Move x86_64 compat-timer.h out of nptl/
[glibc.git] / soft-fp / op-1.h
blob33682cf51e11d4852b53a1d2a8f437d26a406d79
1 /* Software floating-point emulation.
2 Basic one-word fraction declaration and manipulation.
3 Copyright (C) 1997-2014 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Richard Henderson (rth@cygnus.com),
6 Jakub Jelinek (jj@ultra.linux.cz),
7 David S. Miller (davem@redhat.com) and
8 Peter Maydell (pmaydell@chiark.greenend.org.uk).
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
15 In addition to the permissions in the GNU Lesser General Public
16 License, the Free Software Foundation gives you unlimited
17 permission to link the compiled version of this file into
18 combinations with other programs, and to distribute those
19 combinations without any restriction coming from the use of this
20 file. (The Lesser General Public License restrictions do apply in
21 other respects; for example, they cover modification of the file,
22 and distribution when not linked into a combine executable.)
24 The GNU C Library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with the GNU C Library; if not, see
31 <http://www.gnu.org/licenses/>. */
33 #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f
34 #define _FP_FRAC_COPY_1(D, S) (D##_f = S##_f)
35 #define _FP_FRAC_SET_1(X, I) (X##_f = I)
36 #define _FP_FRAC_HIGH_1(X) (X##_f)
37 #define _FP_FRAC_LOW_1(X) (X##_f)
38 #define _FP_FRAC_WORD_1(X, w) (X##_f)
40 #define _FP_FRAC_ADDI_1(X, I) (X##_f += I)
41 #define _FP_FRAC_SLL_1(X, N) \
42 do \
43 { \
44 if (__builtin_constant_p (N) && (N) == 1) \
45 X##_f += X##_f; \
46 else \
47 X##_f <<= (N); \
48 } \
49 while (0)
50 #define _FP_FRAC_SRL_1(X, N) (X##_f >>= N)
52 /* Right shift with sticky-lsb. */
53 #define _FP_FRAC_SRST_1(X, S, N, sz) __FP_FRAC_SRST_1 (X##_f, S, N, sz)
54 #define _FP_FRAC_SRS_1(X, N, sz) __FP_FRAC_SRS_1 (X##_f, N, sz)
56 #define __FP_FRAC_SRST_1(X, S, N, sz) \
57 do \
58 { \
59 S = (__builtin_constant_p (N) && (N) == 1 \
60 ? X & 1 \
61 : (X << (_FP_W_TYPE_SIZE - (N))) != 0); \
62 X = X >> (N); \
63 } \
64 while (0)
66 #define __FP_FRAC_SRS_1(X, N, sz) \
67 (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1 \
68 ? X & 1 \
69 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
71 #define _FP_FRAC_ADD_1(R, X, Y) (R##_f = X##_f + Y##_f)
72 #define _FP_FRAC_SUB_1(R, X, Y) (R##_f = X##_f - Y##_f)
73 #define _FP_FRAC_DEC_1(X, Y) (X##_f -= Y##_f)
74 #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ (z, X##_f)
76 /* Predicates */
77 #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE) X##_f < 0)
78 #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
79 #define _FP_FRAC_OVERP_1(fs, X) (X##_f & _FP_OVERFLOW_##fs)
80 #define _FP_FRAC_CLEAR_OVERP_1(fs, X) (X##_f &= ~_FP_OVERFLOW_##fs)
81 #define _FP_FRAC_HIGHBIT_DW_1(fs, X) (X##_f & _FP_HIGHBIT_DW_##fs)
82 #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
83 #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
84 #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
86 #define _FP_ZEROFRAC_1 0
87 #define _FP_MINFRAC_1 1
88 #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE) 0)
91 * Unpack the raw bits of a native fp value. Do not classify or
92 * normalize the data.
95 #define _FP_UNPACK_RAW_1(fs, X, val) \
96 do \
97 { \
98 union _FP_UNION_##fs _flo; \
99 _flo.flt = (val); \
101 X##_f = _flo.bits.frac; \
102 X##_e = _flo.bits.exp; \
103 X##_s = _flo.bits.sign; \
105 while (0)
107 #define _FP_UNPACK_RAW_1_P(fs, X, val) \
108 do \
110 union _FP_UNION_##fs *_flo = (union _FP_UNION_##fs *) (val); \
112 X##_f = _flo->bits.frac; \
113 X##_e = _flo->bits.exp; \
114 X##_s = _flo->bits.sign; \
116 while (0)
119 * Repack the raw bits of a native fp value.
122 #define _FP_PACK_RAW_1(fs, val, X) \
123 do \
125 union _FP_UNION_##fs _flo; \
127 _flo.bits.frac = X##_f; \
128 _flo.bits.exp = X##_e; \
129 _flo.bits.sign = X##_s; \
131 (val) = _flo.flt; \
133 while (0)
135 #define _FP_PACK_RAW_1_P(fs, val, X) \
136 do \
138 union _FP_UNION_##fs *_flo = (union _FP_UNION_##fs *) (val); \
140 _flo->bits.frac = X##_f; \
141 _flo->bits.exp = X##_e; \
142 _flo->bits.sign = X##_s; \
144 while (0)
148 * Multiplication algorithms:
151 /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
152 multiplication immediately. */
154 #define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y) \
155 do \
157 R##_f = X##_f * Y##_f; \
159 while (0)
161 #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
162 do \
164 _FP_MUL_MEAT_DW_1_imm (wfracbits, R, X, Y); \
165 /* Normalize since we know where the msb of the multiplicands \
166 were (bit B), we know that the msb of the of the product is \
167 at either 2B or 2B-1. */ \
168 _FP_FRAC_SRS_1 (R, wfracbits-1, 2*wfracbits); \
170 while (0)
172 /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
174 #define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit) \
175 do \
177 doit (R##_f1, R##_f0, X##_f, Y##_f); \
179 while (0)
181 #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
182 do \
184 _FP_FRAC_DECL_2 (_Z); \
185 _FP_MUL_MEAT_DW_1_wide (wfracbits, _Z, X, Y, doit); \
186 /* Normalize since we know where the msb of the multiplicands \
187 were (bit B), we know that the msb of the of the product is \
188 at either 2B or 2B-1. */ \
189 _FP_FRAC_SRS_2 (_Z, wfracbits-1, 2*wfracbits); \
190 R##_f = _Z_f0; \
192 while (0)
194 /* Finally, a simple widening multiply algorithm. What fun! */
196 #define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y) \
197 do \
199 _FP_W_TYPE _xh, _xl, _yh, _yl; \
200 _FP_FRAC_DECL_2 (_a); \
202 /* split the words in half */ \
203 _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
204 _xl = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
205 _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
206 _yl = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
208 /* multiply the pieces */ \
209 R##_f0 = _xl * _yl; \
210 _a_f0 = _xh * _yl; \
211 _a_f1 = _xl * _yh; \
212 R##_f1 = _xh * _yh; \
214 /* reassemble into two full words */ \
215 if ((_a_f0 += _a_f1) < _a_f1) \
216 R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2); \
217 _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
218 _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
219 _FP_FRAC_ADD_2 (R, R, _a); \
221 while (0)
223 #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
224 do \
226 _FP_FRAC_DECL_2 (_z); \
227 _FP_MUL_MEAT_DW_1_hard (wfracbits, _z, X, Y); \
229 /* normalize */ \
230 _FP_FRAC_SRS_2 (_z, wfracbits - 1, 2*wfracbits); \
231 R##_f = _z_f0; \
233 while (0)
237 * Division algorithms:
240 /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
241 division immediately. Give this macro either _FP_DIV_HELP_imm for
242 C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
243 choose will depend on what the compiler does with divrem4. */
245 #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
246 do \
248 _FP_W_TYPE _q, _r; \
249 X##_f <<= (X##_f < Y##_f \
250 ? R##_e--, _FP_WFRACBITS_##fs \
251 : _FP_WFRACBITS_##fs - 1); \
252 doit (_q, _r, X##_f, Y##_f); \
253 R##_f = _q | (_r != 0); \
255 while (0)
257 /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
258 that may be useful in this situation. This first is for a primitive
259 that requires normalization, the second for one that does not. Look
260 for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
262 #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
263 do \
265 _FP_W_TYPE _nh, _nl, _q, _r, _y; \
267 /* Normalize Y -- i.e. make the most significant bit set. */ \
268 _y = Y##_f << _FP_WFRACXBITS_##fs; \
270 /* Shift X op correspondingly high, that is, up one full word. */ \
271 if (X##_f < Y##_f) \
273 R##_e--; \
274 _nl = 0; \
275 _nh = X##_f; \
277 else \
279 _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
280 _nh = X##_f >> 1; \
283 udiv_qrnnd (_q, _r, _nh, _nl, _y); \
284 R##_f = _q | (_r != 0); \
286 while (0)
288 #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
289 do \
291 _FP_W_TYPE _nh, _nl, _q, _r; \
292 if (X##_f < Y##_f) \
294 R##_e--; \
295 _nl = X##_f << _FP_WFRACBITS_##fs; \
296 _nh = X##_f >> _FP_WFRACXBITS_##fs; \
298 else \
300 _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
301 _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
303 udiv_qrnnd (_q, _r, _nh, _nl, Y##_f); \
304 R##_f = _q | (_r != 0); \
306 while (0)
310 * Square root algorithms:
311 * We have just one right now, maybe Newton approximation
312 * should be added for those machines where division is fast.
315 #define _FP_SQRT_MEAT_1(R, S, T, X, q) \
316 do \
318 while (q != _FP_WORK_ROUND) \
320 T##_f = S##_f + q; \
321 if (T##_f <= X##_f) \
323 S##_f = T##_f + q; \
324 X##_f -= T##_f; \
325 R##_f += q; \
327 _FP_FRAC_SLL_1 (X, 1); \
328 q >>= 1; \
330 if (X##_f) \
332 if (S##_f < X##_f) \
333 R##_f |= _FP_WORK_ROUND; \
334 R##_f |= _FP_WORK_STICKY; \
337 while (0)
340 * Assembly/disassembly for converting to/from integral types.
341 * No shifting or overflow handled here.
344 #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
345 #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
349 * Convert FP values between word sizes
352 #define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f)