3 * Common logarithm, 128-bit long double precision
9 * long double x, y, log10l();
17 * Returns the base 10 logarithm of x.
19 * The argument is separated into its exponent and fractional
20 * parts. If the exponent is between -1 and +1, the logarithm
21 * of the fraction is approximated by
23 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
25 * Otherwise, setting z = 2(x-1)/x+1),
27 * log(x) = z + z^3 P(z)/Q(z).
34 * arithmetic domain # trials peak rms
35 * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35
36 * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35
38 * In the tests over the interval exp(+-10000), the logarithms
39 * of the random arguments were uniformly distributed over
45 Cephes Math Library Release 2.2: January, 1991
46 Copyright 1984, 1991 by Stephen L. Moshier
47 Adapted for glibc November, 2001
49 This library is free software; you can redistribute it and/or
50 modify it under the terms of the GNU Lesser General Public
51 License as published by the Free Software Foundation; either
52 version 2.1 of the License, or (at your option) any later version.
54 This library is distributed in the hope that it will be useful,
55 but WITHOUT ANY WARRANTY; without even the implied warranty of
56 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
57 Lesser General Public License for more details.
59 You should have received a copy of the GNU Lesser General Public
60 License along with this library; if not, see <http://www.gnu.org/licenses/>.
64 #include "math_private.h"
66 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
67 * 1/sqrt(2) <= x < sqrt(2)
68 * Theoretical peak relative error = 5.3e-37,
69 * relative peak error spread = 2.3e-14
71 static const long double P
[13] =
73 1.313572404063446165910279910527789794488E4L
,
74 7.771154681358524243729929227226708890930E4L
,
75 2.014652742082537582487669938141683759923E5L
,
76 3.007007295140399532324943111654767187848E5L
,
77 2.854829159639697837788887080758954924001E5L
,
78 1.797628303815655343403735250238293741397E5L
,
79 7.594356839258970405033155585486712125861E4L
,
80 2.128857716871515081352991964243375186031E4L
,
81 3.824952356185897735160588078446136783779E3L
,
82 4.114517881637811823002128927449878962058E2L
,
83 2.321125933898420063925789532045674660756E1L
,
84 4.998469661968096229986658302195402690910E-1L,
85 1.538612243596254322971797716843006400388E-6L
87 static const long double Q
[12] =
89 3.940717212190338497730839731583397586124E4L
,
90 2.626900195321832660448791748036714883242E5L
,
91 7.777690340007566932935753241556479363645E5L
,
92 1.347518538384329112529391120390701166528E6L
,
93 1.514882452993549494932585972882995548426E6L
,
94 1.158019977462989115839826904108208787040E6L
,
95 6.132189329546557743179177159925690841200E5L
,
96 2.248234257620569139969141618556349415120E5L
,
97 5.605842085972455027590989944010492125825E4L
,
98 9.147150349299596453976674231612674085381E3L
,
99 9.104928120962988414618126155557301584078E2L
,
100 4.839208193348159620282142911143429644326E1L
101 /* 1.000000000000000000000000000000000000000E0L, */
104 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
105 * where z = 2(x-1)/(x+1)
106 * 1/sqrt(2) <= x < sqrt(2)
107 * Theoretical peak relative error = 1.1e-35,
108 * relative peak error spread 1.1e-9
110 static const long double R
[6] =
112 1.418134209872192732479751274970992665513E5L
,
113 -8.977257995689735303686582344659576526998E4L
,
114 2.048819892795278657810231591630928516206E4L
,
115 -2.024301798136027039250415126250455056397E3L
,
116 8.057002716646055371965756206836056074715E1L
,
117 -8.828896441624934385266096344596648080902E-1L
119 static const long double S
[6] =
121 1.701761051846631278975701529965589676574E6L
,
122 -1.332535117259762928288745111081235577029E6L
,
123 4.001557694070773974936904547424676279307E5L
,
124 -5.748542087379434595104154610899551484314E4L
,
125 3.998526750980007367835804959888064681098E3L
,
126 -1.186359407982897997337150403816839480438E2L
127 /* 1.000000000000000000000000000000000000000E0L, */
130 static const long double
133 L102B
= -1.14700043360188047862611052755069732318101185E-2L,
136 L10EB
= -6.570551809674817234887108108339491770560299E-2L,
138 SQRTH
= 7.071067811865475244008443621048490392848359E-1L;
142 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
145 neval (long double x
, const long double *p
, int n
)
160 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
163 deval (long double x
, const long double *p
, int n
)
180 __ieee754_log10l (long double x
)
187 /* Test for domain */
188 GET_LDOUBLE_WORDS64 (hx
, lx
, x
);
189 if (((hx
& 0x7fffffffffffffffLL
) | (lx
& 0x7fffffffffffffffLL
)) == 0)
190 return (-1.0L / (x
- x
));
192 return (x
- x
) / (x
- x
);
193 if (hx
>= 0x7ff0000000000000LL
)
196 /* separate mantissa from exponent */
198 /* Note, frexp is used so that denormal numbers
199 * will be handled properly.
201 x
= __frexpl (x
, &e
);
204 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
205 * where z = 2(x-1)/x+1)
207 if ((e
> 2) || (e
< -2))
210 { /* 2( 2x-1 )/( 2x+1 ) */
216 { /* 2 (x-1)/(x+1) */
223 y
= x
* (z
* neval (z
, R
, 5) / deval (z
, S
, 5));
228 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
233 x
= 2.0 * x
- 1.0L; /* 2x - 1 */
240 y
= x
* (z
* neval (x
, P
, 12) / deval (x
, Q
, 11));
245 /* Multiply log of fraction by log10(e)
246 * and base 2 exponent by log10(2).
256 strong_alias (__ieee754_log10l
, __log10l_finite
)