* sysdeps/unix/sysv/linux/m68k/sysdep.h (INLINE_SYSCALL): Don't
[glibc.git] / soft-fp / op-1.h
blobf7321430523e8cc418d22595cadc59ab367b3893
1 /* Software floating-point emulation.
2 Basic one-word fraction declaration and manipulation.
3 Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Richard Henderson (rth@cygnus.com),
6 Jakub Jelinek (jj@ultra.linux.cz),
7 David S. Miller (davem@redhat.com) and
8 Peter Maydell (pmaydell@chiark.greenend.org.uk).
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
15 The GNU C Library is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 Lesser General Public License for more details.
20 You should have received a copy of the GNU Lesser General Public
21 License along with the GNU C Library; if not, write to the Free
22 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
23 02111-1307 USA. */
25 #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f
26 #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f)
27 #define _FP_FRAC_SET_1(X,I) (X##_f = I)
28 #define _FP_FRAC_HIGH_1(X) (X##_f)
29 #define _FP_FRAC_LOW_1(X) (X##_f)
30 #define _FP_FRAC_WORD_1(X,w) (X##_f)
32 #define _FP_FRAC_ADDI_1(X,I) (X##_f += I)
33 #define _FP_FRAC_SLL_1(X,N) \
34 do { \
35 if (__builtin_constant_p(N) && (N) == 1) \
36 X##_f += X##_f; \
37 else \
38 X##_f <<= (N); \
39 } while (0)
40 #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N)
42 /* Right shift with sticky-lsb. */
43 #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
45 #define __FP_FRAC_SRS_1(X,N,sz) \
46 (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \
47 ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
49 #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f)
50 #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f)
51 #define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f)
52 #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f)
54 /* Predicates */
55 #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0)
56 #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
57 #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
58 #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
59 #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
60 #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
62 #define _FP_ZEROFRAC_1 0
63 #define _FP_MINFRAC_1 1
64 #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0)
67 * Unpack the raw bits of a native fp value. Do not classify or
68 * normalize the data.
71 #define _FP_UNPACK_RAW_1(fs, X, val) \
72 do { \
73 union _FP_UNION_##fs _flo; _flo.flt = (val); \
75 X##_f = _flo.bits.frac; \
76 X##_e = _flo.bits.exp; \
77 X##_s = _flo.bits.sign; \
78 } while (0)
80 #define _FP_UNPACK_RAW_1_P(fs, X, val) \
81 do { \
82 union _FP_UNION_##fs *_flo = \
83 (union _FP_UNION_##fs *)(val); \
85 X##_f = _flo->bits.frac; \
86 X##_e = _flo->bits.exp; \
87 X##_s = _flo->bits.sign; \
88 } while (0)
91 * Repack the raw bits of a native fp value.
94 #define _FP_PACK_RAW_1(fs, val, X) \
95 do { \
96 union _FP_UNION_##fs _flo; \
98 _flo.bits.frac = X##_f; \
99 _flo.bits.exp = X##_e; \
100 _flo.bits.sign = X##_s; \
102 (val) = _flo.flt; \
103 } while (0)
105 #define _FP_PACK_RAW_1_P(fs, val, X) \
106 do { \
107 union _FP_UNION_##fs *_flo = \
108 (union _FP_UNION_##fs *)(val); \
110 _flo->bits.frac = X##_f; \
111 _flo->bits.exp = X##_e; \
112 _flo->bits.sign = X##_s; \
113 } while (0)
117 * Multiplication algorithms:
120 /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
121 multiplication immediately. */
123 #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
124 do { \
125 R##_f = X##_f * Y##_f; \
126 /* Normalize since we know where the msb of the multiplicands \
127 were (bit B), we know that the msb of the of the product is \
128 at either 2B or 2B-1. */ \
129 _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \
130 } while (0)
132 /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
134 #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
135 do { \
136 _FP_W_TYPE _Z_f0, _Z_f1; \
137 doit(_Z_f1, _Z_f0, X##_f, Y##_f); \
138 /* Normalize since we know where the msb of the multiplicands \
139 were (bit B), we know that the msb of the of the product is \
140 at either 2B or 2B-1. */ \
141 _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \
142 R##_f = _Z_f0; \
143 } while (0)
145 /* Finally, a simple widening multiply algorithm. What fun! */
147 #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
148 do { \
149 _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \
151 /* split the words in half */ \
152 _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
153 _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
154 _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
155 _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
157 /* multiply the pieces */ \
158 _z_f0 = _xl * _yl; \
159 _a_f0 = _xh * _yl; \
160 _a_f1 = _xl * _yh; \
161 _z_f1 = _xh * _yh; \
163 /* reassemble into two full words */ \
164 if ((_a_f0 += _a_f1) < _a_f1) \
165 _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \
166 _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
167 _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
168 _FP_FRAC_ADD_2(_z, _z, _a); \
170 /* normalize */ \
171 _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \
172 R##_f = _z_f0; \
173 } while (0)
177 * Division algorithms:
180 /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
181 division immediately. Give this macro either _FP_DIV_HELP_imm for
182 C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
183 choose will depend on what the compiler does with divrem4. */
185 #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
186 do { \
187 _FP_W_TYPE _q, _r; \
188 X##_f <<= (X##_f < Y##_f \
189 ? R##_e--, _FP_WFRACBITS_##fs \
190 : _FP_WFRACBITS_##fs - 1); \
191 doit(_q, _r, X##_f, Y##_f); \
192 R##_f = _q | (_r != 0); \
193 } while (0)
195 /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
196 that may be useful in this situation. This first is for a primitive
197 that requires normalization, the second for one that does not. Look
198 for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
200 #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
201 do { \
202 _FP_W_TYPE _nh, _nl, _q, _r, _y; \
204 /* Normalize Y -- i.e. make the most significant bit set. */ \
205 _y = Y##_f << _FP_WFRACXBITS_##fs; \
207 /* Shift X op correspondingly high, that is, up one full word. */ \
208 if (X##_f < Y##_f) \
210 R##_e--; \
211 _nl = 0; \
212 _nh = X##_f; \
214 else \
216 _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
217 _nh = X##_f >> 1; \
220 udiv_qrnnd(_q, _r, _nh, _nl, _y); \
221 R##_f = _q | (_r != 0); \
222 } while (0)
224 #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
225 do { \
226 _FP_W_TYPE _nh, _nl, _q, _r; \
227 if (X##_f < Y##_f) \
229 R##_e--; \
230 _nl = X##_f << _FP_WFRACBITS_##fs; \
231 _nh = X##_f >> _FP_WFRACXBITS_##fs; \
233 else \
235 _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
236 _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
238 udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \
239 R##_f = _q | (_r != 0); \
240 } while (0)
244 * Square root algorithms:
245 * We have just one right now, maybe Newton approximation
246 * should be added for those machines where division is fast.
249 #define _FP_SQRT_MEAT_1(R, S, T, X, q) \
250 do { \
251 while (q != _FP_WORK_ROUND) \
253 T##_f = S##_f + q; \
254 if (T##_f <= X##_f) \
256 S##_f = T##_f + q; \
257 X##_f -= T##_f; \
258 R##_f += q; \
260 _FP_FRAC_SLL_1(X, 1); \
261 q >>= 1; \
263 if (X##_f) \
265 if (S##_f < X##_f) \
266 R##_f |= _FP_WORK_ROUND; \
267 R##_f |= _FP_WORK_STICKY; \
269 } while (0)
272 * Assembly/disassembly for converting to/from integral types.
273 * No shifting or overflow handled here.
276 #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
277 #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
281 * Convert FP values between word sizes
284 #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \
285 do { \
286 D##_f = S##_f; \
287 if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \
289 if (S##_c != FP_CLS_NAN) \
290 _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \
291 _FP_WFRACBITS_##sfs); \
292 else \
293 _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \
295 else \
296 D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \
297 } while (0)