x86-64: Add log2f with FMA
[glibc.git] / sysdeps / ieee754 / ldbl-128 / e_j1l.c
blob6fc69faa3c5fb5d563504817d307981e4ebc757c
1 /* j1l.c
3 * Bessel function of order one
7 * SYNOPSIS:
9 * long double x, y, j1l();
11 * y = j1l( x );
15 * DESCRIPTION:
17 * Returns Bessel function of first kind, order one of the argument.
19 * The domain is divided into two major intervals [0, 2] and
20 * (2, infinity). In the first interval the rational approximation is
21 * J1(x) = .5x + x x^2 R(x^2)
23 * The second interval is further partitioned into eight equal segments
24 * of 1/x.
25 * J1(x) = sqrt(2/(pi x)) (P1(x) cos(X) - Q1(x) sin(X)),
26 * X = x - 3 pi / 4,
28 * and the auxiliary functions are given by
30 * J1(x)cos(X) + Y1(x)sin(X) = sqrt( 2/(pi x)) P1(x),
31 * P1(x) = 1 + 1/x^2 R(1/x^2)
33 * Y1(x)cos(X) - J1(x)sin(X) = sqrt( 2/(pi x)) Q1(x),
34 * Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)).
38 * ACCURACY:
40 * Absolute error:
41 * arithmetic domain # trials peak rms
42 * IEEE 0, 30 100000 2.8e-34 2.7e-35
47 /* y1l.c
49 * Bessel function of the second kind, order one
53 * SYNOPSIS:
55 * double x, y, y1l();
57 * y = y1l( x );
61 * DESCRIPTION:
63 * Returns Bessel function of the second kind, of order
64 * one, of the argument.
66 * The domain is divided into two major intervals [0, 2] and
67 * (2, infinity). In the first interval the rational approximation is
68 * Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) .
69 * In the second interval the approximation is the same as for J1(x), and
70 * Y1(x) = sqrt(2/(pi x)) (P1(x) sin(X) + Q1(x) cos(X)),
71 * X = x - 3 pi / 4.
73 * ACCURACY:
75 * Absolute error, when y0(x) < 1; else relative error:
77 * arithmetic domain # trials peak rms
78 * IEEE 0, 30 100000 2.7e-34 2.9e-35
82 /* Copyright 2001 by Stephen L. Moshier (moshier@na-net.onrl.gov).
84 This library is free software; you can redistribute it and/or
85 modify it under the terms of the GNU Lesser General Public
86 License as published by the Free Software Foundation; either
87 version 2.1 of the License, or (at your option) any later version.
89 This library is distributed in the hope that it will be useful,
90 but WITHOUT ANY WARRANTY; without even the implied warranty of
91 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
92 Lesser General Public License for more details.
94 You should have received a copy of the GNU Lesser General Public
95 License along with this library; if not, see
96 <http://www.gnu.org/licenses/>. */
98 #include <errno.h>
99 #include <math.h>
100 #include <math_private.h>
101 #include <float.h>
103 /* 1 / sqrt(pi) */
104 static const _Float128 ONEOSQPI = L(5.6418958354775628694807945156077258584405E-1);
105 /* 2 / pi */
106 static const _Float128 TWOOPI = L(6.3661977236758134307553505349005744813784E-1);
107 static const _Float128 zero = 0;
109 /* J1(x) = .5x + x x^2 R(x^2)
110 Peak relative error 1.9e-35
111 0 <= x <= 2 */
112 #define NJ0_2N 6
113 static const _Float128 J0_2N[NJ0_2N + 1] = {
114 L(-5.943799577386942855938508697619735179660E16),
115 L(1.812087021305009192259946997014044074711E15),
116 L(-2.761698314264509665075127515729146460895E13),
117 L(2.091089497823600978949389109350658815972E11),
118 L(-8.546413231387036372945453565654130054307E8),
119 L(1.797229225249742247475464052741320612261E6),
120 L(-1.559552840946694171346552770008812083969E3)
122 #define NJ0_2D 6
123 static const _Float128 J0_2D[NJ0_2D + 1] = {
124 L(9.510079323819108569501613916191477479397E17),
125 L(1.063193817503280529676423936545854693915E16),
126 L(5.934143516050192600795972192791775226920E13),
127 L(2.168000911950620999091479265214368352883E11),
128 L(5.673775894803172808323058205986256928794E8),
129 L(1.080329960080981204840966206372671147224E6),
130 L(1.411951256636576283942477881535283304912E3),
131 /* 1.000000000000000000000000000000000000000E0L */
134 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
135 0 <= 1/x <= .0625
136 Peak relative error 3.6e-36 */
137 #define NP16_IN 9
138 static const _Float128 P16_IN[NP16_IN + 1] = {
139 L(5.143674369359646114999545149085139822905E-16),
140 L(4.836645664124562546056389268546233577376E-13),
141 L(1.730945562285804805325011561498453013673E-10),
142 L(3.047976856147077889834905908605310585810E-8),
143 L(2.855227609107969710407464739188141162386E-6),
144 L(1.439362407936705484122143713643023998457E-4),
145 L(3.774489768532936551500999699815873422073E-3),
146 L(4.723962172984642566142399678920790598426E-2),
147 L(2.359289678988743939925017240478818248735E-1),
148 L(3.032580002220628812728954785118117124520E-1),
150 #define NP16_ID 9
151 static const _Float128 P16_ID[NP16_ID + 1] = {
152 L(4.389268795186898018132945193912677177553E-15),
153 L(4.132671824807454334388868363256830961655E-12),
154 L(1.482133328179508835835963635130894413136E-9),
155 L(2.618941412861122118906353737117067376236E-7),
156 L(2.467854246740858470815714426201888034270E-5),
157 L(1.257192927368839847825938545925340230490E-3),
158 L(3.362739031941574274949719324644120720341E-2),
159 L(4.384458231338934105875343439265370178858E-1),
160 L(2.412830809841095249170909628197264854651E0),
161 L(4.176078204111348059102962617368214856874E0),
162 /* 1.000000000000000000000000000000000000000E0 */
165 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
166 0.0625 <= 1/x <= 0.125
167 Peak relative error 1.9e-36 */
168 #define NP8_16N 11
169 static const _Float128 P8_16N[NP8_16N + 1] = {
170 L(2.984612480763362345647303274082071598135E-16),
171 L(1.923651877544126103941232173085475682334E-13),
172 L(4.881258879388869396043760693256024307743E-11),
173 L(6.368866572475045408480898921866869811889E-9),
174 L(4.684818344104910450523906967821090796737E-7),
175 L(2.005177298271593587095982211091300382796E-5),
176 L(4.979808067163957634120681477207147536182E-4),
177 L(6.946005761642579085284689047091173581127E-3),
178 L(5.074601112955765012750207555985299026204E-2),
179 L(1.698599455896180893191766195194231825379E-1),
180 L(1.957536905259237627737222775573623779638E-1),
181 L(2.991314703282528370270179989044994319374E-2),
183 #define NP8_16D 10
184 static const _Float128 P8_16D[NP8_16D + 1] = {
185 L(2.546869316918069202079580939942463010937E-15),
186 L(1.644650111942455804019788382157745229955E-12),
187 L(4.185430770291694079925607420808011147173E-10),
188 L(5.485331966975218025368698195861074143153E-8),
189 L(4.062884421686912042335466327098932678905E-6),
190 L(1.758139661060905948870523641319556816772E-4),
191 L(4.445143889306356207566032244985607493096E-3),
192 L(6.391901016293512632765621532571159071158E-2),
193 L(4.933040207519900471177016015718145795434E-1),
194 L(1.839144086168947712971630337250761842976E0),
195 L(2.715120873995490920415616716916149586579E0),
196 /* 1.000000000000000000000000000000000000000E0 */
199 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
200 0.125 <= 1/x <= 0.1875
201 Peak relative error 1.3e-36 */
202 #define NP5_8N 10
203 static const _Float128 P5_8N[NP5_8N + 1] = {
204 L(2.837678373978003452653763806968237227234E-12),
205 L(9.726641165590364928442128579282742354806E-10),
206 L(1.284408003604131382028112171490633956539E-7),
207 L(8.524624695868291291250573339272194285008E-6),
208 L(3.111516908953172249853673787748841282846E-4),
209 L(6.423175156126364104172801983096596409176E-3),
210 L(7.430220589989104581004416356260692450652E-2),
211 L(4.608315409833682489016656279567605536619E-1),
212 L(1.396870223510964882676225042258855977512E0),
213 L(1.718500293904122365894630460672081526236E0),
214 L(5.465927698800862172307352821870223855365E-1)
216 #define NP5_8D 10
217 static const _Float128 P5_8D[NP5_8D + 1] = {
218 L(2.421485545794616609951168511612060482715E-11),
219 L(8.329862750896452929030058039752327232310E-9),
220 L(1.106137992233383429630592081375289010720E-6),
221 L(7.405786153760681090127497796448503306939E-5),
222 L(2.740364785433195322492093333127633465227E-3),
223 L(5.781246470403095224872243564165254652198E-2),
224 L(6.927711353039742469918754111511109983546E-1),
225 L(4.558679283460430281188304515922826156690E0),
226 L(1.534468499844879487013168065728837900009E1),
227 L(2.313927430889218597919624843161569422745E1),
228 L(1.194506341319498844336768473218382828637E1),
229 /* 1.000000000000000000000000000000000000000E0 */
232 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
233 Peak relative error 1.4e-36
234 0.1875 <= 1/x <= 0.25 */
235 #define NP4_5N 10
236 static const _Float128 P4_5N[NP4_5N + 1] = {
237 L(1.846029078268368685834261260420933914621E-10),
238 L(3.916295939611376119377869680335444207768E-8),
239 L(3.122158792018920627984597530935323997312E-6),
240 L(1.218073444893078303994045653603392272450E-4),
241 L(2.536420827983485448140477159977981844883E-3),
242 L(2.883011322006690823959367922241169171315E-2),
243 L(1.755255190734902907438042414495469810830E-1),
244 L(5.379317079922628599870898285488723736599E-1),
245 L(7.284904050194300773890303361501726561938E-1),
246 L(3.270110346613085348094396323925000362813E-1),
247 L(1.804473805689725610052078464951722064757E-2),
249 #define NP4_5D 9
250 static const _Float128 P4_5D[NP4_5D + 1] = {
251 L(1.575278146806816970152174364308980863569E-9),
252 L(3.361289173657099516191331123405675054321E-7),
253 L(2.704692281550877810424745289838790693708E-5),
254 L(1.070854930483999749316546199273521063543E-3),
255 L(2.282373093495295842598097265627962125411E-2),
256 L(2.692025460665354148328762368240343249830E-1),
257 L(1.739892942593664447220951225734811133759E0),
258 L(5.890727576752230385342377570386657229324E0),
259 L(9.517442287057841500750256954117735128153E0),
260 L(6.100616353935338240775363403030137736013E0),
261 /* 1.000000000000000000000000000000000000000E0 */
264 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
265 Peak relative error 3.0e-36
266 0.25 <= 1/x <= 0.3125 */
267 #define NP3r2_4N 9
268 static const _Float128 P3r2_4N[NP3r2_4N + 1] = {
269 L(8.240803130988044478595580300846665863782E-8),
270 L(1.179418958381961224222969866406483744580E-5),
271 L(6.179787320956386624336959112503824397755E-4),
272 L(1.540270833608687596420595830747166658383E-2),
273 L(1.983904219491512618376375619598837355076E-1),
274 L(1.341465722692038870390470651608301155565E0),
275 L(4.617865326696612898792238245990854646057E0),
276 L(7.435574801812346424460233180412308000587E0),
277 L(4.671327027414635292514599201278557680420E0),
278 L(7.299530852495776936690976966995187714739E-1),
280 #define NP3r2_4D 9
281 static const _Float128 P3r2_4D[NP3r2_4D + 1] = {
282 L(7.032152009675729604487575753279187576521E-7),
283 L(1.015090352324577615777511269928856742848E-4),
284 L(5.394262184808448484302067955186308730620E-3),
285 L(1.375291438480256110455809354836988584325E-1),
286 L(1.836247144461106304788160919310404376670E0),
287 L(1.314378564254376655001094503090935880349E1),
288 L(4.957184590465712006934452500894672343488E1),
289 L(9.287394244300647738855415178790263465398E1),
290 L(7.652563275535900609085229286020552768399E1),
291 L(2.147042473003074533150718117770093209096E1),
292 /* 1.000000000000000000000000000000000000000E0 */
295 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
296 Peak relative error 1.0e-35
297 0.3125 <= 1/x <= 0.375 */
298 #define NP2r7_3r2N 9
299 static const _Float128 P2r7_3r2N[NP2r7_3r2N + 1] = {
300 L(4.599033469240421554219816935160627085991E-7),
301 L(4.665724440345003914596647144630893997284E-5),
302 L(1.684348845667764271596142716944374892756E-3),
303 L(2.802446446884455707845985913454440176223E-2),
304 L(2.321937586453963310008279956042545173930E-1),
305 L(9.640277413988055668692438709376437553804E-1),
306 L(1.911021064710270904508663334033003246028E0),
307 L(1.600811610164341450262992138893970224971E0),
308 L(4.266299218652587901171386591543457861138E-1),
309 L(1.316470424456061252962568223251247207325E-2),
311 #define NP2r7_3r2D 8
312 static const _Float128 P2r7_3r2D[NP2r7_3r2D + 1] = {
313 L(3.924508608545520758883457108453520099610E-6),
314 L(4.029707889408829273226495756222078039823E-4),
315 L(1.484629715787703260797886463307469600219E-2),
316 L(2.553136379967180865331706538897231588685E-1),
317 L(2.229457223891676394409880026887106228740E0),
318 L(1.005708903856384091956550845198392117318E1),
319 L(2.277082659664386953166629360352385889558E1),
320 L(2.384726835193630788249826630376533988245E1),
321 L(9.700989749041320895890113781610939632410E0),
322 /* 1.000000000000000000000000000000000000000E0 */
325 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
326 Peak relative error 1.7e-36
327 0.3125 <= 1/x <= 0.4375 */
328 #define NP2r3_2r7N 9
329 static const _Float128 P2r3_2r7N[NP2r3_2r7N + 1] = {
330 L(3.916766777108274628543759603786857387402E-6),
331 L(3.212176636756546217390661984304645137013E-4),
332 L(9.255768488524816445220126081207248947118E-3),
333 L(1.214853146369078277453080641911700735354E-1),
334 L(7.855163309847214136198449861311404633665E-1),
335 L(2.520058073282978403655488662066019816540E0),
336 L(3.825136484837545257209234285382183711466E0),
337 L(2.432569427554248006229715163865569506873E0),
338 L(4.877934835018231178495030117729800489743E-1),
339 L(1.109902737860249670981355149101343427885E-2),
341 #define NP2r3_2r7D 8
342 static const _Float128 P2r3_2r7D[NP2r3_2r7D + 1] = {
343 L(3.342307880794065640312646341190547184461E-5),
344 L(2.782182891138893201544978009012096558265E-3),
345 L(8.221304931614200702142049236141249929207E-2),
346 L(1.123728246291165812392918571987858010949E0),
347 L(7.740482453652715577233858317133423434590E0),
348 L(2.737624677567945952953322566311201919139E1),
349 L(4.837181477096062403118304137851260715475E1),
350 L(3.941098643468580791437772701093795299274E1),
351 L(1.245821247166544627558323920382547533630E1),
352 /* 1.000000000000000000000000000000000000000E0 */
355 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
356 Peak relative error 1.7e-35
357 0.4375 <= 1/x <= 0.5 */
358 #define NP2_2r3N 8
359 static const _Float128 P2_2r3N[NP2_2r3N + 1] = {
360 L(3.397930802851248553545191160608731940751E-4),
361 L(2.104020902735482418784312825637833698217E-2),
362 L(4.442291771608095963935342749477836181939E-1),
363 L(4.131797328716583282869183304291833754967E0),
364 L(1.819920169779026500146134832455189917589E1),
365 L(3.781779616522937565300309684282401791291E1),
366 L(3.459605449728864218972931220783543410347E1),
367 L(1.173594248397603882049066603238568316561E1),
368 L(9.455702270242780642835086549285560316461E-1),
370 #define NP2_2r3D 8
371 static const _Float128 P2_2r3D[NP2_2r3D + 1] = {
372 L(2.899568897241432883079888249845707400614E-3),
373 L(1.831107138190848460767699919531132426356E-1),
374 L(3.999350044057883839080258832758908825165E0),
375 L(3.929041535867957938340569419874195303712E1),
376 L(1.884245613422523323068802689915538908291E2),
377 L(4.461469948819229734353852978424629815929E2),
378 L(5.004998753999796821224085972610636347903E2),
379 L(2.386342520092608513170837883757163414100E2),
380 L(3.791322528149347975999851588922424189957E1),
381 /* 1.000000000000000000000000000000000000000E0 */
384 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
385 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
386 Peak relative error 8.0e-36
387 0 <= 1/x <= .0625 */
388 #define NQ16_IN 10
389 static const _Float128 Q16_IN[NQ16_IN + 1] = {
390 L(-3.917420835712508001321875734030357393421E-18),
391 L(-4.440311387483014485304387406538069930457E-15),
392 L(-1.951635424076926487780929645954007139616E-12),
393 L(-4.318256438421012555040546775651612810513E-10),
394 L(-5.231244131926180765270446557146989238020E-8),
395 L(-3.540072702902043752460711989234732357653E-6),
396 L(-1.311017536555269966928228052917534882984E-4),
397 L(-2.495184669674631806622008769674827575088E-3),
398 L(-2.141868222987209028118086708697998506716E-2),
399 L(-6.184031415202148901863605871197272650090E-2),
400 L(-1.922298704033332356899546792898156493887E-2),
402 #define NQ16_ID 9
403 static const _Float128 Q16_ID[NQ16_ID + 1] = {
404 L(3.820418034066293517479619763498400162314E-17),
405 L(4.340702810799239909648911373329149354911E-14),
406 L(1.914985356383416140706179933075303538524E-11),
407 L(4.262333682610888819476498617261895474330E-9),
408 L(5.213481314722233980346462747902942182792E-7),
409 L(3.585741697694069399299005316809954590558E-5),
410 L(1.366513429642842006385029778105539457546E-3),
411 L(2.745282599850704662726337474371355160594E-2),
412 L(2.637644521611867647651200098449903330074E-1),
413 L(1.006953426110765984590782655598680488746E0),
414 /* 1.000000000000000000000000000000000000000E0 */
417 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
418 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
419 Peak relative error 1.9e-36
420 0.0625 <= 1/x <= 0.125 */
421 #define NQ8_16N 11
422 static const _Float128 Q8_16N[NQ8_16N + 1] = {
423 L(-2.028630366670228670781362543615221542291E-17),
424 L(-1.519634620380959966438130374006858864624E-14),
425 L(-4.540596528116104986388796594639405114524E-12),
426 L(-7.085151756671466559280490913558388648274E-10),
427 L(-6.351062671323970823761883833531546885452E-8),
428 L(-3.390817171111032905297982523519503522491E-6),
429 L(-1.082340897018886970282138836861233213972E-4),
430 L(-2.020120801187226444822977006648252379508E-3),
431 L(-2.093169910981725694937457070649605557555E-2),
432 L(-1.092176538874275712359269481414448063393E-1),
433 L(-2.374790947854765809203590474789108718733E-1),
434 L(-1.365364204556573800719985118029601401323E-1),
436 #define NQ8_16D 11
437 static const _Float128 Q8_16D[NQ8_16D + 1] = {
438 L(1.978397614733632533581207058069628242280E-16),
439 L(1.487361156806202736877009608336766720560E-13),
440 L(4.468041406888412086042576067133365913456E-11),
441 L(7.027822074821007443672290507210594648877E-9),
442 L(6.375740580686101224127290062867976007374E-7),
443 L(3.466887658320002225888644977076410421940E-5),
444 L(1.138625640905289601186353909213719596986E-3),
445 L(2.224470799470414663443449818235008486439E-2),
446 L(2.487052928527244907490589787691478482358E-1),
447 L(1.483927406564349124649083853892380899217E0),
448 L(4.182773513276056975777258788903489507705E0),
449 L(4.419665392573449746043880892524360870944E0),
450 /* 1.000000000000000000000000000000000000000E0 */
453 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
454 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
455 Peak relative error 1.5e-35
456 0.125 <= 1/x <= 0.1875 */
457 #define NQ5_8N 10
458 static const _Float128 Q5_8N[NQ5_8N + 1] = {
459 L(-3.656082407740970534915918390488336879763E-13),
460 L(-1.344660308497244804752334556734121771023E-10),
461 L(-1.909765035234071738548629788698150760791E-8),
462 L(-1.366668038160120210269389551283666716453E-6),
463 L(-5.392327355984269366895210704976314135683E-5),
464 L(-1.206268245713024564674432357634540343884E-3),
465 L(-1.515456784370354374066417703736088291287E-2),
466 L(-1.022454301137286306933217746545237098518E-1),
467 L(-3.373438906472495080504907858424251082240E-1),
468 L(-4.510782522110845697262323973549178453405E-1),
469 L(-1.549000892545288676809660828213589804884E-1),
471 #define NQ5_8D 10
472 static const _Float128 Q5_8D[NQ5_8D + 1] = {
473 L(3.565550843359501079050699598913828460036E-12),
474 L(1.321016015556560621591847454285330528045E-9),
475 L(1.897542728662346479999969679234270605975E-7),
476 L(1.381720283068706710298734234287456219474E-5),
477 L(5.599248147286524662305325795203422873725E-4),
478 L(1.305442352653121436697064782499122164843E-2),
479 L(1.750234079626943298160445750078631894985E-1),
480 L(1.311420542073436520965439883806946678491E0),
481 L(5.162757689856842406744504211089724926650E0),
482 L(9.527760296384704425618556332087850581308E0),
483 L(6.604648207463236667912921642545100248584E0),
484 /* 1.000000000000000000000000000000000000000E0 */
487 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
488 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
489 Peak relative error 1.3e-35
490 0.1875 <= 1/x <= 0.25 */
491 #define NQ4_5N 10
492 static const _Float128 Q4_5N[NQ4_5N + 1] = {
493 L(-4.079513568708891749424783046520200903755E-11),
494 L(-9.326548104106791766891812583019664893311E-9),
495 L(-8.016795121318423066292906123815687003356E-7),
496 L(-3.372350544043594415609295225664186750995E-5),
497 L(-7.566238665947967882207277686375417983917E-4),
498 L(-9.248861580055565402130441618521591282617E-3),
499 L(-6.033106131055851432267702948850231270338E-2),
500 L(-1.966908754799996793730369265431584303447E-1),
501 L(-2.791062741179964150755788226623462207560E-1),
502 L(-1.255478605849190549914610121863534191666E-1),
503 L(-4.320429862021265463213168186061696944062E-3),
505 #define NQ4_5D 9
506 static const _Float128 Q4_5D[NQ4_5D + 1] = {
507 L(3.978497042580921479003851216297330701056E-10),
508 L(9.203304163828145809278568906420772246666E-8),
509 L(8.059685467088175644915010485174545743798E-6),
510 L(3.490187375993956409171098277561669167446E-4),
511 L(8.189109654456872150100501732073810028829E-3),
512 L(1.072572867311023640958725265762483033769E-1),
513 L(7.790606862409960053675717185714576937994E-1),
514 L(3.016049768232011196434185423512777656328E0),
515 L(5.722963851442769787733717162314477949360E0),
516 L(4.510527838428473279647251350931380867663E0),
517 /* 1.000000000000000000000000000000000000000E0 */
520 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
521 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
522 Peak relative error 2.1e-35
523 0.25 <= 1/x <= 0.3125 */
524 #define NQ3r2_4N 9
525 static const _Float128 Q3r2_4N[NQ3r2_4N + 1] = {
526 L(-1.087480809271383885936921889040388133627E-8),
527 L(-1.690067828697463740906962973479310170932E-6),
528 L(-9.608064416995105532790745641974762550982E-5),
529 L(-2.594198839156517191858208513873961837410E-3),
530 L(-3.610954144421543968160459863048062977822E-2),
531 L(-2.629866798251843212210482269563961685666E-1),
532 L(-9.709186825881775885917984975685752956660E-1),
533 L(-1.667521829918185121727268867619982417317E0),
534 L(-1.109255082925540057138766105229900943501E0),
535 L(-1.812932453006641348145049323713469043328E-1),
537 #define NQ3r2_4D 9
538 static const _Float128 Q3r2_4D[NQ3r2_4D + 1] = {
539 L(1.060552717496912381388763753841473407026E-7),
540 L(1.676928002024920520786883649102388708024E-5),
541 L(9.803481712245420839301400601140812255737E-4),
542 L(2.765559874262309494758505158089249012930E-2),
543 L(4.117921827792571791298862613287549140706E-1),
544 L(3.323769515244751267093378361930279161413E0),
545 L(1.436602494405814164724810151689705353670E1),
546 L(3.163087869617098638064881410646782408297E1),
547 L(3.198181264977021649489103980298349589419E1),
548 L(1.203649258862068431199471076202897823272E1),
549 /* 1.000000000000000000000000000000000000000E0 */
552 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
553 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
554 Peak relative error 1.6e-36
555 0.3125 <= 1/x <= 0.375 */
556 #define NQ2r7_3r2N 9
557 static const _Float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = {
558 L(-1.723405393982209853244278760171643219530E-7),
559 L(-2.090508758514655456365709712333460087442E-5),
560 L(-9.140104013370974823232873472192719263019E-4),
561 L(-1.871349499990714843332742160292474780128E-2),
562 L(-1.948930738119938669637865956162512983416E-1),
563 L(-1.048764684978978127908439526343174139788E0),
564 L(-2.827714929925679500237476105843643064698E0),
565 L(-3.508761569156476114276988181329773987314E0),
566 L(-1.669332202790211090973255098624488308989E0),
567 L(-1.930796319299022954013840684651016077770E-1),
569 #define NQ2r7_3r2D 9
570 static const _Float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = {
571 L(1.680730662300831976234547482334347983474E-6),
572 L(2.084241442440551016475972218719621841120E-4),
573 L(9.445316642108367479043541702688736295579E-3),
574 L(2.044637889456631896650179477133252184672E-1),
575 L(2.316091982244297350829522534435350078205E0),
576 L(1.412031891783015085196708811890448488865E1),
577 L(4.583830154673223384837091077279595496149E1),
578 L(7.549520609270909439885998474045974122261E1),
579 L(5.697605832808113367197494052388203310638E1),
580 L(1.601496240876192444526383314589371686234E1),
581 /* 1.000000000000000000000000000000000000000E0 */
584 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
585 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
586 Peak relative error 9.5e-36
587 0.375 <= 1/x <= 0.4375 */
588 #define NQ2r3_2r7N 9
589 static const _Float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = {
590 L(-8.603042076329122085722385914954878953775E-7),
591 L(-7.701746260451647874214968882605186675720E-5),
592 L(-2.407932004380727587382493696877569654271E-3),
593 L(-3.403434217607634279028110636919987224188E-2),
594 L(-2.348707332185238159192422084985713102877E-1),
595 L(-7.957498841538254916147095255700637463207E-1),
596 L(-1.258469078442635106431098063707934348577E0),
597 L(-8.162415474676345812459353639449971369890E-1),
598 L(-1.581783890269379690141513949609572806898E-1),
599 L(-1.890595651683552228232308756569450822905E-3),
601 #define NQ2r3_2r7D 8
602 static const _Float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = {
603 L(8.390017524798316921170710533381568175665E-6),
604 L(7.738148683730826286477254659973968763659E-4),
605 L(2.541480810958665794368759558791634341779E-2),
606 L(3.878879789711276799058486068562386244873E-1),
607 L(3.003783779325811292142957336802456109333E0),
608 L(1.206480374773322029883039064575464497400E1),
609 L(2.458414064785315978408974662900438351782E1),
610 L(2.367237826273668567199042088835448715228E1),
611 L(9.231451197519171090875569102116321676763E0),
612 /* 1.000000000000000000000000000000000000000E0 */
615 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
616 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
617 Peak relative error 1.4e-36
618 0.4375 <= 1/x <= 0.5 */
619 #define NQ2_2r3N 9
620 static const _Float128 Q2_2r3N[NQ2_2r3N + 1] = {
621 L(-5.552507516089087822166822364590806076174E-6),
622 L(-4.135067659799500521040944087433752970297E-4),
623 L(-1.059928728869218962607068840646564457980E-2),
624 L(-1.212070036005832342565792241385459023801E-1),
625 L(-6.688350110633603958684302153362735625156E-1),
626 L(-1.793587878197360221340277951304429821582E0),
627 L(-2.225407682237197485644647380483725045326E0),
628 L(-1.123402135458940189438898496348239744403E0),
629 L(-1.679187241566347077204805190763597299805E-1),
630 L(-1.458550613639093752909985189067233504148E-3),
632 #define NQ2_2r3D 8
633 static const _Float128 Q2_2r3D[NQ2_2r3D + 1] = {
634 L(5.415024336507980465169023996403597916115E-5),
635 L(4.179246497380453022046357404266022870788E-3),
636 L(1.136306384261959483095442402929502368598E-1),
637 L(1.422640343719842213484515445393284072830E0),
638 L(8.968786703393158374728850922289204805764E0),
639 L(2.914542473339246127533384118781216495934E1),
640 L(4.781605421020380669870197378210457054685E1),
641 L(3.693865837171883152382820584714795072937E1),
642 L(1.153220502744204904763115556224395893076E1),
643 /* 1.000000000000000000000000000000000000000E0 */
647 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
649 static _Float128
650 neval (_Float128 x, const _Float128 *p, int n)
652 _Float128 y;
654 p += n;
655 y = *p--;
658 y = y * x + *p--;
660 while (--n > 0);
661 return y;
665 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
667 static _Float128
668 deval (_Float128 x, const _Float128 *p, int n)
670 _Float128 y;
672 p += n;
673 y = x + *p--;
676 y = y * x + *p--;
678 while (--n > 0);
679 return y;
683 /* Bessel function of the first kind, order one. */
685 _Float128
686 __ieee754_j1l (_Float128 x)
688 _Float128 xx, xinv, z, p, q, c, s, cc, ss;
690 if (! isfinite (x))
692 if (x != x)
693 return x + x;
694 else
695 return 0;
697 if (x == 0)
698 return x;
699 xx = fabsl (x);
700 if (xx <= L(0x1p-58))
702 _Float128 ret = x * L(0.5);
703 math_check_force_underflow (ret);
704 if (ret == 0)
705 __set_errno (ERANGE);
706 return ret;
708 if (xx <= 2)
710 /* 0 <= x <= 2 */
711 z = xx * xx;
712 p = xx * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
713 p += L(0.5) * xx;
714 if (x < 0)
715 p = -p;
716 return p;
719 /* X = x - 3 pi/4
720 cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
721 = 1/sqrt(2) * (-cos(x) + sin(x))
722 sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
723 = -1/sqrt(2) * (sin(x) + cos(x))
724 cf. Fdlibm. */
725 __sincosl (xx, &s, &c);
726 ss = -s - c;
727 cc = s - c;
728 if (xx <= LDBL_MAX / 2)
730 z = __cosl (xx + xx);
731 if ((s * c) > 0)
732 cc = z / ss;
733 else
734 ss = z / cc;
737 if (xx > L(0x1p256))
739 z = ONEOSQPI * cc / __ieee754_sqrtl (xx);
740 if (x < 0)
741 z = -z;
742 return z;
745 xinv = 1 / xx;
746 z = xinv * xinv;
747 if (xinv <= 0.25)
749 if (xinv <= 0.125)
751 if (xinv <= 0.0625)
753 p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
754 q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
756 else
758 p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
759 q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
762 else if (xinv <= 0.1875)
764 p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
765 q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
767 else
769 p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
770 q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
772 } /* .25 */
773 else /* if (xinv <= 0.5) */
775 if (xinv <= 0.375)
777 if (xinv <= 0.3125)
779 p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
780 q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
782 else
784 p = neval (z, P2r7_3r2N, NP2r7_3r2N)
785 / deval (z, P2r7_3r2D, NP2r7_3r2D);
786 q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
787 / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
790 else if (xinv <= 0.4375)
792 p = neval (z, P2r3_2r7N, NP2r3_2r7N)
793 / deval (z, P2r3_2r7D, NP2r3_2r7D);
794 q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
795 / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
797 else
799 p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
800 q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
803 p = 1 + z * p;
804 q = z * q;
805 q = q * xinv + L(0.375) * xinv;
806 z = ONEOSQPI * (p * cc - q * ss) / __ieee754_sqrtl (xx);
807 if (x < 0)
808 z = -z;
809 return z;
811 strong_alias (__ieee754_j1l, __j1l_finite)
814 /* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2)
815 Peak relative error 6.2e-38
816 0 <= x <= 2 */
817 #define NY0_2N 7
818 static _Float128 Y0_2N[NY0_2N + 1] = {
819 L(-6.804415404830253804408698161694720833249E19),
820 L(1.805450517967019908027153056150465849237E19),
821 L(-8.065747497063694098810419456383006737312E17),
822 L(1.401336667383028259295830955439028236299E16),
823 L(-1.171654432898137585000399489686629680230E14),
824 L(5.061267920943853732895341125243428129150E11),
825 L(-1.096677850566094204586208610960870217970E9),
826 L(9.541172044989995856117187515882879304461E5),
828 #define NY0_2D 7
829 static _Float128 Y0_2D[NY0_2D + 1] = {
830 L(3.470629591820267059538637461549677594549E20),
831 L(4.120796439009916326855848107545425217219E18),
832 L(2.477653371652018249749350657387030814542E16),
833 L(9.954678543353888958177169349272167762797E13),
834 L(2.957927997613630118216218290262851197754E11),
835 L(6.748421382188864486018861197614025972118E8),
836 L(1.173453425218010888004562071020305709319E6),
837 L(1.450335662961034949894009554536003377187E3),
838 /* 1.000000000000000000000000000000000000000E0 */
842 /* Bessel function of the second kind, order one. */
844 _Float128
845 __ieee754_y1l (_Float128 x)
847 _Float128 xx, xinv, z, p, q, c, s, cc, ss;
849 if (! isfinite (x))
850 return 1 / (x + x * x);
851 if (x <= 0)
853 if (x < 0)
854 return (zero / (zero * x));
855 return -1 / zero; /* -inf and divide by zero exception. */
857 xx = fabsl (x);
858 if (xx <= 0x1p-114)
860 z = -TWOOPI / x;
861 if (isinf (z))
862 __set_errno (ERANGE);
863 return z;
865 if (xx <= 2)
867 /* 0 <= x <= 2 */
868 SET_RESTORE_ROUNDL (FE_TONEAREST);
869 z = xx * xx;
870 p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
871 p = -TWOOPI / xx + p;
872 p = TWOOPI * __ieee754_logl (x) * __ieee754_j1l (x) + p;
873 return p;
876 /* X = x - 3 pi/4
877 cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
878 = 1/sqrt(2) * (-cos(x) + sin(x))
879 sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
880 = -1/sqrt(2) * (sin(x) + cos(x))
881 cf. Fdlibm. */
882 __sincosl (xx, &s, &c);
883 ss = -s - c;
884 cc = s - c;
885 if (xx <= LDBL_MAX / 2)
887 z = __cosl (xx + xx);
888 if ((s * c) > 0)
889 cc = z / ss;
890 else
891 ss = z / cc;
894 if (xx > L(0x1p256))
895 return ONEOSQPI * ss / __ieee754_sqrtl (xx);
897 xinv = 1 / xx;
898 z = xinv * xinv;
899 if (xinv <= 0.25)
901 if (xinv <= 0.125)
903 if (xinv <= 0.0625)
905 p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
906 q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
908 else
910 p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
911 q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
914 else if (xinv <= 0.1875)
916 p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
917 q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
919 else
921 p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
922 q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
924 } /* .25 */
925 else /* if (xinv <= 0.5) */
927 if (xinv <= 0.375)
929 if (xinv <= 0.3125)
931 p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
932 q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
934 else
936 p = neval (z, P2r7_3r2N, NP2r7_3r2N)
937 / deval (z, P2r7_3r2D, NP2r7_3r2D);
938 q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
939 / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
942 else if (xinv <= 0.4375)
944 p = neval (z, P2r3_2r7N, NP2r3_2r7N)
945 / deval (z, P2r3_2r7D, NP2r3_2r7D);
946 q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
947 / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
949 else
951 p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
952 q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
955 p = 1 + z * p;
956 q = z * q;
957 q = q * xinv + L(0.375) * xinv;
958 z = ONEOSQPI * (p * ss + q * cc) / __ieee754_sqrtl (xx);
959 return z;
961 strong_alias (__ieee754_y1l, __y1l_finite)