3 * Bessel function of order one
9 * long double x, y, j1l();
17 * Returns Bessel function of first kind, order one of the argument.
19 * The domain is divided into two major intervals [0, 2] and
20 * (2, infinity). In the first interval the rational approximation is
21 * J1(x) = .5x + x x^2 R(x^2)
23 * The second interval is further partitioned into eight equal segments
25 * J1(x) = sqrt(2/(pi x)) (P1(x) cos(X) - Q1(x) sin(X)),
28 * and the auxiliary functions are given by
30 * J1(x)cos(X) + Y1(x)sin(X) = sqrt( 2/(pi x)) P1(x),
31 * P1(x) = 1 + 1/x^2 R(1/x^2)
33 * Y1(x)cos(X) - J1(x)sin(X) = sqrt( 2/(pi x)) Q1(x),
34 * Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)).
41 * arithmetic domain # trials peak rms
42 * IEEE 0, 30 100000 2.8e-34 2.7e-35
49 * Bessel function of the second kind, order one
63 * Returns Bessel function of the second kind, of order
64 * one, of the argument.
66 * The domain is divided into two major intervals [0, 2] and
67 * (2, infinity). In the first interval the rational approximation is
68 * Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) .
69 * In the second interval the approximation is the same as for J1(x), and
70 * Y1(x) = sqrt(2/(pi x)) (P1(x) sin(X) + Q1(x) cos(X)),
75 * Absolute error, when y0(x) < 1; else relative error:
77 * arithmetic domain # trials peak rms
78 * IEEE 0, 30 100000 2.7e-34 2.9e-35
82 /* Copyright 2001 by Stephen L. Moshier (moshier@na-net.onrl.gov).
84 This library is free software; you can redistribute it and/or
85 modify it under the terms of the GNU Lesser General Public
86 License as published by the Free Software Foundation; either
87 version 2.1 of the License, or (at your option) any later version.
89 This library is distributed in the hope that it will be useful,
90 but WITHOUT ANY WARRANTY; without even the implied warranty of
91 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
92 Lesser General Public License for more details.
94 You should have received a copy of the GNU Lesser General Public
95 License along with this library; if not, see
96 <http://www.gnu.org/licenses/>. */
100 #include <math_private.h>
104 static const _Float128 ONEOSQPI
= L(5.6418958354775628694807945156077258584405E-1);
106 static const _Float128 TWOOPI
= L(6.3661977236758134307553505349005744813784E-1);
107 static const _Float128 zero
= 0;
109 /* J1(x) = .5x + x x^2 R(x^2)
110 Peak relative error 1.9e-35
113 static const _Float128 J0_2N
[NJ0_2N
+ 1] = {
114 L(-5.943799577386942855938508697619735179660E16
),
115 L(1.812087021305009192259946997014044074711E15
),
116 L(-2.761698314264509665075127515729146460895E13
),
117 L(2.091089497823600978949389109350658815972E11
),
118 L(-8.546413231387036372945453565654130054307E8
),
119 L(1.797229225249742247475464052741320612261E6
),
120 L(-1.559552840946694171346552770008812083969E3
)
123 static const _Float128 J0_2D
[NJ0_2D
+ 1] = {
124 L(9.510079323819108569501613916191477479397E17
),
125 L(1.063193817503280529676423936545854693915E16
),
126 L(5.934143516050192600795972192791775226920E13
),
127 L(2.168000911950620999091479265214368352883E11
),
128 L(5.673775894803172808323058205986256928794E8
),
129 L(1.080329960080981204840966206372671147224E6
),
130 L(1.411951256636576283942477881535283304912E3
),
131 /* 1.000000000000000000000000000000000000000E0L */
134 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
136 Peak relative error 3.6e-36 */
138 static const _Float128 P16_IN
[NP16_IN
+ 1] = {
139 L(5.143674369359646114999545149085139822905E-16),
140 L(4.836645664124562546056389268546233577376E-13),
141 L(1.730945562285804805325011561498453013673E-10),
142 L(3.047976856147077889834905908605310585810E-8),
143 L(2.855227609107969710407464739188141162386E-6),
144 L(1.439362407936705484122143713643023998457E-4),
145 L(3.774489768532936551500999699815873422073E-3),
146 L(4.723962172984642566142399678920790598426E-2),
147 L(2.359289678988743939925017240478818248735E-1),
148 L(3.032580002220628812728954785118117124520E-1),
151 static const _Float128 P16_ID
[NP16_ID
+ 1] = {
152 L(4.389268795186898018132945193912677177553E-15),
153 L(4.132671824807454334388868363256830961655E-12),
154 L(1.482133328179508835835963635130894413136E-9),
155 L(2.618941412861122118906353737117067376236E-7),
156 L(2.467854246740858470815714426201888034270E-5),
157 L(1.257192927368839847825938545925340230490E-3),
158 L(3.362739031941574274949719324644120720341E-2),
159 L(4.384458231338934105875343439265370178858E-1),
160 L(2.412830809841095249170909628197264854651E0
),
161 L(4.176078204111348059102962617368214856874E0
),
162 /* 1.000000000000000000000000000000000000000E0 */
165 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
166 0.0625 <= 1/x <= 0.125
167 Peak relative error 1.9e-36 */
169 static const _Float128 P8_16N
[NP8_16N
+ 1] = {
170 L(2.984612480763362345647303274082071598135E-16),
171 L(1.923651877544126103941232173085475682334E-13),
172 L(4.881258879388869396043760693256024307743E-11),
173 L(6.368866572475045408480898921866869811889E-9),
174 L(4.684818344104910450523906967821090796737E-7),
175 L(2.005177298271593587095982211091300382796E-5),
176 L(4.979808067163957634120681477207147536182E-4),
177 L(6.946005761642579085284689047091173581127E-3),
178 L(5.074601112955765012750207555985299026204E-2),
179 L(1.698599455896180893191766195194231825379E-1),
180 L(1.957536905259237627737222775573623779638E-1),
181 L(2.991314703282528370270179989044994319374E-2),
184 static const _Float128 P8_16D
[NP8_16D
+ 1] = {
185 L(2.546869316918069202079580939942463010937E-15),
186 L(1.644650111942455804019788382157745229955E-12),
187 L(4.185430770291694079925607420808011147173E-10),
188 L(5.485331966975218025368698195861074143153E-8),
189 L(4.062884421686912042335466327098932678905E-6),
190 L(1.758139661060905948870523641319556816772E-4),
191 L(4.445143889306356207566032244985607493096E-3),
192 L(6.391901016293512632765621532571159071158E-2),
193 L(4.933040207519900471177016015718145795434E-1),
194 L(1.839144086168947712971630337250761842976E0
),
195 L(2.715120873995490920415616716916149586579E0
),
196 /* 1.000000000000000000000000000000000000000E0 */
199 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
200 0.125 <= 1/x <= 0.1875
201 Peak relative error 1.3e-36 */
203 static const _Float128 P5_8N
[NP5_8N
+ 1] = {
204 L(2.837678373978003452653763806968237227234E-12),
205 L(9.726641165590364928442128579282742354806E-10),
206 L(1.284408003604131382028112171490633956539E-7),
207 L(8.524624695868291291250573339272194285008E-6),
208 L(3.111516908953172249853673787748841282846E-4),
209 L(6.423175156126364104172801983096596409176E-3),
210 L(7.430220589989104581004416356260692450652E-2),
211 L(4.608315409833682489016656279567605536619E-1),
212 L(1.396870223510964882676225042258855977512E0
),
213 L(1.718500293904122365894630460672081526236E0
),
214 L(5.465927698800862172307352821870223855365E-1)
217 static const _Float128 P5_8D
[NP5_8D
+ 1] = {
218 L(2.421485545794616609951168511612060482715E-11),
219 L(8.329862750896452929030058039752327232310E-9),
220 L(1.106137992233383429630592081375289010720E-6),
221 L(7.405786153760681090127497796448503306939E-5),
222 L(2.740364785433195322492093333127633465227E-3),
223 L(5.781246470403095224872243564165254652198E-2),
224 L(6.927711353039742469918754111511109983546E-1),
225 L(4.558679283460430281188304515922826156690E0
),
226 L(1.534468499844879487013168065728837900009E1
),
227 L(2.313927430889218597919624843161569422745E1
),
228 L(1.194506341319498844336768473218382828637E1
),
229 /* 1.000000000000000000000000000000000000000E0 */
232 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
233 Peak relative error 1.4e-36
234 0.1875 <= 1/x <= 0.25 */
236 static const _Float128 P4_5N
[NP4_5N
+ 1] = {
237 L(1.846029078268368685834261260420933914621E-10),
238 L(3.916295939611376119377869680335444207768E-8),
239 L(3.122158792018920627984597530935323997312E-6),
240 L(1.218073444893078303994045653603392272450E-4),
241 L(2.536420827983485448140477159977981844883E-3),
242 L(2.883011322006690823959367922241169171315E-2),
243 L(1.755255190734902907438042414495469810830E-1),
244 L(5.379317079922628599870898285488723736599E-1),
245 L(7.284904050194300773890303361501726561938E-1),
246 L(3.270110346613085348094396323925000362813E-1),
247 L(1.804473805689725610052078464951722064757E-2),
250 static const _Float128 P4_5D
[NP4_5D
+ 1] = {
251 L(1.575278146806816970152174364308980863569E-9),
252 L(3.361289173657099516191331123405675054321E-7),
253 L(2.704692281550877810424745289838790693708E-5),
254 L(1.070854930483999749316546199273521063543E-3),
255 L(2.282373093495295842598097265627962125411E-2),
256 L(2.692025460665354148328762368240343249830E-1),
257 L(1.739892942593664447220951225734811133759E0
),
258 L(5.890727576752230385342377570386657229324E0
),
259 L(9.517442287057841500750256954117735128153E0
),
260 L(6.100616353935338240775363403030137736013E0
),
261 /* 1.000000000000000000000000000000000000000E0 */
264 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
265 Peak relative error 3.0e-36
266 0.25 <= 1/x <= 0.3125 */
268 static const _Float128 P3r2_4N
[NP3r2_4N
+ 1] = {
269 L(8.240803130988044478595580300846665863782E-8),
270 L(1.179418958381961224222969866406483744580E-5),
271 L(6.179787320956386624336959112503824397755E-4),
272 L(1.540270833608687596420595830747166658383E-2),
273 L(1.983904219491512618376375619598837355076E-1),
274 L(1.341465722692038870390470651608301155565E0
),
275 L(4.617865326696612898792238245990854646057E0
),
276 L(7.435574801812346424460233180412308000587E0
),
277 L(4.671327027414635292514599201278557680420E0
),
278 L(7.299530852495776936690976966995187714739E-1),
281 static const _Float128 P3r2_4D
[NP3r2_4D
+ 1] = {
282 L(7.032152009675729604487575753279187576521E-7),
283 L(1.015090352324577615777511269928856742848E-4),
284 L(5.394262184808448484302067955186308730620E-3),
285 L(1.375291438480256110455809354836988584325E-1),
286 L(1.836247144461106304788160919310404376670E0
),
287 L(1.314378564254376655001094503090935880349E1
),
288 L(4.957184590465712006934452500894672343488E1
),
289 L(9.287394244300647738855415178790263465398E1
),
290 L(7.652563275535900609085229286020552768399E1
),
291 L(2.147042473003074533150718117770093209096E1
),
292 /* 1.000000000000000000000000000000000000000E0 */
295 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
296 Peak relative error 1.0e-35
297 0.3125 <= 1/x <= 0.375 */
299 static const _Float128 P2r7_3r2N
[NP2r7_3r2N
+ 1] = {
300 L(4.599033469240421554219816935160627085991E-7),
301 L(4.665724440345003914596647144630893997284E-5),
302 L(1.684348845667764271596142716944374892756E-3),
303 L(2.802446446884455707845985913454440176223E-2),
304 L(2.321937586453963310008279956042545173930E-1),
305 L(9.640277413988055668692438709376437553804E-1),
306 L(1.911021064710270904508663334033003246028E0
),
307 L(1.600811610164341450262992138893970224971E0
),
308 L(4.266299218652587901171386591543457861138E-1),
309 L(1.316470424456061252962568223251247207325E-2),
312 static const _Float128 P2r7_3r2D
[NP2r7_3r2D
+ 1] = {
313 L(3.924508608545520758883457108453520099610E-6),
314 L(4.029707889408829273226495756222078039823E-4),
315 L(1.484629715787703260797886463307469600219E-2),
316 L(2.553136379967180865331706538897231588685E-1),
317 L(2.229457223891676394409880026887106228740E0
),
318 L(1.005708903856384091956550845198392117318E1
),
319 L(2.277082659664386953166629360352385889558E1
),
320 L(2.384726835193630788249826630376533988245E1
),
321 L(9.700989749041320895890113781610939632410E0
),
322 /* 1.000000000000000000000000000000000000000E0 */
325 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
326 Peak relative error 1.7e-36
327 0.3125 <= 1/x <= 0.4375 */
329 static const _Float128 P2r3_2r7N
[NP2r3_2r7N
+ 1] = {
330 L(3.916766777108274628543759603786857387402E-6),
331 L(3.212176636756546217390661984304645137013E-4),
332 L(9.255768488524816445220126081207248947118E-3),
333 L(1.214853146369078277453080641911700735354E-1),
334 L(7.855163309847214136198449861311404633665E-1),
335 L(2.520058073282978403655488662066019816540E0
),
336 L(3.825136484837545257209234285382183711466E0
),
337 L(2.432569427554248006229715163865569506873E0
),
338 L(4.877934835018231178495030117729800489743E-1),
339 L(1.109902737860249670981355149101343427885E-2),
342 static const _Float128 P2r3_2r7D
[NP2r3_2r7D
+ 1] = {
343 L(3.342307880794065640312646341190547184461E-5),
344 L(2.782182891138893201544978009012096558265E-3),
345 L(8.221304931614200702142049236141249929207E-2),
346 L(1.123728246291165812392918571987858010949E0
),
347 L(7.740482453652715577233858317133423434590E0
),
348 L(2.737624677567945952953322566311201919139E1
),
349 L(4.837181477096062403118304137851260715475E1
),
350 L(3.941098643468580791437772701093795299274E1
),
351 L(1.245821247166544627558323920382547533630E1
),
352 /* 1.000000000000000000000000000000000000000E0 */
355 /* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
356 Peak relative error 1.7e-35
357 0.4375 <= 1/x <= 0.5 */
359 static const _Float128 P2_2r3N
[NP2_2r3N
+ 1] = {
360 L(3.397930802851248553545191160608731940751E-4),
361 L(2.104020902735482418784312825637833698217E-2),
362 L(4.442291771608095963935342749477836181939E-1),
363 L(4.131797328716583282869183304291833754967E0
),
364 L(1.819920169779026500146134832455189917589E1
),
365 L(3.781779616522937565300309684282401791291E1
),
366 L(3.459605449728864218972931220783543410347E1
),
367 L(1.173594248397603882049066603238568316561E1
),
368 L(9.455702270242780642835086549285560316461E-1),
371 static const _Float128 P2_2r3D
[NP2_2r3D
+ 1] = {
372 L(2.899568897241432883079888249845707400614E-3),
373 L(1.831107138190848460767699919531132426356E-1),
374 L(3.999350044057883839080258832758908825165E0
),
375 L(3.929041535867957938340569419874195303712E1
),
376 L(1.884245613422523323068802689915538908291E2
),
377 L(4.461469948819229734353852978424629815929E2
),
378 L(5.004998753999796821224085972610636347903E2
),
379 L(2.386342520092608513170837883757163414100E2
),
380 L(3.791322528149347975999851588922424189957E1
),
381 /* 1.000000000000000000000000000000000000000E0 */
384 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
385 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
386 Peak relative error 8.0e-36
389 static const _Float128 Q16_IN
[NQ16_IN
+ 1] = {
390 L(-3.917420835712508001321875734030357393421E-18),
391 L(-4.440311387483014485304387406538069930457E-15),
392 L(-1.951635424076926487780929645954007139616E-12),
393 L(-4.318256438421012555040546775651612810513E-10),
394 L(-5.231244131926180765270446557146989238020E-8),
395 L(-3.540072702902043752460711989234732357653E-6),
396 L(-1.311017536555269966928228052917534882984E-4),
397 L(-2.495184669674631806622008769674827575088E-3),
398 L(-2.141868222987209028118086708697998506716E-2),
399 L(-6.184031415202148901863605871197272650090E-2),
400 L(-1.922298704033332356899546792898156493887E-2),
403 static const _Float128 Q16_ID
[NQ16_ID
+ 1] = {
404 L(3.820418034066293517479619763498400162314E-17),
405 L(4.340702810799239909648911373329149354911E-14),
406 L(1.914985356383416140706179933075303538524E-11),
407 L(4.262333682610888819476498617261895474330E-9),
408 L(5.213481314722233980346462747902942182792E-7),
409 L(3.585741697694069399299005316809954590558E-5),
410 L(1.366513429642842006385029778105539457546E-3),
411 L(2.745282599850704662726337474371355160594E-2),
412 L(2.637644521611867647651200098449903330074E-1),
413 L(1.006953426110765984590782655598680488746E0
),
414 /* 1.000000000000000000000000000000000000000E0 */
417 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
418 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
419 Peak relative error 1.9e-36
420 0.0625 <= 1/x <= 0.125 */
422 static const _Float128 Q8_16N
[NQ8_16N
+ 1] = {
423 L(-2.028630366670228670781362543615221542291E-17),
424 L(-1.519634620380959966438130374006858864624E-14),
425 L(-4.540596528116104986388796594639405114524E-12),
426 L(-7.085151756671466559280490913558388648274E-10),
427 L(-6.351062671323970823761883833531546885452E-8),
428 L(-3.390817171111032905297982523519503522491E-6),
429 L(-1.082340897018886970282138836861233213972E-4),
430 L(-2.020120801187226444822977006648252379508E-3),
431 L(-2.093169910981725694937457070649605557555E-2),
432 L(-1.092176538874275712359269481414448063393E-1),
433 L(-2.374790947854765809203590474789108718733E-1),
434 L(-1.365364204556573800719985118029601401323E-1),
437 static const _Float128 Q8_16D
[NQ8_16D
+ 1] = {
438 L(1.978397614733632533581207058069628242280E-16),
439 L(1.487361156806202736877009608336766720560E-13),
440 L(4.468041406888412086042576067133365913456E-11),
441 L(7.027822074821007443672290507210594648877E-9),
442 L(6.375740580686101224127290062867976007374E-7),
443 L(3.466887658320002225888644977076410421940E-5),
444 L(1.138625640905289601186353909213719596986E-3),
445 L(2.224470799470414663443449818235008486439E-2),
446 L(2.487052928527244907490589787691478482358E-1),
447 L(1.483927406564349124649083853892380899217E0
),
448 L(4.182773513276056975777258788903489507705E0
),
449 L(4.419665392573449746043880892524360870944E0
),
450 /* 1.000000000000000000000000000000000000000E0 */
453 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
454 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
455 Peak relative error 1.5e-35
456 0.125 <= 1/x <= 0.1875 */
458 static const _Float128 Q5_8N
[NQ5_8N
+ 1] = {
459 L(-3.656082407740970534915918390488336879763E-13),
460 L(-1.344660308497244804752334556734121771023E-10),
461 L(-1.909765035234071738548629788698150760791E-8),
462 L(-1.366668038160120210269389551283666716453E-6),
463 L(-5.392327355984269366895210704976314135683E-5),
464 L(-1.206268245713024564674432357634540343884E-3),
465 L(-1.515456784370354374066417703736088291287E-2),
466 L(-1.022454301137286306933217746545237098518E-1),
467 L(-3.373438906472495080504907858424251082240E-1),
468 L(-4.510782522110845697262323973549178453405E-1),
469 L(-1.549000892545288676809660828213589804884E-1),
472 static const _Float128 Q5_8D
[NQ5_8D
+ 1] = {
473 L(3.565550843359501079050699598913828460036E-12),
474 L(1.321016015556560621591847454285330528045E-9),
475 L(1.897542728662346479999969679234270605975E-7),
476 L(1.381720283068706710298734234287456219474E-5),
477 L(5.599248147286524662305325795203422873725E-4),
478 L(1.305442352653121436697064782499122164843E-2),
479 L(1.750234079626943298160445750078631894985E-1),
480 L(1.311420542073436520965439883806946678491E0
),
481 L(5.162757689856842406744504211089724926650E0
),
482 L(9.527760296384704425618556332087850581308E0
),
483 L(6.604648207463236667912921642545100248584E0
),
484 /* 1.000000000000000000000000000000000000000E0 */
487 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
488 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
489 Peak relative error 1.3e-35
490 0.1875 <= 1/x <= 0.25 */
492 static const _Float128 Q4_5N
[NQ4_5N
+ 1] = {
493 L(-4.079513568708891749424783046520200903755E-11),
494 L(-9.326548104106791766891812583019664893311E-9),
495 L(-8.016795121318423066292906123815687003356E-7),
496 L(-3.372350544043594415609295225664186750995E-5),
497 L(-7.566238665947967882207277686375417983917E-4),
498 L(-9.248861580055565402130441618521591282617E-3),
499 L(-6.033106131055851432267702948850231270338E-2),
500 L(-1.966908754799996793730369265431584303447E-1),
501 L(-2.791062741179964150755788226623462207560E-1),
502 L(-1.255478605849190549914610121863534191666E-1),
503 L(-4.320429862021265463213168186061696944062E-3),
506 static const _Float128 Q4_5D
[NQ4_5D
+ 1] = {
507 L(3.978497042580921479003851216297330701056E-10),
508 L(9.203304163828145809278568906420772246666E-8),
509 L(8.059685467088175644915010485174545743798E-6),
510 L(3.490187375993956409171098277561669167446E-4),
511 L(8.189109654456872150100501732073810028829E-3),
512 L(1.072572867311023640958725265762483033769E-1),
513 L(7.790606862409960053675717185714576937994E-1),
514 L(3.016049768232011196434185423512777656328E0
),
515 L(5.722963851442769787733717162314477949360E0
),
516 L(4.510527838428473279647251350931380867663E0
),
517 /* 1.000000000000000000000000000000000000000E0 */
520 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
521 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
522 Peak relative error 2.1e-35
523 0.25 <= 1/x <= 0.3125 */
525 static const _Float128 Q3r2_4N
[NQ3r2_4N
+ 1] = {
526 L(-1.087480809271383885936921889040388133627E-8),
527 L(-1.690067828697463740906962973479310170932E-6),
528 L(-9.608064416995105532790745641974762550982E-5),
529 L(-2.594198839156517191858208513873961837410E-3),
530 L(-3.610954144421543968160459863048062977822E-2),
531 L(-2.629866798251843212210482269563961685666E-1),
532 L(-9.709186825881775885917984975685752956660E-1),
533 L(-1.667521829918185121727268867619982417317E0
),
534 L(-1.109255082925540057138766105229900943501E0
),
535 L(-1.812932453006641348145049323713469043328E-1),
538 static const _Float128 Q3r2_4D
[NQ3r2_4D
+ 1] = {
539 L(1.060552717496912381388763753841473407026E-7),
540 L(1.676928002024920520786883649102388708024E-5),
541 L(9.803481712245420839301400601140812255737E-4),
542 L(2.765559874262309494758505158089249012930E-2),
543 L(4.117921827792571791298862613287549140706E-1),
544 L(3.323769515244751267093378361930279161413E0
),
545 L(1.436602494405814164724810151689705353670E1
),
546 L(3.163087869617098638064881410646782408297E1
),
547 L(3.198181264977021649489103980298349589419E1
),
548 L(1.203649258862068431199471076202897823272E1
),
549 /* 1.000000000000000000000000000000000000000E0 */
552 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
553 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
554 Peak relative error 1.6e-36
555 0.3125 <= 1/x <= 0.375 */
557 static const _Float128 Q2r7_3r2N
[NQ2r7_3r2N
+ 1] = {
558 L(-1.723405393982209853244278760171643219530E-7),
559 L(-2.090508758514655456365709712333460087442E-5),
560 L(-9.140104013370974823232873472192719263019E-4),
561 L(-1.871349499990714843332742160292474780128E-2),
562 L(-1.948930738119938669637865956162512983416E-1),
563 L(-1.048764684978978127908439526343174139788E0
),
564 L(-2.827714929925679500237476105843643064698E0
),
565 L(-3.508761569156476114276988181329773987314E0
),
566 L(-1.669332202790211090973255098624488308989E0
),
567 L(-1.930796319299022954013840684651016077770E-1),
570 static const _Float128 Q2r7_3r2D
[NQ2r7_3r2D
+ 1] = {
571 L(1.680730662300831976234547482334347983474E-6),
572 L(2.084241442440551016475972218719621841120E-4),
573 L(9.445316642108367479043541702688736295579E-3),
574 L(2.044637889456631896650179477133252184672E-1),
575 L(2.316091982244297350829522534435350078205E0
),
576 L(1.412031891783015085196708811890448488865E1
),
577 L(4.583830154673223384837091077279595496149E1
),
578 L(7.549520609270909439885998474045974122261E1
),
579 L(5.697605832808113367197494052388203310638E1
),
580 L(1.601496240876192444526383314589371686234E1
),
581 /* 1.000000000000000000000000000000000000000E0 */
584 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
585 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
586 Peak relative error 9.5e-36
587 0.375 <= 1/x <= 0.4375 */
589 static const _Float128 Q2r3_2r7N
[NQ2r3_2r7N
+ 1] = {
590 L(-8.603042076329122085722385914954878953775E-7),
591 L(-7.701746260451647874214968882605186675720E-5),
592 L(-2.407932004380727587382493696877569654271E-3),
593 L(-3.403434217607634279028110636919987224188E-2),
594 L(-2.348707332185238159192422084985713102877E-1),
595 L(-7.957498841538254916147095255700637463207E-1),
596 L(-1.258469078442635106431098063707934348577E0
),
597 L(-8.162415474676345812459353639449971369890E-1),
598 L(-1.581783890269379690141513949609572806898E-1),
599 L(-1.890595651683552228232308756569450822905E-3),
602 static const _Float128 Q2r3_2r7D
[NQ2r3_2r7D
+ 1] = {
603 L(8.390017524798316921170710533381568175665E-6),
604 L(7.738148683730826286477254659973968763659E-4),
605 L(2.541480810958665794368759558791634341779E-2),
606 L(3.878879789711276799058486068562386244873E-1),
607 L(3.003783779325811292142957336802456109333E0
),
608 L(1.206480374773322029883039064575464497400E1
),
609 L(2.458414064785315978408974662900438351782E1
),
610 L(2.367237826273668567199042088835448715228E1
),
611 L(9.231451197519171090875569102116321676763E0
),
612 /* 1.000000000000000000000000000000000000000E0 */
615 /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
616 Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
617 Peak relative error 1.4e-36
618 0.4375 <= 1/x <= 0.5 */
620 static const _Float128 Q2_2r3N
[NQ2_2r3N
+ 1] = {
621 L(-5.552507516089087822166822364590806076174E-6),
622 L(-4.135067659799500521040944087433752970297E-4),
623 L(-1.059928728869218962607068840646564457980E-2),
624 L(-1.212070036005832342565792241385459023801E-1),
625 L(-6.688350110633603958684302153362735625156E-1),
626 L(-1.793587878197360221340277951304429821582E0
),
627 L(-2.225407682237197485644647380483725045326E0
),
628 L(-1.123402135458940189438898496348239744403E0
),
629 L(-1.679187241566347077204805190763597299805E-1),
630 L(-1.458550613639093752909985189067233504148E-3),
633 static const _Float128 Q2_2r3D
[NQ2_2r3D
+ 1] = {
634 L(5.415024336507980465169023996403597916115E-5),
635 L(4.179246497380453022046357404266022870788E-3),
636 L(1.136306384261959483095442402929502368598E-1),
637 L(1.422640343719842213484515445393284072830E0
),
638 L(8.968786703393158374728850922289204805764E0
),
639 L(2.914542473339246127533384118781216495934E1
),
640 L(4.781605421020380669870197378210457054685E1
),
641 L(3.693865837171883152382820584714795072937E1
),
642 L(1.153220502744204904763115556224395893076E1
),
643 /* 1.000000000000000000000000000000000000000E0 */
647 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
650 neval (_Float128 x
, const _Float128
*p
, int n
)
665 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
668 deval (_Float128 x
, const _Float128
*p
, int n
)
683 /* Bessel function of the first kind, order one. */
686 __ieee754_j1l (_Float128 x
)
688 _Float128 xx
, xinv
, z
, p
, q
, c
, s
, cc
, ss
;
700 if (xx
<= L(0x1p
-58))
702 _Float128 ret
= x
* L(0.5);
703 math_check_force_underflow (ret
);
705 __set_errno (ERANGE
);
712 p
= xx
* z
* neval (z
, J0_2N
, NJ0_2N
) / deval (z
, J0_2D
, NJ0_2D
);
720 cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
721 = 1/sqrt(2) * (-cos(x) + sin(x))
722 sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
723 = -1/sqrt(2) * (sin(x) + cos(x))
725 __sincosl (xx
, &s
, &c
);
728 if (xx
<= LDBL_MAX
/ 2)
730 z
= __cosl (xx
+ xx
);
739 z
= ONEOSQPI
* cc
/ __ieee754_sqrtl (xx
);
753 p
= neval (z
, P16_IN
, NP16_IN
) / deval (z
, P16_ID
, NP16_ID
);
754 q
= neval (z
, Q16_IN
, NQ16_IN
) / deval (z
, Q16_ID
, NQ16_ID
);
758 p
= neval (z
, P8_16N
, NP8_16N
) / deval (z
, P8_16D
, NP8_16D
);
759 q
= neval (z
, Q8_16N
, NQ8_16N
) / deval (z
, Q8_16D
, NQ8_16D
);
762 else if (xinv
<= 0.1875)
764 p
= neval (z
, P5_8N
, NP5_8N
) / deval (z
, P5_8D
, NP5_8D
);
765 q
= neval (z
, Q5_8N
, NQ5_8N
) / deval (z
, Q5_8D
, NQ5_8D
);
769 p
= neval (z
, P4_5N
, NP4_5N
) / deval (z
, P4_5D
, NP4_5D
);
770 q
= neval (z
, Q4_5N
, NQ4_5N
) / deval (z
, Q4_5D
, NQ4_5D
);
773 else /* if (xinv <= 0.5) */
779 p
= neval (z
, P3r2_4N
, NP3r2_4N
) / deval (z
, P3r2_4D
, NP3r2_4D
);
780 q
= neval (z
, Q3r2_4N
, NQ3r2_4N
) / deval (z
, Q3r2_4D
, NQ3r2_4D
);
784 p
= neval (z
, P2r7_3r2N
, NP2r7_3r2N
)
785 / deval (z
, P2r7_3r2D
, NP2r7_3r2D
);
786 q
= neval (z
, Q2r7_3r2N
, NQ2r7_3r2N
)
787 / deval (z
, Q2r7_3r2D
, NQ2r7_3r2D
);
790 else if (xinv
<= 0.4375)
792 p
= neval (z
, P2r3_2r7N
, NP2r3_2r7N
)
793 / deval (z
, P2r3_2r7D
, NP2r3_2r7D
);
794 q
= neval (z
, Q2r3_2r7N
, NQ2r3_2r7N
)
795 / deval (z
, Q2r3_2r7D
, NQ2r3_2r7D
);
799 p
= neval (z
, P2_2r3N
, NP2_2r3N
) / deval (z
, P2_2r3D
, NP2_2r3D
);
800 q
= neval (z
, Q2_2r3N
, NQ2_2r3N
) / deval (z
, Q2_2r3D
, NQ2_2r3D
);
805 q
= q
* xinv
+ L(0.375) * xinv
;
806 z
= ONEOSQPI
* (p
* cc
- q
* ss
) / __ieee754_sqrtl (xx
);
811 strong_alias (__ieee754_j1l
, __j1l_finite
)
814 /* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2)
815 Peak relative error 6.2e-38
818 static _Float128 Y0_2N
[NY0_2N
+ 1] = {
819 L(-6.804415404830253804408698161694720833249E19
),
820 L(1.805450517967019908027153056150465849237E19
),
821 L(-8.065747497063694098810419456383006737312E17
),
822 L(1.401336667383028259295830955439028236299E16
),
823 L(-1.171654432898137585000399489686629680230E14
),
824 L(5.061267920943853732895341125243428129150E11
),
825 L(-1.096677850566094204586208610960870217970E9
),
826 L(9.541172044989995856117187515882879304461E5
),
829 static _Float128 Y0_2D
[NY0_2D
+ 1] = {
830 L(3.470629591820267059538637461549677594549E20
),
831 L(4.120796439009916326855848107545425217219E18
),
832 L(2.477653371652018249749350657387030814542E16
),
833 L(9.954678543353888958177169349272167762797E13
),
834 L(2.957927997613630118216218290262851197754E11
),
835 L(6.748421382188864486018861197614025972118E8
),
836 L(1.173453425218010888004562071020305709319E6
),
837 L(1.450335662961034949894009554536003377187E3
),
838 /* 1.000000000000000000000000000000000000000E0 */
842 /* Bessel function of the second kind, order one. */
845 __ieee754_y1l (_Float128 x
)
847 _Float128 xx
, xinv
, z
, p
, q
, c
, s
, cc
, ss
;
850 return 1 / (x
+ x
* x
);
854 return (zero
/ (zero
* x
));
855 return -1 / zero
; /* -inf and divide by zero exception. */
862 __set_errno (ERANGE
);
868 SET_RESTORE_ROUNDL (FE_TONEAREST
);
870 p
= xx
* neval (z
, Y0_2N
, NY0_2N
) / deval (z
, Y0_2D
, NY0_2D
);
871 p
= -TWOOPI
/ xx
+ p
;
872 p
= TWOOPI
* __ieee754_logl (x
) * __ieee754_j1l (x
) + p
;
877 cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
878 = 1/sqrt(2) * (-cos(x) + sin(x))
879 sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
880 = -1/sqrt(2) * (sin(x) + cos(x))
882 __sincosl (xx
, &s
, &c
);
885 if (xx
<= LDBL_MAX
/ 2)
887 z
= __cosl (xx
+ xx
);
895 return ONEOSQPI
* ss
/ __ieee754_sqrtl (xx
);
905 p
= neval (z
, P16_IN
, NP16_IN
) / deval (z
, P16_ID
, NP16_ID
);
906 q
= neval (z
, Q16_IN
, NQ16_IN
) / deval (z
, Q16_ID
, NQ16_ID
);
910 p
= neval (z
, P8_16N
, NP8_16N
) / deval (z
, P8_16D
, NP8_16D
);
911 q
= neval (z
, Q8_16N
, NQ8_16N
) / deval (z
, Q8_16D
, NQ8_16D
);
914 else if (xinv
<= 0.1875)
916 p
= neval (z
, P5_8N
, NP5_8N
) / deval (z
, P5_8D
, NP5_8D
);
917 q
= neval (z
, Q5_8N
, NQ5_8N
) / deval (z
, Q5_8D
, NQ5_8D
);
921 p
= neval (z
, P4_5N
, NP4_5N
) / deval (z
, P4_5D
, NP4_5D
);
922 q
= neval (z
, Q4_5N
, NQ4_5N
) / deval (z
, Q4_5D
, NQ4_5D
);
925 else /* if (xinv <= 0.5) */
931 p
= neval (z
, P3r2_4N
, NP3r2_4N
) / deval (z
, P3r2_4D
, NP3r2_4D
);
932 q
= neval (z
, Q3r2_4N
, NQ3r2_4N
) / deval (z
, Q3r2_4D
, NQ3r2_4D
);
936 p
= neval (z
, P2r7_3r2N
, NP2r7_3r2N
)
937 / deval (z
, P2r7_3r2D
, NP2r7_3r2D
);
938 q
= neval (z
, Q2r7_3r2N
, NQ2r7_3r2N
)
939 / deval (z
, Q2r7_3r2D
, NQ2r7_3r2D
);
942 else if (xinv
<= 0.4375)
944 p
= neval (z
, P2r3_2r7N
, NP2r3_2r7N
)
945 / deval (z
, P2r3_2r7D
, NP2r3_2r7D
);
946 q
= neval (z
, Q2r3_2r7N
, NQ2r3_2r7N
)
947 / deval (z
, Q2r3_2r7D
, NQ2r3_2r7D
);
951 p
= neval (z
, P2_2r3N
, NP2_2r3N
) / deval (z
, P2_2r3D
, NP2_2r3D
);
952 q
= neval (z
, Q2_2r3N
, NQ2_2r3N
) / deval (z
, Q2_2r3D
, NQ2_2r3D
);
957 q
= q
* xinv
+ L(0.375) * xinv
;
958 z
= ONEOSQPI
* (p
* ss
+ q
* cc
) / __ieee754_sqrtl (xx
);
961 strong_alias (__ieee754_y1l
, __y1l_finite
)