;
866 for(i = 0; i < 32; i++) {
867 *__block++ = (r1 & longmask[i]) != 0;
870 weak_alias (__encrypt_r, encrypt_r)
872 void
873 encrypt(__block, __edflag)
874 char *__block;
875 int __edflag;
877 __encrypt_r(__block, __edflag, &_ufc_foobar);
882 * UNIX setkey function. Take a 64 bit DES
883 * key and setup the machinery.
886 void
887 __setkey_r(__key, __data)
888 __const char *__key;
889 struct crypt_data * __restrict __data;
891 int i,j;
892 unsigned char c;
893 unsigned char ktab[8];
895 _ufc_setup_salt_r("..", __data); /* be sure we're initialized */
897 for(i = 0; i < 8; i++) {
898 for(j = 0, c = 0; j < 8; j++)
899 c = c << 1 | *__key++;
900 ktab[i] = c >> 1;
902 _ufc_mk_keytab_r(ktab, __data);
904 weak_alias (__setkey_r, setkey_r)
906 void
907 setkey(__key)
908 __const char *__key;
910 __setkey_r(__key, &_ufc_foobar);