1 /* Floating point output for `printf'.
2 Copyright (C) 1995-1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 /* The gmp headers need some configuration frobs. */
32 #include <gmp-mparam.h>
34 #include <stdlib/gmp-impl.h>
35 #include <stdlib/longlong.h>
36 #include <stdlib/fpioconst.h>
37 #include <locale/localeinfo.h>
47 # define NDEBUG /* Undefine this for debugging assertions. */
51 /* This defines make it possible to use the same code for GNU C library and
52 the GNU I/O library. */
54 # define PUT(f, s, n) _IO_sputn (f, s, n)
55 # define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : INTUSE(_IO_padn) (f, c, n))
56 /* We use this file GNU C library and GNU I/O library. So make
59 # define putc(c, f) (wide \
60 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
61 # define size_t _IO_size_t
62 # define FILE _IO_FILE
63 #else /* ! USE_IN_LIBIO */
64 # define PUT(f, s, n) fwrite (s, 1, n, f)
65 # define PAD(f, c, n) __printf_pad (f, c, n)
66 ssize_t __printf_pad
__P ((FILE *, char pad
, int n
)); /* In vfprintf.c. */
67 #endif /* USE_IN_LIBIO */
69 /* Macros for doing the actual output. */
74 register const int outc = (ch); \
75 if (putc (outc, fp) == EOF) \
80 #define PRINT(ptr, wptr, len) \
83 register size_t outlen = (len); \
86 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
94 while (outlen-- > 0) \
97 while (outlen-- > 0) \
102 #define PADN(ch, len) \
105 if (PAD (fp, ch, len) != len) \
111 /* We use the GNU MP library to handle large numbers.
113 An MP variable occupies a varying number of entries in its array. We keep
114 track of this number for efficiency reasons. Otherwise we would always
115 have to process the whole array. */
116 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
118 #define MPN_ASSIGN(dst,src) \
119 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
120 #define MPN_GE(u,v) \
121 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
123 extern int __isinfl_internal (long double) attribute_hidden
;
124 extern int __isnanl_internal (long double) attribute_hidden
;
126 extern mp_size_t
__mpn_extract_double (mp_ptr res_ptr
, mp_size_t size
,
127 int *expt
, int *is_neg
,
129 extern mp_size_t
__mpn_extract_long_double (mp_ptr res_ptr
, mp_size_t size
,
130 int *expt
, int *is_neg
,
132 extern unsigned int __guess_grouping (unsigned int intdig_max
,
133 const char *grouping
);
136 static wchar_t *group_number (wchar_t *buf
, wchar_t *bufend
,
137 unsigned int intdig_no
, const char *grouping
,
138 wchar_t thousands_sep
, int ngroups
)
143 __printf_fp (FILE *fp
,
144 const struct printf_info
*info
,
145 const void *const *args
)
147 /* The floating-point value to output. */
151 __long_double_t ldbl
;
155 /* Locale-dependent representation of decimal point. */
159 /* Locale-dependent thousands separator and grouping specification. */
160 const char *thousands_sep
= NULL
;
161 wchar_t thousands_sepwc
= 0;
162 const char *grouping
;
164 /* "NaN" or "Inf" for the special cases. */
165 const char *special
= NULL
;
166 const wchar_t *wspecial
= NULL
;
168 /* We need just a few limbs for the input before shifting to the right
170 mp_limb_t fp_input
[(LDBL_MANT_DIG
+ BITS_PER_MP_LIMB
- 1) / BITS_PER_MP_LIMB
];
171 /* We need to shift the contents of fp_input by this amount of bits. */
174 /* The fraction of the floting-point value in question */
176 /* and the exponent. */
178 /* Sign of the exponent. */
180 /* Sign of float number. */
183 /* Scaling factor. */
186 /* Temporary bignum value. */
189 /* Digit which is result of last hack_digit() call. */
192 /* The type of output format that will be used: 'e'/'E' or 'f'. */
195 /* Counter for number of written characters. */
198 /* General helper (carry limb). */
201 /* Nonzero if this is output on a wide character stream. */
202 int wide
= info
->wide
;
204 auto wchar_t hack_digit (void);
206 wchar_t hack_digit (void)
210 if (expsign
!= 0 && type
== 'f' && exponent
-- > 0)
212 else if (scalesize
== 0)
214 hi
= frac
[fracsize
- 1];
215 cy
= __mpn_mul_1 (frac
, frac
, fracsize
- 1, 10);
216 frac
[fracsize
- 1] = cy
;
220 if (fracsize
< scalesize
)
224 hi
= mpn_divmod (tmp
, frac
, fracsize
, scale
, scalesize
);
225 tmp
[fracsize
- scalesize
] = hi
;
228 fracsize
= scalesize
;
229 while (fracsize
!= 0 && frac
[fracsize
- 1] == 0)
233 /* We're not prepared for an mpn variable with zero
240 cy
= __mpn_mul_1 (frac
, frac
, fracsize
, 10);
242 frac
[fracsize
++] = cy
;
249 /* Figure out the decimal point character. */
250 if (info
->extra
== 0)
252 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
253 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
257 decimal
= _NL_CURRENT (LC_MONETARY
, MON_DECIMAL_POINT
);
258 if (*decimal
== '\0')
259 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
260 decimalwc
= _NL_CURRENT_WORD (LC_MONETARY
,
261 _NL_MONETARY_DECIMAL_POINT_WC
);
262 if (decimalwc
== L
'\0')
263 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
,
264 _NL_NUMERIC_DECIMAL_POINT_WC
);
266 /* The decimal point character must not be zero. */
267 assert (*decimal
!= '\0');
268 assert (decimalwc
!= L
'\0');
272 if (info
->extra
== 0)
273 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
275 grouping
= _NL_CURRENT (LC_MONETARY
, MON_GROUPING
);
277 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
281 /* Figure out the thousands separator character. */
284 if (info
->extra
== 0)
286 _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_THOUSANDS_SEP_WC
);
289 _NL_CURRENT_WORD (LC_MONETARY
,
290 _NL_MONETARY_THOUSANDS_SEP_WC
);
294 if (info
->extra
== 0)
295 thousands_sep
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
297 thousands_sep
= _NL_CURRENT (LC_MONETARY
, MON_THOUSANDS_SEP
);
300 if ((wide
&& thousands_sepwc
== L
'\0')
301 || (! wide
&& *thousands_sep
== '\0'))
303 else if (thousands_sepwc
== L
'\0')
304 /* If we are printing multibyte characters and there is a
305 multibyte representation for the thousands separator,
306 we must ensure the wide character thousands separator
307 is available, even if it is fake. */
308 thousands_sepwc
= 0xfffffffe;
314 /* Fetch the argument value. */
315 #ifndef __NO_LONG_DOUBLE_MATH
316 if (info
->is_long_double
&& sizeof (long double) > sizeof (double))
318 fpnum
.ldbl
= *(const long double *) args
[0];
320 /* Check for special values: not a number or infinity. */
321 if (__isnanl (fpnum
.ldbl
))
323 if (isupper (info
->spec
))
335 else if (__isinfl (fpnum
.ldbl
))
337 if (isupper (info
->spec
))
347 is_neg
= fpnum
.ldbl
< 0;
351 fracsize
= __mpn_extract_long_double (fp_input
,
353 sizeof (fp_input
[0])),
356 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- LDBL_MANT_DIG
;
360 #endif /* no long double */
362 fpnum
.dbl
= *(const double *) args
[0];
364 /* Check for special values: not a number or infinity. */
365 if (__isnan (fpnum
.dbl
))
367 if (isupper (info
->spec
))
379 else if (__isinf (fpnum
.dbl
))
381 if (isupper (info
->spec
))
391 is_neg
= fpnum
.dbl
< 0;
395 fracsize
= __mpn_extract_double (fp_input
,
397 / sizeof (fp_input
[0])),
398 &exponent
, &is_neg
, fpnum
.dbl
);
399 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- DBL_MANT_DIG
;
405 int width
= info
->width
;
407 if (is_neg
|| info
->showsign
|| info
->space
)
411 if (!info
->left
&& width
> 0)
416 else if (info
->showsign
)
418 else if (info
->space
)
421 PRINT (special
, wspecial
, 3);
423 if (info
->left
&& width
> 0)
430 /* We need three multiprecision variables. Now that we have the exponent
431 of the number we can allocate the needed memory. It would be more
432 efficient to use variables of the fixed maximum size but because this
433 would be really big it could lead to memory problems. */
435 mp_size_t bignum_size
= ((ABS (exponent
) + BITS_PER_MP_LIMB
- 1)
436 / BITS_PER_MP_LIMB
+ 4) * sizeof (mp_limb_t
);
437 frac
= (mp_limb_t
*) alloca (bignum_size
);
438 tmp
= (mp_limb_t
*) alloca (bignum_size
);
439 scale
= (mp_limb_t
*) alloca (bignum_size
);
442 /* We now have to distinguish between numbers with positive and negative
443 exponents because the method used for the one is not applicable/efficient
450 int explog
= LDBL_MAX_10_EXP_LOG
;
452 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
455 if ((exponent
+ to_shift
) % BITS_PER_MP_LIMB
== 0)
457 MPN_COPY_DECR (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
459 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
463 cy
= __mpn_lshift (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
465 (exponent
+ to_shift
) % BITS_PER_MP_LIMB
);
466 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
468 frac
[fracsize
++] = cy
;
470 MPN_ZERO (frac
, (exponent
+ to_shift
) / BITS_PER_MP_LIMB
);
472 assert (powers
> &_fpioconst_pow10
[0]);
477 /* The number of the product of two binary numbers with n and m
478 bits respectively has m+n or m+n-1 bits. */
479 if (exponent
>= scaleexpo
+ powers
->p_expo
- 1)
483 #ifndef __NO_LONG_DOUBLE_MATH
484 if (LDBL_MANT_DIG
> _FPIO_CONST_OFFSET
* BITS_PER_MP_LIMB
485 && info
->is_long_double
)
487 #define _FPIO_CONST_SHIFT \
488 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
489 - _FPIO_CONST_OFFSET)
490 /* 64bit const offset is not enough for
491 IEEE quad long double. */
492 tmpsize
= powers
->arraysize
+ _FPIO_CONST_SHIFT
;
493 memcpy (tmp
+ _FPIO_CONST_SHIFT
,
494 &__tens
[powers
->arrayoff
],
495 tmpsize
* sizeof (mp_limb_t
));
496 MPN_ZERO (tmp
, _FPIO_CONST_SHIFT
);
497 /* Adjust exponent, as scaleexpo will be this much
499 exponent
+= _FPIO_CONST_SHIFT
* BITS_PER_MP_LIMB
;
504 tmpsize
= powers
->arraysize
;
505 memcpy (tmp
, &__tens
[powers
->arrayoff
],
506 tmpsize
* sizeof (mp_limb_t
));
511 cy
= __mpn_mul (tmp
, scale
, scalesize
,
512 &__tens
[powers
->arrayoff
513 + _FPIO_CONST_OFFSET
],
514 powers
->arraysize
- _FPIO_CONST_OFFSET
);
515 tmpsize
= scalesize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
520 if (MPN_GE (frac
, tmp
))
523 MPN_ASSIGN (scale
, tmp
);
524 count_leading_zeros (cnt
, scale
[scalesize
- 1]);
525 scaleexpo
= (scalesize
- 2) * BITS_PER_MP_LIMB
- cnt
- 1;
526 exp10
|= 1 << explog
;
531 while (powers
> &_fpioconst_pow10
[0]);
534 /* Optimize number representations. We want to represent the numbers
535 with the lowest number of bytes possible without losing any
536 bytes. Also the highest bit in the scaling factor has to be set
537 (this is a requirement of the MPN division routines). */
540 /* Determine minimum number of zero bits at the end of
542 for (i
= 0; scale
[i
] == 0 && frac
[i
] == 0; i
++)
545 /* Determine number of bits the scaling factor is misplaced. */
546 count_leading_zeros (cnt_h
, scale
[scalesize
- 1]);
550 /* The highest bit of the scaling factor is already set. So
551 we only have to remove the trailing empty limbs. */
554 MPN_COPY_INCR (scale
, scale
+ i
, scalesize
- i
);
556 MPN_COPY_INCR (frac
, frac
+ i
, fracsize
- i
);
564 count_trailing_zeros (cnt_l
, scale
[i
]);
568 count_trailing_zeros (cnt_l2
, frac
[i
]);
574 count_trailing_zeros (cnt_l
, frac
[i
]);
576 /* Now shift the numbers to their optimal position. */
577 if (i
== 0 && BITS_PER_MP_LIMB
- cnt_h
> cnt_l
)
579 /* We cannot save any memory. So just roll both numbers
580 so that the scaling factor has its highest bit set. */
582 (void) __mpn_lshift (scale
, scale
, scalesize
, cnt_h
);
583 cy
= __mpn_lshift (frac
, frac
, fracsize
, cnt_h
);
585 frac
[fracsize
++] = cy
;
587 else if (BITS_PER_MP_LIMB
- cnt_h
<= cnt_l
)
589 /* We can save memory by removing the trailing zero limbs
590 and by packing the non-zero limbs which gain another
593 (void) __mpn_rshift (scale
, scale
+ i
, scalesize
- i
,
594 BITS_PER_MP_LIMB
- cnt_h
);
596 (void) __mpn_rshift (frac
, frac
+ i
, fracsize
- i
,
597 BITS_PER_MP_LIMB
- cnt_h
);
598 fracsize
-= frac
[fracsize
- i
- 1] == 0 ? i
+ 1 : i
;
602 /* We can only save the memory of the limbs which are zero.
603 The non-zero parts occupy the same number of limbs. */
605 (void) __mpn_rshift (scale
, scale
+ (i
- 1),
607 BITS_PER_MP_LIMB
- cnt_h
);
609 (void) __mpn_rshift (frac
, frac
+ (i
- 1),
611 BITS_PER_MP_LIMB
- cnt_h
);
612 fracsize
-= frac
[fracsize
- (i
- 1) - 1] == 0 ? i
: i
- 1;
617 else if (exponent
< 0)
621 int explog
= LDBL_MAX_10_EXP_LOG
;
622 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
623 mp_size_t used_limbs
= fracsize
- 1;
625 /* Now shift the input value to its right place. */
626 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, to_shift
);
627 frac
[fracsize
++] = cy
;
628 assert (cy
== 1 || (frac
[fracsize
- 2] == 0 && frac
[0] == 0));
631 exponent
= -exponent
;
633 assert (powers
!= &_fpioconst_pow10
[0]);
638 if (exponent
>= powers
->m_expo
)
640 int i
, incr
, cnt_h
, cnt_l
;
643 /* The __mpn_mul function expects the first argument to be
644 bigger than the second. */
645 if (fracsize
< powers
->arraysize
- _FPIO_CONST_OFFSET
)
646 cy
= __mpn_mul (tmp
, &__tens
[powers
->arrayoff
647 + _FPIO_CONST_OFFSET
],
648 powers
->arraysize
- _FPIO_CONST_OFFSET
,
651 cy
= __mpn_mul (tmp
, frac
, fracsize
,
652 &__tens
[powers
->arrayoff
+ _FPIO_CONST_OFFSET
],
653 powers
->arraysize
- _FPIO_CONST_OFFSET
);
654 tmpsize
= fracsize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
658 count_leading_zeros (cnt_h
, tmp
[tmpsize
- 1]);
659 incr
= (tmpsize
- fracsize
) * BITS_PER_MP_LIMB
660 + BITS_PER_MP_LIMB
- 1 - cnt_h
;
662 assert (incr
<= powers
->p_expo
);
664 /* If we increased the exponent by exactly 3 we have to test
665 for overflow. This is done by comparing with 10 shifted
666 to the right position. */
667 if (incr
== exponent
+ 3)
669 if (cnt_h
<= BITS_PER_MP_LIMB
- 4)
673 = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4 - cnt_h
);
677 topval
[0] = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4);
679 (void) __mpn_lshift (topval
, topval
, 2,
680 BITS_PER_MP_LIMB
- cnt_h
);
684 /* We have to be careful when multiplying the last factor.
685 If the result is greater than 1.0 be have to test it
686 against 10.0. If it is greater or equal to 10.0 the
687 multiplication was not valid. This is because we cannot
688 determine the number of bits in the result in advance. */
689 if (incr
< exponent
+ 3
690 || (incr
== exponent
+ 3 &&
691 (tmp
[tmpsize
- 1] < topval
[1]
692 || (tmp
[tmpsize
- 1] == topval
[1]
693 && tmp
[tmpsize
- 2] < topval
[0]))))
695 /* The factor is right. Adapt binary and decimal
698 exp10
|= 1 << explog
;
700 /* If this factor yields a number greater or equal to
701 1.0, we must not shift the non-fractional digits down. */
705 /* Now we optimize the number representation. */
706 for (i
= 0; tmp
[i
] == 0; ++i
);
707 if (cnt_h
== BITS_PER_MP_LIMB
- 1)
709 MPN_COPY (frac
, tmp
+ i
, tmpsize
- i
);
710 fracsize
= tmpsize
- i
;
714 count_trailing_zeros (cnt_l
, tmp
[i
]);
716 /* Now shift the numbers to their optimal position. */
717 if (i
== 0 && BITS_PER_MP_LIMB
- 1 - cnt_h
> cnt_l
)
719 /* We cannot save any memory. Just roll the
720 number so that the leading digit is in a
723 cy
= __mpn_lshift (frac
, tmp
, tmpsize
, cnt_h
+ 1);
724 fracsize
= tmpsize
+ 1;
725 frac
[fracsize
- 1] = cy
;
727 else if (BITS_PER_MP_LIMB
- 1 - cnt_h
<= cnt_l
)
729 (void) __mpn_rshift (frac
, tmp
+ i
, tmpsize
- i
,
730 BITS_PER_MP_LIMB
- 1 - cnt_h
);
731 fracsize
= tmpsize
- i
;
735 /* We can only save the memory of the limbs which
736 are zero. The non-zero parts occupy the same
739 (void) __mpn_rshift (frac
, tmp
+ (i
- 1),
741 BITS_PER_MP_LIMB
- 1 - cnt_h
);
742 fracsize
= tmpsize
- (i
- 1);
745 used_limbs
= fracsize
- 1;
750 while (powers
!= &_fpioconst_pow10
[1] && exponent
> 0);
751 /* All factors but 10^-1 are tested now. */
756 cy
= __mpn_mul_1 (tmp
, frac
, fracsize
, 10);
758 assert (cy
== 0 || tmp
[tmpsize
- 1] < 20);
760 count_trailing_zeros (cnt_l
, tmp
[0]);
761 if (cnt_l
< MIN (4, exponent
))
763 cy
= __mpn_lshift (frac
, tmp
, tmpsize
,
764 BITS_PER_MP_LIMB
- MIN (4, exponent
));
766 frac
[tmpsize
++] = cy
;
769 (void) __mpn_rshift (frac
, tmp
, tmpsize
, MIN (4, exponent
));
772 assert (frac
[fracsize
- 1] < 10);
778 /* This is a special case. We don't need a factor because the
779 numbers are in the range of 0.0 <= fp < 8.0. We simply
780 shift it to the right place and divide it by 1.0 to get the
781 leading digit. (Of course this division is not really made.) */
782 assert (0 <= exponent
&& exponent
< 3 &&
783 exponent
+ to_shift
< BITS_PER_MP_LIMB
);
785 /* Now shift the input value to its right place. */
786 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, (exponent
+ to_shift
));
787 frac
[fracsize
++] = cy
;
792 int width
= info
->width
;
793 wchar_t *wbuffer
, *wstartp
, *wcp
;
797 int intdig_max
, intdig_no
= 0;
798 int fracdig_min
, fracdig_max
, fracdig_no
= 0;
803 if (_tolower (info
->spec
) == 'e')
807 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
808 chars_needed
= 1 + 1 + fracdig_max
+ 1 + 1 + 4;
809 /* d . ddd e +- ddd */
810 dig_max
= INT_MAX
; /* Unlimited. */
811 significant
= 1; /* Does not matter here. */
813 else if (_tolower (info
->spec
) == 'f')
816 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
819 intdig_max
= exponent
+ 1;
820 /* This can be really big! */ /* XXX Maybe malloc if too big? */
821 chars_needed
= exponent
+ 1 + 1 + fracdig_max
;
826 chars_needed
= 1 + 1 + fracdig_max
;
828 dig_max
= INT_MAX
; /* Unlimited. */
829 significant
= 1; /* Does not matter here. */
833 dig_max
= info
->prec
< 0 ? 6 : (info
->prec
== 0 ? 1 : info
->prec
);
834 if ((expsign
== 0 && exponent
>= dig_max
)
835 || (expsign
!= 0 && exponent
> 4))
837 if ('g' - 'G' == 'e' - 'E')
838 type
= 'E' + (info
->spec
- 'G');
840 type
= isupper (info
->spec
) ? 'E' : 'e';
841 fracdig_max
= dig_max
- 1;
843 chars_needed
= 1 + 1 + fracdig_max
+ 1 + 1 + 4;
848 intdig_max
= expsign
== 0 ? exponent
+ 1 : 0;
849 fracdig_max
= dig_max
- intdig_max
;
850 /* We need space for the significant digits and perhaps
851 for leading zeros when < 1.0. The number of leading
852 zeros can be as many as would be required for
853 exponential notation with a negative two-digit
854 exponent, which is 4. */
855 chars_needed
= dig_max
+ 1 + 4;
857 fracdig_min
= info
->alt
? fracdig_max
: 0;
858 significant
= 0; /* We count significant digits. */
863 /* Guess the number of groups we will make, and thus how
864 many spaces we need for separator characters. */
865 ngroups
= __guess_grouping (intdig_max
, grouping
);
866 chars_needed
+= ngroups
;
869 /* Allocate buffer for output. We need two more because while rounding
870 it is possible that we need two more characters in front of all the
871 other output. If the amount of memory we have to allocate is too
872 large use `malloc' instead of `alloca'. */
873 buffer_malloced
= chars_needed
> 5000;
876 wbuffer
= (wchar_t *) malloc ((2 + chars_needed
) * sizeof (wchar_t));
878 /* Signal an error to the caller. */
882 wbuffer
= (wchar_t *) alloca ((2 + chars_needed
) * sizeof (wchar_t));
883 wcp
= wstartp
= wbuffer
+ 2; /* Let room for rounding. */
885 /* Do the real work: put digits in allocated buffer. */
886 if (expsign
== 0 || type
!= 'f')
888 assert (expsign
== 0 || intdig_max
== 1);
889 while (intdig_no
< intdig_max
)
892 *wcp
++ = hack_digit ();
897 || (fracdig_max
> 0 && (fracsize
> 1 || frac
[0] != 0)))
902 /* |fp| < 1.0 and the selected type is 'f', so put "0."
909 /* Generate the needed number of fractional digits. */
910 while (fracdig_no
< fracdig_min
911 || (fracdig_no
< fracdig_max
&& (fracsize
> 1 || frac
[0] != 0)))
914 *wcp
= hack_digit ();
917 else if (significant
== 0)
927 digit
= hack_digit ();
933 && ((*(wcp
- 1) != decimalwc
&& (*(wcp
- 1) & 1) == 0)
934 || ((*(wcp
- 1) == decimalwc
&& (*(wcp
- 2) & 1) == 0))))
936 /* This is the critical case. */
937 if (fracsize
== 1 && frac
[0] == 0)
938 /* Rest of the number is zero -> round to even.
939 (IEEE 754-1985 4.1 says this is the default rounding.) */
941 else if (scalesize
== 0)
943 /* Here we have to see whether all limbs are zero since no
944 normalization happened. */
945 size_t lcnt
= fracsize
;
946 while (lcnt
>= 1 && frac
[lcnt
- 1] == 0)
949 /* Rest of the number is zero -> round to even.
950 (IEEE 754-1985 4.1 says this is the default rounding.) */
957 /* Process fractional digits. Terminate if not rounded or
958 radix character is reached. */
959 while (*--wtp
!= decimalwc
&& *wtp
== L
'9')
961 if (*wtp
!= decimalwc
)
966 if (fracdig_no
== 0 || *wtp
== decimalwc
)
968 /* Round the integer digits. */
969 if (*(wtp
- 1) == decimalwc
)
972 while (--wtp
>= wstartp
&& *wtp
== L
'9')
979 /* It is more critical. All digits were 9's. */
984 exponent
+= expsign
== 0 ? 1 : -1;
986 else if (intdig_no
== dig_max
)
988 /* This is the case where for type %g the number fits
989 really in the range for %f output but after rounding
990 the number of digits is too big. */
991 *--wstartp
= decimalwc
;
994 if (info
->alt
|| fracdig_no
> 0)
996 /* Overwrite the old radix character. */
997 wstartp
[intdig_no
+ 2] = L
'0';
1001 fracdig_no
+= intdig_no
;
1003 fracdig_max
= intdig_max
- intdig_no
;
1005 /* Now we must print the exponent. */
1006 type
= isupper (info
->spec
) ? 'E' : 'e';
1010 /* We can simply add another another digit before the
1016 /* While rounding the number of digits can change.
1017 If the number now exceeds the limits remove some
1018 fractional digits. */
1019 if (intdig_no
+ fracdig_no
> dig_max
)
1021 wcp
-= intdig_no
+ fracdig_no
- dig_max
;
1022 fracdig_no
-= intdig_no
+ fracdig_no
- dig_max
;
1029 /* Now remove unnecessary '0' at the end of the string. */
1030 while (fracdig_no
> fracdig_min
&& *(wcp
- 1) == L
'0')
1035 /* If we eliminate all fractional digits we perhaps also can remove
1036 the radix character. */
1037 if (fracdig_no
== 0 && !info
->alt
&& *(wcp
- 1) == decimalwc
)
1041 /* Add in separator characters, overwriting the same buffer. */
1042 wcp
= group_number (wstartp
, wcp
, intdig_no
, grouping
, thousands_sepwc
,
1045 /* Write the exponent if it is needed. */
1048 *wcp
++ = (wchar_t) type
;
1049 *wcp
++ = expsign
? L
'-' : L
'+';
1051 /* Find the magnitude of the exponent. */
1053 while (expscale
<= exponent
)
1057 /* Exponent always has at least two digits. */
1063 *wcp
++ = L
'0' + (exponent
/ expscale
);
1064 exponent
%= expscale
;
1066 while (expscale
> 10);
1067 *wcp
++ = L
'0' + exponent
;
1070 /* Compute number of characters which must be filled with the padding
1072 if (is_neg
|| info
->showsign
|| info
->space
)
1074 width
-= wcp
- wstartp
;
1076 if (!info
->left
&& info
->pad
!= '0' && width
> 0)
1077 PADN (info
->pad
, width
);
1081 else if (info
->showsign
)
1083 else if (info
->space
)
1086 if (!info
->left
&& info
->pad
== '0' && width
> 0)
1090 char *buffer
= NULL
;
1096 /* Create the single byte string. */
1098 size_t thousands_sep_len
;
1101 decimal_len
= strlen (decimal
);
1103 if (thousands_sep
== NULL
)
1104 thousands_sep_len
= 0;
1106 thousands_sep_len
= strlen (thousands_sep
);
1108 if (buffer_malloced
)
1110 buffer
= (char *) malloc (2 + chars_needed
+ decimal_len
1111 + ngroups
* thousands_sep_len
);
1113 /* Signal an error to the caller. */
1117 buffer
= (char *) alloca (2 + chars_needed
+ decimal_len
1118 + ngroups
* thousands_sep_len
);
1120 /* Now copy the wide character string. Since the character
1121 (except for the decimal point and thousands separator) must
1122 be coming from the ASCII range we can esily convert the
1123 string without mapping tables. */
1124 for (cp
= buffer
, copywc
= wstartp
; copywc
< wcp
; ++copywc
)
1125 if (*copywc
== decimalwc
)
1126 cp
= (char *) __mempcpy (cp
, decimal
, decimal_len
);
1127 else if (*copywc
== thousands_sepwc
)
1128 cp
= (char *) __mempcpy (cp
, thousands_sep
, thousands_sep_len
);
1130 *cp
++ = (char) *copywc
;
1134 PRINT (tmpptr
, wstartp
, wide
? wcp
- wstartp
: cp
- tmpptr
);
1136 /* Free the memory if necessary. */
1137 if (buffer_malloced
)
1144 if (info
->left
&& width
> 0)
1145 PADN (info
->pad
, width
);
1149 libc_hidden_def (__printf_fp
)
1151 /* Return the number of extra grouping characters that will be inserted
1152 into a number with INTDIG_MAX integer digits. */
1155 __guess_grouping (unsigned int intdig_max
, const char *grouping
)
1157 unsigned int groups
;
1159 /* We treat all negative values like CHAR_MAX. */
1161 if (*grouping
== CHAR_MAX
|| *grouping
<= 0)
1162 /* No grouping should be done. */
1166 while (intdig_max
> (unsigned int) *grouping
)
1169 intdig_max
-= *grouping
++;
1171 if (*grouping
== CHAR_MAX
1176 /* No more grouping should be done. */
1178 else if (*grouping
== 0)
1180 /* Same grouping repeats. */
1181 groups
+= (intdig_max
- 1) / grouping
[-1];
1189 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1190 There is guaranteed enough space past BUFEND to extend it.
1191 Return the new end of buffer. */
1195 group_number (wchar_t *buf
, wchar_t *bufend
, unsigned int intdig_no
,
1196 const char *grouping
, wchar_t thousands_sep
, int ngroups
)
1203 /* Move the fractional part down. */
1204 __wmemmove (buf
+ intdig_no
+ ngroups
, buf
+ intdig_no
,
1205 bufend
- (buf
+ intdig_no
));
1207 p
= buf
+ intdig_no
+ ngroups
- 1;
1210 unsigned int len
= *grouping
++;
1212 *p
-- = buf
[--intdig_no
];
1214 *p
-- = thousands_sep
;
1216 if (*grouping
== CHAR_MAX
1221 /* No more grouping should be done. */
1223 else if (*grouping
== 0)
1224 /* Same grouping repeats. */
1226 } while (intdig_no
> (unsigned int) *grouping
);
1228 /* Copy the remaining ungrouped digits. */
1230 *p
-- = buf
[--intdig_no
];
1233 return bufend
+ ngroups
;