1 /* Private function declarations for libm.
2 Copyright (C) 2011-2018 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
19 #define __MSUF_X(x, suffix) x ## suffix
20 #define __MSUF_S(...) __MSUF_X (__VA_ARGS__)
21 #define __MSUF(x) __MSUF_S (x, _MSUF_)
23 #define __MSUF_R_X(x, suffix) x ## suffix ## _r
24 #define __MSUF_R_S(...) __MSUF_R_X (__VA_ARGS__)
25 #define __MSUF_R(x) __MSUF_R_S (x, _MSUF_)
27 /* IEEE style elementary functions. */
28 extern _Mdouble_
__MSUF (__ieee754_acos
) (_Mdouble_
);
29 extern _Mdouble_
__MSUF (__ieee754_acosh
) (_Mdouble_
);
30 extern _Mdouble_
__MSUF (__ieee754_asin
) (_Mdouble_
);
31 extern _Mdouble_
__MSUF (__ieee754_atan2
) (_Mdouble_
, _Mdouble_
);
32 extern _Mdouble_
__MSUF (__ieee754_atanh
) (_Mdouble_
);
33 extern _Mdouble_
__MSUF (__ieee754_cosh
) (_Mdouble_
);
34 extern _Mdouble_
__MSUF (__ieee754_exp
) (_Mdouble_
);
35 extern _Mdouble_
__MSUF (__ieee754_exp10
) (_Mdouble_
);
36 extern _Mdouble_
__MSUF (__ieee754_exp2
) (_Mdouble_
);
37 extern _Mdouble_
__MSUF (__ieee754_fmod
) (_Mdouble_
, _Mdouble_
);
38 extern _Mdouble_
__MSUF (__ieee754_gamma
) (_Mdouble_
);
39 extern _Mdouble_
__MSUF_R (__ieee754_gamma
) (_Mdouble_
, int *);
40 extern _Mdouble_
__MSUF (__ieee754_hypot
) (_Mdouble_
, _Mdouble_
);
41 extern _Mdouble_
__MSUF (__ieee754_j0
) (_Mdouble_
);
42 extern _Mdouble_
__MSUF (__ieee754_j1
) (_Mdouble_
);
43 extern _Mdouble_
__MSUF (__ieee754_jn
) (int, _Mdouble_
);
44 extern _Mdouble_
__MSUF (__ieee754_lgamma
) (_Mdouble_
);
45 extern _Mdouble_
__MSUF_R (__ieee754_lgamma
) (_Mdouble_
, int *);
46 extern _Mdouble_
__MSUF (__ieee754_log
) (_Mdouble_
);
47 extern _Mdouble_
__MSUF (__ieee754_log10
) (_Mdouble_
);
48 extern _Mdouble_
__MSUF (__ieee754_log2
) (_Mdouble_
);
49 extern _Mdouble_
__MSUF (__ieee754_pow
) (_Mdouble_
, _Mdouble_
);
50 extern _Mdouble_
__MSUF (__ieee754_remainder
) (_Mdouble_
, _Mdouble_
);
51 extern _Mdouble_
__MSUF (__ieee754_sinh
) (_Mdouble_
);
52 extern _Mdouble_
__MSUF (__ieee754_sqrt
) (_Mdouble_
);
53 extern _Mdouble_
__MSUF (__ieee754_y0
) (_Mdouble_
);
54 extern _Mdouble_
__MSUF (__ieee754_y1
) (_Mdouble_
);
55 extern _Mdouble_
__MSUF (__ieee754_yn
) (int, _Mdouble_
);
57 extern _Mdouble_
__MSUF (__ieee754_scalb
) (_Mdouble_
, _Mdouble_
);
58 extern int __MSUF (__ieee754_ilogb
) (_Mdouble_
);
60 extern int32_t __MSUF (__ieee754_rem_pio2
) (_Mdouble_
, _Mdouble_
*);
62 /* fdlibm kernel functions. */
63 extern _Mdouble_
__MSUF (__kernel_sin
) (_Mdouble_
, _Mdouble_
, int);
64 extern _Mdouble_
__MSUF (__kernel_cos
) (_Mdouble_
, _Mdouble_
);
65 extern _Mdouble_
__MSUF (__kernel_tan
) (_Mdouble_
, _Mdouble_
, int);
67 #if defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN
68 extern void __MSUF (__kernel_sincos
) (_Mdouble_
, _Mdouble_
,
69 _Mdouble_
*, _Mdouble_
*, int);
72 #if !defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN
73 extern int __MSUF (__kernel_rem_pio2
) (_Mdouble_
*, _Mdouble_
*, int,
74 int, int, const int32_t *);
77 /* Internal functions. */
78 #if !defined __MATH_DECLARING_LONG_DOUBLE || !defined NO_LONG_DOUBLE
79 extern _Mdouble_
__MSUF (__copysign
) (_Mdouble_ x
, _Mdouble_ __y
);
81 extern inline _Mdouble_
82 __MSUF (__copysign
) (_Mdouble_ x
, _Mdouble_ __y
)
84 return __MSUF (__builtin_copysign
) (x
, __y
);
88 /* Return X^2 + Y^2 - 1, computed without large cancellation error.
89 It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >=
91 extern _Mdouble_
__MSUF (__x2y2m1
) (_Mdouble_ x
, _Mdouble_ y
);
93 /* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N
94 - 1, in the form R * (1 + *EPS) where the return value R is an
95 approximation to the product and *EPS is set to indicate the
96 approximate error in the return value. X is such that all the
97 values X + 1, ..., X + N - 1 are exactly representable, and X_EPS /
98 X is small enough that factors quadratic in it can be
100 extern _Mdouble_
__MSUF (__gamma_product
) (_Mdouble_ x
, _Mdouble_ x_eps
,
101 int n
, _Mdouble_
*eps
);
103 /* Compute lgamma of a negative argument X, if it is in a range
104 (depending on the floating-point format) for which expansion around
105 zeros is used, setting *SIGNGAMP accordingly. */
106 extern _Mdouble_
__MSUF (__lgamma_neg
) (_Mdouble_ x
, int *signgamp
);
108 /* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS +
109 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that
110 all the values X + 1, ..., X + N - 1 are exactly representable, and
111 X_EPS / X is small enough that factors quadratic in it can be
113 #if !defined __MATH_DECLARING_FLOAT
114 extern _Mdouble_
__MSUF (__lgamma_product
) (_Mdouble_ t
, _Mdouble_ x
,
115 _Mdouble_ x_eps
, int n
);