Update.
[glibc.git] / manual / arith.texi
blobc0f8fe39013ee9a0399ae9c550bee3d383f4a08a
1 @node Arithmetic, Date and Time, Mathematics, Top
2 @c %MENU% Low level arithmetic functions
3 @chapter Arithmetic Functions
5 This chapter contains information about functions for doing basic
6 arithmetic operations, such as splitting a float into its integer and
7 fractional parts or retrieving the imaginary part of a complex value.
8 These functions are declared in the header files @file{math.h} and
9 @file{complex.h}.
11 @menu
12 * Integers::                    Basic integer types and concepts
13 * Integer Division::            Integer division with guaranteed rounding.
14 * Floating Point Numbers::      Basic concepts.  IEEE 754.
15 * Floating Point Classes::      The five kinds of floating-point number.
16 * Floating Point Errors::       When something goes wrong in a calculation.
17 * Rounding::                    Controlling how results are rounded.
18 * Control Functions::           Saving and restoring the FPU's state.
19 * Arithmetic Functions::        Fundamental operations provided by the library.
20 * Complex Numbers::             The types.  Writing complex constants.
21 * Operations on Complex::       Projection, conjugation, decomposition.
22 * Parsing of Numbers::          Converting strings to numbers.
23 * System V Number Conversion::  An archaic way to convert numbers to strings.
24 @end menu
26 @node Integers
27 @section Integers
28 @cindex integer
30 The C language defines several integer data types: integer, short integer,
31 long integer, and character, all in both signed and unsigned varieties.
32 The GNU C compiler extends the language to contain long long integers
33 as well.
34 @cindex signedness
36 The C integer types were intended to allow code to be portable among
37 machines with different inherent data sizes (word sizes), so each type
38 may have different ranges on different machines.  The problem with
39 this is that a program often needs to be written for a particular range
40 of integers, and sometimes must be written for a particular size of
41 storage, regardless of what machine the program runs on.
43 To address this problem, the GNU C library contains C type definitions
44 you can use to declare integers that meet your exact needs.  Because the
45 GNU C library header files are customized to a specific machine, your
46 program source code doesn't have to be.
48 These @code{typedef}s are in @file{stdint.h}.
49 @pindex stdint.h
51 If you require that an integer be represented in exactly N bits, use one
52 of the following types, with the obvious mapping to bit size and signedness:
54 @itemize @bullet
55 @item int8_t
56 @item int16_t
57 @item int32_t
58 @item int64_t
59 @item uint8_t
60 @item uint16_t
61 @item uint32_t
62 @item uint64_t
63 @end itemize
65 If your C compiler and target machine do not allow integers of a certain
66 size, the corresponding above type does not exist.
68 If you don't need a specific storage size, but want the smallest data
69 structure with @emph{at least} N bits, use one of these:
71 @itemize @bullet
72 @item int_least8_t
73 @item int_least16_t
74 @item int_least32_t
75 @item int_least64_t
76 @item uint_least8_t
77 @item uint_least16_t
78 @item uint_least32_t
79 @item uint_least64_t
80 @end itemize
82 If you don't need a specific storage size, but want the data structure
83 that allows the fastest access while having at least N bits (and
84 among data structures with the same access speed, the smallest one), use
85 one of these:
87 @itemize @bullet
88 @item int_fast8_t
89 @item int_fast16_t
90 @item int_fast32_t
91 @item int_fast64_t
92 @item uint_fast8_t
93 @item uint_fast16_t
94 @item uint_fast32_t
95 @item uint_fast64_t
96 @end itemize
98 If you want an integer with the widest range possible on the platform on
99 which it is being used, use one of the following.  If you use these,
100 you should write code that takes into account the variable size and range
101 of the integer.
103 @itemize @bullet
104 @item intmax_t
105 @item uintmax_t
106 @end itemize
108 The GNU C library also provides macros that tell you the maximum and
109 minimum possible values for each integer data type.  The macro names
110 follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
111 @code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
112 @code{INTMAX_MAX}, @code{INTMAX_MIN}.  Note that there are no macros for
113 unsigned integer minima.  These are always zero.
114 @cindex maximum possible integer
115 @cindex mininum possible integer
117 There are similar macros for use with C's built in integer types which
118 should come with your C compiler.  These are described in @ref{Data Type
119 Measurements}.
121 Don't forget you can use the C @code{sizeof} function with any of these
122 data types to get the number of bytes of storage each uses.
125 @node Integer Division
126 @section Integer Division
127 @cindex integer division functions
129 This section describes functions for performing integer division.  These
130 functions are redundant when GNU CC is used, because in GNU C the
131 @samp{/} operator always rounds towards zero.  But in other C
132 implementations, @samp{/} may round differently with negative arguments.
133 @code{div} and @code{ldiv} are useful because they specify how to round
134 the quotient: towards zero.  The remainder has the same sign as the
135 numerator.
137 These functions are specified to return a result @var{r} such that the value
138 @code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
139 @var{numerator}.
141 @pindex stdlib.h
142 To use these facilities, you should include the header file
143 @file{stdlib.h} in your program.
145 @comment stdlib.h
146 @comment ISO
147 @deftp {Data Type} div_t
148 This is a structure type used to hold the result returned by the @code{div}
149 function.  It has the following members:
151 @table @code
152 @item int quot
153 The quotient from the division.
155 @item int rem
156 The remainder from the division.
157 @end table
158 @end deftp
160 @comment stdlib.h
161 @comment ISO
162 @deftypefun div_t div (int @var{numerator}, int @var{denominator})
163 This function @code{div} computes the quotient and remainder from
164 the division of @var{numerator} by @var{denominator}, returning the
165 result in a structure of type @code{div_t}.
167 If the result cannot be represented (as in a division by zero), the
168 behavior is undefined.
170 Here is an example, albeit not a very useful one.
172 @smallexample
173 div_t result;
174 result = div (20, -6);
175 @end smallexample
177 @noindent
178 Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
179 @end deftypefun
181 @comment stdlib.h
182 @comment ISO
183 @deftp {Data Type} ldiv_t
184 This is a structure type used to hold the result returned by the @code{ldiv}
185 function.  It has the following members:
187 @table @code
188 @item long int quot
189 The quotient from the division.
191 @item long int rem
192 The remainder from the division.
193 @end table
195 (This is identical to @code{div_t} except that the components are of
196 type @code{long int} rather than @code{int}.)
197 @end deftp
199 @comment stdlib.h
200 @comment ISO
201 @deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
202 The @code{ldiv} function is similar to @code{div}, except that the
203 arguments are of type @code{long int} and the result is returned as a
204 structure of type @code{ldiv_t}.
205 @end deftypefun
207 @comment stdlib.h
208 @comment ISO
209 @deftp {Data Type} lldiv_t
210 This is a structure type used to hold the result returned by the @code{lldiv}
211 function.  It has the following members:
213 @table @code
214 @item long long int quot
215 The quotient from the division.
217 @item long long int rem
218 The remainder from the division.
219 @end table
221 (This is identical to @code{div_t} except that the components are of
222 type @code{long long int} rather than @code{int}.)
223 @end deftp
225 @comment stdlib.h
226 @comment ISO
227 @deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
228 The @code{lldiv} function is like the @code{div} function, but the
229 arguments are of type @code{long long int} and the result is returned as
230 a structure of type @code{lldiv_t}.
232 The @code{lldiv} function was added in @w{ISO C99}.
233 @end deftypefun
235 @comment inttypes.h
236 @comment ISO
237 @deftp {Data Type} imaxdiv_t
238 This is a structure type used to hold the result returned by the @code{imaxdiv}
239 function.  It has the following members:
241 @table @code
242 @item intmax_t quot
243 The quotient from the division.
245 @item intmax_t rem
246 The remainder from the division.
247 @end table
249 (This is identical to @code{div_t} except that the components are of
250 type @code{intmax_t} rather than @code{int}.)
252 See @ref{Integers} for a description of the @code{intmax_t} type.
254 @end deftp
256 @comment inttypes.h
257 @comment ISO
258 @deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
259 The @code{imaxdiv} function is like the @code{div} function, but the
260 arguments are of type @code{intmax_t} and the result is returned as
261 a structure of type @code{imaxdiv_t}.
263 See @ref{Integers} for a description of the @code{intmax_t} type.
265 The @code{imaxdiv} function was added in @w{ISO C99}.
266 @end deftypefun
269 @node Floating Point Numbers
270 @section Floating Point Numbers
271 @cindex floating point
272 @cindex IEEE 754
273 @cindex IEEE floating point
275 Most computer hardware has support for two different kinds of numbers:
276 integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
277 floating-point numbers.  Floating-point numbers have three parts: the
278 @dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}.  The real
279 number represented by a floating-point value is given by
280 @tex
281 $(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
282 @end tex
283 @ifnottex
284 @math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
285 @end ifnottex
286 where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
287 the mantissa.  @xref{Floating Point Concepts}, for details.  (It is
288 possible to have a different @dfn{base} for the exponent, but all modern
289 hardware uses @math{2}.)
291 Floating-point numbers can represent a finite subset of the real
292 numbers.  While this subset is large enough for most purposes, it is
293 important to remember that the only reals that can be represented
294 exactly are rational numbers that have a terminating binary expansion
295 shorter than the width of the mantissa.  Even simple fractions such as
296 @math{1/5} can only be approximated by floating point.
298 Mathematical operations and functions frequently need to produce values
299 that are not representable.  Often these values can be approximated
300 closely enough for practical purposes, but sometimes they can't.
301 Historically there was no way to tell when the results of a calculation
302 were inaccurate.  Modern computers implement the @w{IEEE 754} standard
303 for numerical computations, which defines a framework for indicating to
304 the program when the results of calculation are not trustworthy.  This
305 framework consists of a set of @dfn{exceptions} that indicate why a
306 result could not be represented, and the special values @dfn{infinity}
307 and @dfn{not a number} (NaN).
309 @node Floating Point Classes
310 @section Floating-Point Number Classification Functions
311 @cindex floating-point classes
312 @cindex classes, floating-point
313 @pindex math.h
315 @w{ISO C99} defines macros that let you determine what sort of
316 floating-point number a variable holds.
318 @comment math.h
319 @comment ISO
320 @deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
321 This is a generic macro which works on all floating-point types and
322 which returns a value of type @code{int}.  The possible values are:
324 @vtable @code
325 @item FP_NAN
326 The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
327 and NaN})
328 @item FP_INFINITE
329 The value of @var{x} is either plus or minus infinity (@pxref{Infinity
330 and NaN})
331 @item FP_ZERO
332 The value of @var{x} is zero.  In floating-point formats like @w{IEEE
333 754}, where zero can be signed, this value is also returned if
334 @var{x} is negative zero.
335 @item FP_SUBNORMAL
336 Numbers whose absolute value is too small to be represented in the
337 normal format are represented in an alternate, @dfn{denormalized} format
338 (@pxref{Floating Point Concepts}).  This format is less precise but can
339 represent values closer to zero.  @code{fpclassify} returns this value
340 for values of @var{x} in this alternate format.
341 @item FP_NORMAL
342 This value is returned for all other values of @var{x}.  It indicates
343 that there is nothing special about the number.
344 @end vtable
346 @end deftypefn
348 @code{fpclassify} is most useful if more than one property of a number
349 must be tested.  There are more specific macros which only test one
350 property at a time.  Generally these macros execute faster than
351 @code{fpclassify}, since there is special hardware support for them.
352 You should therefore use the specific macros whenever possible.
354 @comment math.h
355 @comment ISO
356 @deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
357 This macro returns a nonzero value if @var{x} is finite: not plus or
358 minus infinity, and not NaN.  It is equivalent to
360 @smallexample
361 (fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
362 @end smallexample
364 @code{isfinite} is implemented as a macro which accepts any
365 floating-point type.
366 @end deftypefn
368 @comment math.h
369 @comment ISO
370 @deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
371 This macro returns a nonzero value if @var{x} is finite and normalized.
372 It is equivalent to
374 @smallexample
375 (fpclassify (x) == FP_NORMAL)
376 @end smallexample
377 @end deftypefn
379 @comment math.h
380 @comment ISO
381 @deftypefn {Macro} int isnan (@emph{float-type} @var{x})
382 This macro returns a nonzero value if @var{x} is NaN.  It is equivalent
385 @smallexample
386 (fpclassify (x) == FP_NAN)
387 @end smallexample
388 @end deftypefn
390 Another set of floating-point classification functions was provided by
391 BSD.  The GNU C library also supports these functions; however, we
392 recommend that you use the ISO C99 macros in new code.  Those are standard
393 and will be available more widely.  Also, since they are macros, you do
394 not have to worry about the type of their argument.
396 @comment math.h
397 @comment BSD
398 @deftypefun int isinf (double @var{x})
399 @comment math.h
400 @comment BSD
401 @deftypefunx int isinff (float @var{x})
402 @comment math.h
403 @comment BSD
404 @deftypefunx int isinfl (long double @var{x})
405 This function returns @code{-1} if @var{x} represents negative infinity,
406 @code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
407 @end deftypefun
409 @comment math.h
410 @comment BSD
411 @deftypefun int isnan (double @var{x})
412 @comment math.h
413 @comment BSD
414 @deftypefunx int isnanf (float @var{x})
415 @comment math.h
416 @comment BSD
417 @deftypefunx int isnanl (long double @var{x})
418 This function returns a nonzero value if @var{x} is a ``not a number''
419 value, and zero otherwise.
421 @strong{Note:} The @code{isnan} macro defined by @w{ISO C99} overrides
422 the BSD function.  This is normally not a problem, because the two
423 routines behave identically.  However, if you really need to get the BSD
424 function for some reason, you can write
426 @smallexample
427 (isnan) (x)
428 @end smallexample
429 @end deftypefun
431 @comment math.h
432 @comment BSD
433 @deftypefun int finite (double @var{x})
434 @comment math.h
435 @comment BSD
436 @deftypefunx int finitef (float @var{x})
437 @comment math.h
438 @comment BSD
439 @deftypefunx int finitel (long double @var{x})
440 This function returns a nonzero value if @var{x} is finite or a ``not a
441 number'' value, and zero otherwise.
442 @end deftypefun
444 @comment math.h
445 @comment BSD
446 @deftypefun double infnan (int @var{error})
447 This function is provided for compatibility with BSD.  Its argument is
448 an error code, @code{EDOM} or @code{ERANGE}; @code{infnan} returns the
449 value that a math function would return if it set @code{errno} to that
450 value.  @xref{Math Error Reporting}.  @code{-ERANGE} is also acceptable
451 as an argument, and corresponds to @code{-HUGE_VAL} as a value.
453 In the BSD library, on certain machines, @code{infnan} raises a fatal
454 signal in all cases.  The GNU library does not do likewise, because that
455 does not fit the @w{ISO C} specification.
456 @end deftypefun
458 @strong{Portability Note:} The functions listed in this section are BSD
459 extensions.
462 @node Floating Point Errors
463 @section Errors in Floating-Point Calculations
465 @menu
466 * FP Exceptions::               IEEE 754 math exceptions and how to detect them.
467 * Infinity and NaN::            Special values returned by calculations.
468 * Status bit operations::       Checking for exceptions after the fact.
469 * Math Error Reporting::        How the math functions report errors.
470 @end menu
472 @node FP Exceptions
473 @subsection FP Exceptions
474 @cindex exception
475 @cindex signal
476 @cindex zero divide
477 @cindex division by zero
478 @cindex inexact exception
479 @cindex invalid exception
480 @cindex overflow exception
481 @cindex underflow exception
483 The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
484 during a calculation.  Each corresponds to a particular sort of error,
485 such as overflow.
487 When exceptions occur (when exceptions are @dfn{raised}, in the language
488 of the standard), one of two things can happen.  By default the
489 exception is simply noted in the floating-point @dfn{status word}, and
490 the program continues as if nothing had happened.  The operation
491 produces a default value, which depends on the exception (see the table
492 below).  Your program can check the status word to find out which
493 exceptions happened.
495 Alternatively, you can enable @dfn{traps} for exceptions.  In that case,
496 when an exception is raised, your program will receive the @code{SIGFPE}
497 signal.  The default action for this signal is to terminate the
498 program.  @xref{Signal Handling}, for how you can change the effect of
499 the signal.
501 @findex matherr
502 In the System V math library, the user-defined function @code{matherr}
503 is called when certain exceptions occur inside math library functions.
504 However, the Unix98 standard deprecates this interface.  We support it
505 for historical compatibility, but recommend that you do not use it in
506 new programs.
508 @noindent
509 The exceptions defined in @w{IEEE 754} are:
511 @table @samp
512 @item Invalid Operation
513 This exception is raised if the given operands are invalid for the
514 operation to be performed.  Examples are
515 (see @w{IEEE 754}, @w{section 7}):
516 @enumerate
517 @item
518 Addition or subtraction: @math{@infinity{} - @infinity{}}.  (But
519 @math{@infinity{} + @infinity{} = @infinity{}}).
520 @item
521 Multiplication: @math{0 @mul{} @infinity{}}.
522 @item
523 Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
524 @item
525 Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
526 infinite.
527 @item
528 Square root if the operand is less then zero.  More generally, any
529 mathematical function evaluated outside its domain produces this
530 exception.
531 @item
532 Conversion of a floating-point number to an integer or decimal
533 string, when the number cannot be represented in the target format (due
534 to overflow, infinity, or NaN).
535 @item
536 Conversion of an unrecognizable input string.
537 @item
538 Comparison via predicates involving @math{<} or @math{>}, when one or
539 other of the operands is NaN.  You can prevent this exception by using
540 the unordered comparison functions instead; see @ref{FP Comparison Functions}.
541 @end enumerate
543 If the exception does not trap, the result of the operation is NaN.
545 @item Division by Zero
546 This exception is raised when a finite nonzero number is divided
547 by zero.  If no trap occurs the result is either @math{+@infinity{}} or
548 @math{-@infinity{}}, depending on the signs of the operands.
550 @item Overflow
551 This exception is raised whenever the result cannot be represented
552 as a finite value in the precision format of the destination.  If no trap
553 occurs the result depends on the sign of the intermediate result and the
554 current rounding mode (@w{IEEE 754}, @w{section 7.3}):
555 @enumerate
556 @item
557 Round to nearest carries all overflows to @math{@infinity{}}
558 with the sign of the intermediate result.
559 @item
560 Round toward @math{0} carries all overflows to the largest representable
561 finite number with the sign of the intermediate result.
562 @item
563 Round toward @math{-@infinity{}} carries positive overflows to the
564 largest representable finite number and negative overflows to
565 @math{-@infinity{}}.
567 @item
568 Round toward @math{@infinity{}} carries negative overflows to the
569 most negative representable finite number and positive overflows
570 to @math{@infinity{}}.
571 @end enumerate
573 Whenever the overflow exception is raised, the inexact exception is also
574 raised.
576 @item Underflow
577 The underflow exception is raised when an intermediate result is too
578 small to be calculated accurately, or if the operation's result rounded
579 to the destination precision is too small to be normalized.
581 When no trap is installed for the underflow exception, underflow is
582 signaled (via the underflow flag) only when both tininess and loss of
583 accuracy have been detected.  If no trap handler is installed the
584 operation continues with an imprecise small value, or zero if the
585 destination precision cannot hold the small exact result.
587 @item Inexact
588 This exception is signalled if a rounded result is not exact (such as
589 when calculating the square root of two) or a result overflows without
590 an overflow trap.
591 @end table
593 @node Infinity and NaN
594 @subsection Infinity and NaN
595 @cindex infinity
596 @cindex not a number
597 @cindex NaN
599 @w{IEEE 754} floating point numbers can represent positive or negative
600 infinity, and @dfn{NaN} (not a number).  These three values arise from
601 calculations whose result is undefined or cannot be represented
602 accurately.  You can also deliberately set a floating-point variable to
603 any of them, which is sometimes useful.  Some examples of calculations
604 that produce infinity or NaN:
606 @ifnottex
607 @smallexample
608 @math{1/0 = @infinity{}}
609 @math{log (0) = -@infinity{}}
610 @math{sqrt (-1) = NaN}
611 @end smallexample
612 @end ifnottex
613 @tex
614 $${1\over0} = \infty$$
615 $$\log 0 = -\infty$$
616 $$\sqrt{-1} = \hbox{NaN}$$
617 @end tex
619 When a calculation produces any of these values, an exception also
620 occurs; see @ref{FP Exceptions}.
622 The basic operations and math functions all accept infinity and NaN and
623 produce sensible output.  Infinities propagate through calculations as
624 one would expect: for example, @math{2 + @infinity{} = @infinity{}},
625 @math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}.  NaN, on
626 the other hand, infects any calculation that involves it.  Unless the
627 calculation would produce the same result no matter what real value
628 replaced NaN, the result is NaN.
630 In comparison operations, positive infinity is larger than all values
631 except itself and NaN, and negative infinity is smaller than all values
632 except itself and NaN.  NaN is @dfn{unordered}: it is not equal to,
633 greater than, or less than anything, @emph{including itself}. @code{x ==
634 x} is false if the value of @code{x} is NaN.  You can use this to test
635 whether a value is NaN or not, but the recommended way to test for NaN
636 is with the @code{isnan} function (@pxref{Floating Point Classes}).  In
637 addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
638 exception when applied to NaNs.
640 @file{math.h} defines macros that allow you to explicitly set a variable
641 to infinity or NaN.
643 @comment math.h
644 @comment ISO
645 @deftypevr Macro float INFINITY
646 An expression representing positive infinity.  It is equal to the value
647 produced  by mathematical operations like @code{1.0 / 0.0}.
648 @code{-INFINITY} represents negative infinity.
650 You can test whether a floating-point value is infinite by comparing it
651 to this macro.  However, this is not recommended; you should use the
652 @code{isfinite} macro instead.  @xref{Floating Point Classes}.
654 This macro was introduced in the @w{ISO C99} standard.
655 @end deftypevr
657 @comment math.h
658 @comment GNU
659 @deftypevr Macro float NAN
660 An expression representing a value which is ``not a number''.  This
661 macro is a GNU extension, available only on machines that support the
662 ``not a number'' value---that is to say, on all machines that support
663 IEEE floating point.
665 You can use @samp{#ifdef NAN} to test whether the machine supports
666 NaN.  (Of course, you must arrange for GNU extensions to be visible,
667 such as by defining @code{_GNU_SOURCE}, and then you must include
668 @file{math.h}.)
669 @end deftypevr
671 @w{IEEE 754} also allows for another unusual value: negative zero.  This
672 value is produced when you divide a positive number by negative
673 infinity, or when a negative result is smaller than the limits of
674 representation.  Negative zero behaves identically to zero in all
675 calculations, unless you explicitly test the sign bit with
676 @code{signbit} or @code{copysign}.
678 @node Status bit operations
679 @subsection Examining the FPU status word
681 @w{ISO C99} defines functions to query and manipulate the
682 floating-point status word.  You can use these functions to check for
683 untrapped exceptions when it's convenient, rather than worrying about
684 them in the middle of a calculation.
686 These constants represent the various @w{IEEE 754} exceptions.  Not all
687 FPUs report all the different exceptions.  Each constant is defined if
688 and only if the FPU you are compiling for supports that exception, so
689 you can test for FPU support with @samp{#ifdef}.  They are defined in
690 @file{fenv.h}.
692 @vtable @code
693 @comment fenv.h
694 @comment ISO
695 @item FE_INEXACT
696  The inexact exception.
697 @comment fenv.h
698 @comment ISO
699 @item FE_DIVBYZERO
700  The divide by zero exception.
701 @comment fenv.h
702 @comment ISO
703 @item FE_UNDERFLOW
704  The underflow exception.
705 @comment fenv.h
706 @comment ISO
707 @item FE_OVERFLOW
708  The overflow exception.
709 @comment fenv.h
710 @comment ISO
711 @item FE_INVALID
712  The invalid exception.
713 @end vtable
715 The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
716 which are supported by the FP implementation.
718 These functions allow you to clear exception flags, test for exceptions,
719 and save and restore the set of exceptions flagged.
721 @comment fenv.h
722 @comment ISO
723 @deftypefun int feclearexcept (int @var{excepts})
724 This function clears all of the supported exception flags indicated by
725 @var{excepts}.
727 The function returns zero in case the operation was successful, a
728 non-zero value otherwise.
729 @end deftypefun
731 @comment fenv.h
732 @comment ISO
733 @deftypefun int feraiseexcept (int @var{excepts})
734 This function raises the supported exceptions indicated by
735 @var{excepts}.  If more than one exception bit in @var{excepts} is set
736 the order in which the exceptions are raised is undefined except that
737 overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
738 raised before inexact (@code{FE_INEXACT}).  Whether for overflow or
739 underflow the inexact exception is also raised is also implementation
740 dependent.
742 The function returns zero in case the operation was successful, a
743 non-zero value otherwise.
744 @end deftypefun
746 @comment fenv.h
747 @comment ISO
748 @deftypefun int fetestexcept (int @var{excepts})
749 Test whether the exception flags indicated by the parameter @var{except}
750 are currently set.  If any of them are, a nonzero value is returned
751 which specifies which exceptions are set.  Otherwise the result is zero.
752 @end deftypefun
754 To understand these functions, imagine that the status word is an
755 integer variable named @var{status}.  @code{feclearexcept} is then
756 equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
757 equivalent to @samp{(status & excepts)}.  The actual implementation may
758 be very different, of course.
760 Exception flags are only cleared when the program explicitly requests it,
761 by calling @code{feclearexcept}.  If you want to check for exceptions
762 from a set of calculations, you should clear all the flags first.  Here
763 is a simple example of the way to use @code{fetestexcept}:
765 @smallexample
767   double f;
768   int raised;
769   feclearexcept (FE_ALL_EXCEPT);
770   f = compute ();
771   raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
772   if (raised & FE_OVERFLOW) @{ /* ... */ @}
773   if (raised & FE_INVALID) @{ /* ... */ @}
774   /* ... */
776 @end smallexample
778 You cannot explicitly set bits in the status word.  You can, however,
779 save the entire status word and restore it later.  This is done with the
780 following functions:
782 @comment fenv.h
783 @comment ISO
784 @deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
785 This function stores in the variable pointed to by @var{flagp} an
786 implementation-defined value representing the current setting of the
787 exception flags indicated by @var{excepts}.
789 The function returns zero in case the operation was successful, a
790 non-zero value otherwise.
791 @end deftypefun
793 @comment fenv.h
794 @comment ISO
795 @deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int
796 @var{excepts})
797 This function restores the flags for the exceptions indicated by
798 @var{excepts} to the values stored in the variable pointed to by
799 @var{flagp}.
801 The function returns zero in case the operation was successful, a
802 non-zero value otherwise.
803 @end deftypefun
805 Note that the value stored in @code{fexcept_t} bears no resemblance to
806 the bit mask returned by @code{fetestexcept}.  The type may not even be
807 an integer.  Do not attempt to modify an @code{fexcept_t} variable.
809 @node Math Error Reporting
810 @subsection Error Reporting by Mathematical Functions
811 @cindex errors, mathematical
812 @cindex domain error
813 @cindex range error
815 Many of the math functions are defined only over a subset of the real or
816 complex numbers.  Even if they are mathematically defined, their result
817 may be larger or smaller than the range representable by their return
818 type.  These are known as @dfn{domain errors}, @dfn{overflows}, and
819 @dfn{underflows}, respectively.  Math functions do several things when
820 one of these errors occurs.  In this manual we will refer to the
821 complete response as @dfn{signalling} a domain error, overflow, or
822 underflow.
824 When a math function suffers a domain error, it raises the invalid
825 exception and returns NaN.  It also sets @var{errno} to @code{EDOM};
826 this is for compatibility with old systems that do not support @w{IEEE
827 754} exception handling.  Likewise, when overflow occurs, math
828 functions raise the overflow exception and return @math{@infinity{}} or
829 @math{-@infinity{}} as appropriate.  They also set @var{errno} to
830 @code{ERANGE}.  When underflow occurs, the underflow exception is
831 raised, and zero (appropriately signed) is returned.  @var{errno} may be
832 set to @code{ERANGE}, but this is not guaranteed.
834 Some of the math functions are defined mathematically to result in a
835 complex value over parts of their domains.  The most familiar example of
836 this is taking the square root of a negative number.  The complex math
837 functions, such as @code{csqrt}, will return the appropriate complex value
838 in this case.  The real-valued functions, such as @code{sqrt}, will
839 signal a domain error.
841 Some older hardware does not support infinities.  On that hardware,
842 overflows instead return a particular very large number (usually the
843 largest representable number).  @file{math.h} defines macros you can use
844 to test for overflow on both old and new hardware.
846 @comment math.h
847 @comment ISO
848 @deftypevr Macro double HUGE_VAL
849 @comment math.h
850 @comment ISO
851 @deftypevrx Macro float HUGE_VALF
852 @comment math.h
853 @comment ISO
854 @deftypevrx Macro {long double} HUGE_VALL
855 An expression representing a particular very large number.  On machines
856 that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
857 On other machines, it's typically the largest positive number that can
858 be represented.
860 Mathematical functions return the appropriately typed version of
861 @code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
862 to be represented.
863 @end deftypevr
865 @node Rounding
866 @section Rounding Modes
868 Floating-point calculations are carried out internally with extra
869 precision, and then rounded to fit into the destination type.  This
870 ensures that results are as precise as the input data.  @w{IEEE 754}
871 defines four possible rounding modes:
873 @table @asis
874 @item Round to nearest.
875 This is the default mode.  It should be used unless there is a specific
876 need for one of the others.  In this mode results are rounded to the
877 nearest representable value.  If the result is midway between two
878 representable values, the even representable is chosen. @dfn{Even} here
879 means the lowest-order bit is zero.  This rounding mode prevents
880 statistical bias and guarantees numeric stability: round-off errors in a
881 lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
883 @c @item Round toward @math{+@infinity{}}
884 @item Round toward plus Infinity.
885 All results are rounded to the smallest representable value
886 which is greater than the result.
888 @c @item Round toward @math{-@infinity{}}
889 @item Round toward minus Infinity.
890 All results are rounded to the largest representable value which is less
891 than the result.
893 @item Round toward zero.
894 All results are rounded to the largest representable value whose
895 magnitude is less than that of the result.  In other words, if the
896 result is negative it is rounded up; if it is positive, it is rounded
897 down.
898 @end table
900 @noindent
901 @file{fenv.h} defines constants which you can use to refer to the
902 various rounding modes.  Each one will be defined if and only if the FPU
903 supports the corresponding rounding mode.
905 @table @code
906 @comment fenv.h
907 @comment ISO
908 @vindex FE_TONEAREST
909 @item FE_TONEAREST
910 Round to nearest.
912 @comment fenv.h
913 @comment ISO
914 @vindex FE_UPWARD
915 @item FE_UPWARD
916 Round toward @math{+@infinity{}}.
918 @comment fenv.h
919 @comment ISO
920 @vindex FE_DOWNWARD
921 @item FE_DOWNWARD
922 Round toward @math{-@infinity{}}.
924 @comment fenv.h
925 @comment ISO
926 @vindex FE_TOWARDZERO
927 @item FE_TOWARDZERO
928 Round toward zero.
929 @end table
931 Underflow is an unusual case.  Normally, @w{IEEE 754} floating point
932 numbers are always normalized (@pxref{Floating Point Concepts}).
933 Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
934 @code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
935 normalized numbers.  Rounding all such numbers to zero or @math{2^r}
936 would cause some algorithms to fail at 0.  Therefore, they are left in
937 denormalized form.  That produces loss of precision, since some bits of
938 the mantissa are stolen to indicate the decimal point.
940 If a result is too small to be represented as a denormalized number, it
941 is rounded to zero.  However, the sign of the result is preserved; if
942 the calculation was negative, the result is @dfn{negative zero}.
943 Negative zero can also result from some operations on infinity, such as
944 @math{4/-@infinity{}}.  Negative zero behaves identically to zero except
945 when the @code{copysign} or @code{signbit} functions are used to check
946 the sign bit directly.
948 At any time one of the above four rounding modes is selected.  You can
949 find out which one with this function:
951 @comment fenv.h
952 @comment ISO
953 @deftypefun int fegetround (void)
954 Returns the currently selected rounding mode, represented by one of the
955 values of the defined rounding mode macros.
956 @end deftypefun
958 @noindent
959 To change the rounding mode, use this function:
961 @comment fenv.h
962 @comment ISO
963 @deftypefun int fesetround (int @var{round})
964 Changes the currently selected rounding mode to @var{round}.  If
965 @var{round} does not correspond to one of the supported rounding modes
966 nothing is changed.  @code{fesetround} returns zero if it changed the
967 rounding mode, a nonzero value if the mode is not supported.
968 @end deftypefun
970 You should avoid changing the rounding mode if possible.  It can be an
971 expensive operation; also, some hardware requires you to compile your
972 program differently for it to work.  The resulting code may run slower.
973 See your compiler documentation for details.
974 @c This section used to claim that functions existed to round one number
975 @c in a specific fashion.  I can't find any functions in the library
976 @c that do that. -zw
978 @node Control Functions
979 @section Floating-Point Control Functions
981 @w{IEEE 754} floating-point implementations allow the programmer to
982 decide whether traps will occur for each of the exceptions, by setting
983 bits in the @dfn{control word}.  In C, traps result in the program
984 receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
986 @strong{Note:} @w{IEEE 754} says that trap handlers are given details of
987 the exceptional situation, and can set the result value.  C signals do
988 not provide any mechanism to pass this information back and forth.
989 Trapping exceptions in C is therefore not very useful.
991 It is sometimes necessary to save the state of the floating-point unit
992 while you perform some calculation.  The library provides functions
993 which save and restore the exception flags, the set of exceptions that
994 generate traps, and the rounding mode.  This information is known as the
995 @dfn{floating-point environment}.
997 The functions to save and restore the floating-point environment all use
998 a variable of type @code{fenv_t} to store information.  This type is
999 defined in @file{fenv.h}.  Its size and contents are
1000 implementation-defined.  You should not attempt to manipulate a variable
1001 of this type directly.
1003 To save the state of the FPU, use one of these functions:
1005 @comment fenv.h
1006 @comment ISO
1007 @deftypefun int fegetenv (fenv_t *@var{envp})
1008 Store the floating-point environment in the variable pointed to by
1009 @var{envp}.
1011 The function returns zero in case the operation was successful, a
1012 non-zero value otherwise.
1013 @end deftypefun
1015 @comment fenv.h
1016 @comment ISO
1017 @deftypefun int feholdexcept (fenv_t *@var{envp})
1018 Store the current floating-point environment in the object pointed to by
1019 @var{envp}.  Then clear all exception flags, and set the FPU to trap no
1020 exceptions.  Not all FPUs support trapping no exceptions; if
1021 @code{feholdexcept} cannot set this mode, it returns nonzero value.  If it
1022 succeeds, it returns zero.
1023 @end deftypefun
1025 The functions which restore the floating-point environment can take these
1026 kinds of arguments:
1028 @itemize @bullet
1029 @item
1030 Pointers to @code{fenv_t} objects, which were initialized previously by a
1031 call to @code{fegetenv} or @code{feholdexcept}.
1032 @item
1033 @vindex FE_DFL_ENV
1034 The special macro @code{FE_DFL_ENV} which represents the floating-point
1035 environment as it was available at program start.
1036 @item
1037 Implementation defined macros with names starting with @code{FE_} and
1038 having type @code{fenv_t *}.
1040 @vindex FE_NOMASK_ENV
1041 If possible, the GNU C Library defines a macro @code{FE_NOMASK_ENV}
1042 which represents an environment where every exception raised causes a
1043 trap to occur.  You can test for this macro using @code{#ifdef}.  It is
1044 only defined if @code{_GNU_SOURCE} is defined.
1046 Some platforms might define other predefined environments.
1047 @end itemize
1049 @noindent
1050 To set the floating-point environment, you can use either of these
1051 functions:
1053 @comment fenv.h
1054 @comment ISO
1055 @deftypefun int fesetenv (const fenv_t *@var{envp})
1056 Set the floating-point environment to that described by @var{envp}.
1058 The function returns zero in case the operation was successful, a
1059 non-zero value otherwise.
1060 @end deftypefun
1062 @comment fenv.h
1063 @comment ISO
1064 @deftypefun int feupdateenv (const fenv_t *@var{envp})
1065 Like @code{fesetenv}, this function sets the floating-point environment
1066 to that described by @var{envp}.  However, if any exceptions were
1067 flagged in the status word before @code{feupdateenv} was called, they
1068 remain flagged after the call.  In other words, after @code{feupdateenv}
1069 is called, the status word is the bitwise OR of the previous status word
1070 and the one saved in @var{envp}.
1072 The function returns zero in case the operation was successful, a
1073 non-zero value otherwise.
1074 @end deftypefun
1076 @noindent
1077 To control for individual exceptions if raising them causes a trap to
1078 occur, you can use the following two functions.
1080 @strong{Portability Note:} These functions are all GNU extensions.
1082 @comment fenv.h
1083 @comment GNU
1084 @deftypefun int feenableexcept (int @var{excepts})
1085 This functions enables traps for each of the exceptions as indicated by
1086 the parameter @var{except}.  The individual excepetions are described in
1087 @ref{Status bit operations}.  Only the specified exceptions are
1088 enabled, the status of the other exceptions is not changed.
1090 The function returns the previous enabled exceptions in case the
1091 operation was successful, @code{-1} otherwise.
1092 @end deftypefun
1094 @comment fenv.h
1095 @comment GNU
1096 @deftypefun int fedisableexcept (int @var{excepts})
1097 This functions disables traps for each of the exceptions as indicated by
1098 the parameter @var{except}.  The individual excepetions are described in
1099 @ref{Status bit operations}.  Only the specified exceptions are
1100 disabled, the status of the other exceptions is not changed.
1102 The function returns the previous enabled exceptions in case the
1103 operation was successful, @code{-1} otherwise.
1104 @end deftypefun
1106 @comment fenv.h
1107 @comment GNU
1108 @deftypefun int fegetexcept (int @var{excepts})
1109 The function returns a bitmask of all currently enabled exceptions.  It
1110 returns @code{-1} in case of failure.
1111 @end deftypefun
1113 @node Arithmetic Functions
1114 @section Arithmetic Functions
1116 The C library provides functions to do basic operations on
1117 floating-point numbers.  These include absolute value, maximum and minimum,
1118 normalization, bit twiddling, rounding, and a few others.
1120 @menu
1121 * Absolute Value::              Absolute values of integers and floats.
1122 * Normalization Functions::     Extracting exponents and putting them back.
1123 * Rounding Functions::          Rounding floats to integers.
1124 * Remainder Functions::         Remainders on division, precisely defined.
1125 * FP Bit Twiddling::            Sign bit adjustment.  Adding epsilon.
1126 * FP Comparison Functions::     Comparisons without risk of exceptions.
1127 * Misc FP Arithmetic::          Max, min, positive difference, multiply-add.
1128 @end menu
1130 @node Absolute Value
1131 @subsection Absolute Value
1132 @cindex absolute value functions
1134 These functions are provided for obtaining the @dfn{absolute value} (or
1135 @dfn{magnitude}) of a number.  The absolute value of a real number
1136 @var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
1137 negative.  For a complex number @var{z}, whose real part is @var{x} and
1138 whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1139 (@var{x}*@var{x} + @var{y}*@var{y})}}.
1141 @pindex math.h
1142 @pindex stdlib.h
1143 Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
1144 @code{imaxabs} is declared in @file{inttypes.h};
1145 @code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
1146 @code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
1148 @comment stdlib.h
1149 @comment ISO
1150 @deftypefun int abs (int @var{number})
1151 @comment stdlib.h
1152 @comment ISO
1153 @deftypefunx {long int} labs (long int @var{number})
1154 @comment stdlib.h
1155 @comment ISO
1156 @deftypefunx {long long int} llabs (long long int @var{number})
1157 @comment inttypes.h
1158 @comment ISO
1159 @deftypefunx intmax_t imaxabs (intmax_t @var{number})
1160 These functions return the absolute value of @var{number}.
1162 Most computers use a two's complement integer representation, in which
1163 the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1164 cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
1166 @code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
1168 See @ref{Integers} for a description of the @code{intmax_t} type.
1170 @end deftypefun
1172 @comment math.h
1173 @comment ISO
1174 @deftypefun double fabs (double @var{number})
1175 @comment math.h
1176 @comment ISO
1177 @deftypefunx float fabsf (float @var{number})
1178 @comment math.h
1179 @comment ISO
1180 @deftypefunx {long double} fabsl (long double @var{number})
1181 This function returns the absolute value of the floating-point number
1182 @var{number}.
1183 @end deftypefun
1185 @comment complex.h
1186 @comment ISO
1187 @deftypefun double cabs (complex double @var{z})
1188 @comment complex.h
1189 @comment ISO
1190 @deftypefunx float cabsf (complex float @var{z})
1191 @comment complex.h
1192 @comment ISO
1193 @deftypefunx {long double} cabsl (complex long double @var{z})
1194 These functions return the absolute  value of the complex number @var{z}
1195 (@pxref{Complex Numbers}).  The absolute value of a complex number is:
1197 @smallexample
1198 sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
1199 @end smallexample
1201 This function should always be used instead of the direct formula
1202 because it takes special care to avoid losing precision.  It may also
1203 take advantage of hardware support for this operation. See @code{hypot}
1204 in @ref{Exponents and Logarithms}.
1205 @end deftypefun
1207 @node Normalization Functions
1208 @subsection Normalization Functions
1209 @cindex normalization functions (floating-point)
1211 The functions described in this section are primarily provided as a way
1212 to efficiently perform certain low-level manipulations on floating point
1213 numbers that are represented internally using a binary radix;
1214 see @ref{Floating Point Concepts}.  These functions are required to
1215 have equivalent behavior even if the representation does not use a radix
1216 of 2, but of course they are unlikely to be particularly efficient in
1217 those cases.
1219 @pindex math.h
1220 All these functions are declared in @file{math.h}.
1222 @comment math.h
1223 @comment ISO
1224 @deftypefun double frexp (double @var{value}, int *@var{exponent})
1225 @comment math.h
1226 @comment ISO
1227 @deftypefunx float frexpf (float @var{value}, int *@var{exponent})
1228 @comment math.h
1229 @comment ISO
1230 @deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
1231 These functions are used to split the number @var{value}
1232 into a normalized fraction and an exponent.
1234 If the argument @var{value} is not zero, the return value is @var{value}
1235 times a power of two, and is always in the range 1/2 (inclusive) to 1
1236 (exclusive).  The corresponding exponent is stored in
1237 @code{*@var{exponent}}; the return value multiplied by 2 raised to this
1238 exponent equals the original number @var{value}.
1240 For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1241 stores @code{4} in @code{exponent}.
1243 If @var{value} is zero, then the return value is zero and
1244 zero is stored in @code{*@var{exponent}}.
1245 @end deftypefun
1247 @comment math.h
1248 @comment ISO
1249 @deftypefun double ldexp (double @var{value}, int @var{exponent})
1250 @comment math.h
1251 @comment ISO
1252 @deftypefunx float ldexpf (float @var{value}, int @var{exponent})
1253 @comment math.h
1254 @comment ISO
1255 @deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
1256 These functions return the result of multiplying the floating-point
1257 number @var{value} by 2 raised to the power @var{exponent}.  (It can
1258 be used to reassemble floating-point numbers that were taken apart
1259 by @code{frexp}.)
1261 For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1262 @end deftypefun
1264 The following functions, which come from BSD, provide facilities
1265 equivalent to those of @code{ldexp} and @code{frexp}.
1267 @comment math.h
1268 @comment BSD
1269 @deftypefun double logb (double @var{x})
1270 @comment math.h
1271 @comment BSD
1272 @deftypefunx float logbf (float @var{x})
1273 @comment math.h
1274 @comment BSD
1275 @deftypefunx {long double} logbl (long double @var{x})
1276 These functions return the integer part of the base-2 logarithm of
1277 @var{x}, an integer value represented in type @code{double}.  This is
1278 the highest integer power of @code{2} contained in @var{x}.  The sign of
1279 @var{x} is ignored.  For example, @code{logb (3.5)} is @code{1.0} and
1280 @code{logb (4.0)} is @code{2.0}.
1282 When @code{2} raised to this power is divided into @var{x}, it gives a
1283 quotient between @code{1} (inclusive) and @code{2} (exclusive).
1285 If @var{x} is zero, the return value is minus infinity if the machine
1286 supports infinities, and a very small number if it does not.  If @var{x}
1287 is infinity, the return value is infinity.
1289 For finite @var{x}, the value returned by @code{logb} is one less than
1290 the value that @code{frexp} would store into @code{*@var{exponent}}.
1291 @end deftypefun
1293 @comment math.h
1294 @comment BSD
1295 @deftypefun double scalb (double @var{value}, int @var{exponent})
1296 @comment math.h
1297 @comment BSD
1298 @deftypefunx float scalbf (float @var{value}, int @var{exponent})
1299 @comment math.h
1300 @comment BSD
1301 @deftypefunx {long double} scalbl (long double @var{value}, int @var{exponent})
1302 The @code{scalb} function is the BSD name for @code{ldexp}.
1303 @end deftypefun
1305 @comment math.h
1306 @comment BSD
1307 @deftypefun {long long int} scalbn (double @var{x}, int n)
1308 @comment math.h
1309 @comment BSD
1310 @deftypefunx {long long int} scalbnf (float @var{x}, int n)
1311 @comment math.h
1312 @comment BSD
1313 @deftypefunx {long long int} scalbnl (long double @var{x}, int n)
1314 @code{scalbn} is identical to @code{scalb}, except that the exponent
1315 @var{n} is an @code{int} instead of a floating-point number.
1316 @end deftypefun
1318 @comment math.h
1319 @comment BSD
1320 @deftypefun {long long int} scalbln (double @var{x}, long int n)
1321 @comment math.h
1322 @comment BSD
1323 @deftypefunx {long long int} scalblnf (float @var{x}, long int n)
1324 @comment math.h
1325 @comment BSD
1326 @deftypefunx {long long int} scalblnl (long double @var{x}, long int n)
1327 @code{scalbln} is identical to @code{scalb}, except that the exponent
1328 @var{n} is a @code{long int} instead of a floating-point number.
1329 @end deftypefun
1331 @comment math.h
1332 @comment BSD
1333 @deftypefun {long long int} significand (double @var{x})
1334 @comment math.h
1335 @comment BSD
1336 @deftypefunx {long long int} significandf (float @var{x})
1337 @comment math.h
1338 @comment BSD
1339 @deftypefunx {long long int} significandl (long double @var{x})
1340 @code{significand} returns the mantissa of @var{x} scaled to the range
1341 @math{[1, 2)}.
1342 It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1344 This function exists mainly for use in certain standardized tests
1345 of @w{IEEE 754} conformance.
1346 @end deftypefun
1348 @node Rounding Functions
1349 @subsection Rounding Functions
1350 @cindex converting floats to integers
1352 @pindex math.h
1353 The functions listed here perform operations such as rounding and
1354 truncation of floating-point values. Some of these functions convert
1355 floating point numbers to integer values.  They are all declared in
1356 @file{math.h}.
1358 You can also convert floating-point numbers to integers simply by
1359 casting them to @code{int}.  This discards the fractional part,
1360 effectively rounding towards zero.  However, this only works if the
1361 result can actually be represented as an @code{int}---for very large
1362 numbers, this is impossible.  The functions listed here return the
1363 result as a @code{double} instead to get around this problem.
1365 @comment math.h
1366 @comment ISO
1367 @deftypefun double ceil (double @var{x})
1368 @comment math.h
1369 @comment ISO
1370 @deftypefunx float ceilf (float @var{x})
1371 @comment math.h
1372 @comment ISO
1373 @deftypefunx {long double} ceill (long double @var{x})
1374 These functions round @var{x} upwards to the nearest integer,
1375 returning that value as a @code{double}.  Thus, @code{ceil (1.5)}
1376 is @code{2.0}.
1377 @end deftypefun
1379 @comment math.h
1380 @comment ISO
1381 @deftypefun double floor (double @var{x})
1382 @comment math.h
1383 @comment ISO
1384 @deftypefunx float floorf (float @var{x})
1385 @comment math.h
1386 @comment ISO
1387 @deftypefunx {long double} floorl (long double @var{x})
1388 These functions round @var{x} downwards to the nearest
1389 integer, returning that value as a @code{double}.  Thus, @code{floor
1390 (1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1391 @end deftypefun
1393 @comment math.h
1394 @comment ISO
1395 @deftypefun double trunc (double @var{x})
1396 @comment math.h
1397 @comment ISO
1398 @deftypefunx float truncf (float @var{x})
1399 @comment math.h
1400 @comment ISO
1401 @deftypefunx {long double} truncl (long double @var{x})
1402 The @code{trunc} functions round @var{x} towards zero to the nearest
1403 integer (returned in floating-point format).  Thus, @code{trunc (1.5)}
1404 is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
1405 @end deftypefun
1407 @comment math.h
1408 @comment ISO
1409 @deftypefun double rint (double @var{x})
1410 @comment math.h
1411 @comment ISO
1412 @deftypefunx float rintf (float @var{x})
1413 @comment math.h
1414 @comment ISO
1415 @deftypefunx {long double} rintl (long double @var{x})
1416 These functions round @var{x} to an integer value according to the
1417 current rounding mode.  @xref{Floating Point Parameters}, for
1418 information about the various rounding modes.  The default
1419 rounding mode is to round to the nearest integer; some machines
1420 support other modes, but round-to-nearest is always used unless
1421 you explicitly select another.
1423 If @var{x} was not initially an integer, these functions raise the
1424 inexact exception.
1425 @end deftypefun
1427 @comment math.h
1428 @comment ISO
1429 @deftypefun double nearbyint (double @var{x})
1430 @comment math.h
1431 @comment ISO
1432 @deftypefunx float nearbyintf (float @var{x})
1433 @comment math.h
1434 @comment ISO
1435 @deftypefunx {long double} nearbyintl (long double @var{x})
1436 These functions return the same value as the @code{rint} functions, but
1437 do not raise the inexact exception if @var{x} is not an integer.
1438 @end deftypefun
1440 @comment math.h
1441 @comment ISO
1442 @deftypefun double round (double @var{x})
1443 @comment math.h
1444 @comment ISO
1445 @deftypefunx float roundf (float @var{x})
1446 @comment math.h
1447 @comment ISO
1448 @deftypefunx {long double} roundl (long double @var{x})
1449 These functions are similar to @code{rint}, but they round halfway
1450 cases away from zero instead of to the nearest even integer.
1451 @end deftypefun
1453 @comment math.h
1454 @comment ISO
1455 @deftypefun {long int} lrint (double @var{x})
1456 @comment math.h
1457 @comment ISO
1458 @deftypefunx {long int} lrintf (float @var{x})
1459 @comment math.h
1460 @comment ISO
1461 @deftypefunx {long int} lrintl (long double @var{x})
1462 These functions are just like @code{rint}, but they return a
1463 @code{long int} instead of a floating-point number.
1464 @end deftypefun
1466 @comment math.h
1467 @comment ISO
1468 @deftypefun {long long int} llrint (double @var{x})
1469 @comment math.h
1470 @comment ISO
1471 @deftypefunx {long long int} llrintf (float @var{x})
1472 @comment math.h
1473 @comment ISO
1474 @deftypefunx {long long int} llrintl (long double @var{x})
1475 These functions are just like @code{rint}, but they return a
1476 @code{long long int} instead of a floating-point number.
1477 @end deftypefun
1479 @comment math.h
1480 @comment ISO
1481 @deftypefun {long int} lround (double @var{x})
1482 @comment math.h
1483 @comment ISO
1484 @deftypefunx {long int} lroundf (float @var{x})
1485 @comment math.h
1486 @comment ISO
1487 @deftypefunx {long int} lroundl (long double @var{x})
1488 These functions are just like @code{round}, but they return a
1489 @code{long int} instead of a floating-point number.
1490 @end deftypefun
1492 @comment math.h
1493 @comment ISO
1494 @deftypefun {long long int} llround (double @var{x})
1495 @comment math.h
1496 @comment ISO
1497 @deftypefunx {long long int} llroundf (float @var{x})
1498 @comment math.h
1499 @comment ISO
1500 @deftypefunx {long long int} llroundl (long double @var{x})
1501 These functions are just like @code{round}, but they return a
1502 @code{long long int} instead of a floating-point number.
1503 @end deftypefun
1506 @comment math.h
1507 @comment ISO
1508 @deftypefun double modf (double @var{value}, double *@var{integer-part})
1509 @comment math.h
1510 @comment ISO
1511 @deftypefunx float modff (float @var{value}, float *@var{integer-part})
1512 @comment math.h
1513 @comment ISO
1514 @deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
1515 These functions break the argument @var{value} into an integer part and a
1516 fractional part (between @code{-1} and @code{1}, exclusive).  Their sum
1517 equals @var{value}.  Each of the parts has the same sign as @var{value},
1518 and the integer part is always rounded toward zero.
1520 @code{modf} stores the integer part in @code{*@var{integer-part}}, and
1521 returns the fractional part.  For example, @code{modf (2.5, &intpart)}
1522 returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1523 @end deftypefun
1525 @node Remainder Functions
1526 @subsection Remainder Functions
1528 The functions in this section compute the remainder on division of two
1529 floating-point numbers.  Each is a little different; pick the one that
1530 suits your problem.
1532 @comment math.h
1533 @comment ISO
1534 @deftypefun double fmod (double @var{numerator}, double @var{denominator})
1535 @comment math.h
1536 @comment ISO
1537 @deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
1538 @comment math.h
1539 @comment ISO
1540 @deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
1541 These functions compute the remainder from the division of
1542 @var{numerator} by @var{denominator}.  Specifically, the return value is
1543 @code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1544 is the quotient of @var{numerator} divided by @var{denominator}, rounded
1545 towards zero to an integer.  Thus, @w{@code{fmod (6.5, 2.3)}} returns
1546 @code{1.9}, which is @code{6.5} minus @code{4.6}.
1548 The result has the same sign as the @var{numerator} and has magnitude
1549 less than the magnitude of the @var{denominator}.
1551 If @var{denominator} is zero, @code{fmod} signals a domain error.
1552 @end deftypefun
1554 @comment math.h
1555 @comment BSD
1556 @deftypefun double drem (double @var{numerator}, double @var{denominator})
1557 @comment math.h
1558 @comment BSD
1559 @deftypefunx float dremf (float @var{numerator}, float @var{denominator})
1560 @comment math.h
1561 @comment BSD
1562 @deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
1563 These functions are like @code{fmod} except that they rounds the
1564 internal quotient @var{n} to the nearest integer instead of towards zero
1565 to an integer.  For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1566 which is @code{6.5} minus @code{6.9}.
1568 The absolute value of the result is less than or equal to half the
1569 absolute value of the @var{denominator}.  The difference between
1570 @code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1571 (@var{numerator}, @var{denominator})} is always either
1572 @var{denominator}, minus @var{denominator}, or zero.
1574 If @var{denominator} is zero, @code{drem} signals a domain error.
1575 @end deftypefun
1577 @comment math.h
1578 @comment BSD
1579 @deftypefun double remainder (double @var{numerator}, double @var{denominator})
1580 @comment math.h
1581 @comment BSD
1582 @deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
1583 @comment math.h
1584 @comment BSD
1585 @deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1586 This function is another name for @code{drem}.
1587 @end deftypefun
1589 @node FP Bit Twiddling
1590 @subsection Setting and modifying single bits of FP values
1591 @cindex FP arithmetic
1593 There are some operations that are too complicated or expensive to
1594 perform by hand on floating-point numbers.  @w{ISO C99} defines
1595 functions to do these operations, which mostly involve changing single
1596 bits.
1598 @comment math.h
1599 @comment ISO
1600 @deftypefun double copysign (double @var{x}, double @var{y})
1601 @comment math.h
1602 @comment ISO
1603 @deftypefunx float copysignf (float @var{x}, float @var{y})
1604 @comment math.h
1605 @comment ISO
1606 @deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
1607 These functions return @var{x} but with the sign of @var{y}.  They work
1608 even if @var{x} or @var{y} are NaN or zero.  Both of these can carry a
1609 sign (although not all implementations support it) and this is one of
1610 the few operations that can tell the difference.
1612 @code{copysign} never raises an exception.
1613 @c except signalling NaNs
1615 This function is defined in @w{IEC 559} (and the appendix with
1616 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1617 @end deftypefun
1619 @comment math.h
1620 @comment ISO
1621 @deftypefun int signbit (@emph{float-type} @var{x})
1622 @code{signbit} is a generic macro which can work on all floating-point
1623 types.  It returns a nonzero value if the value of @var{x} has its sign
1624 bit set.
1626 This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1627 point allows zero to be signed.  The comparison @code{-0.0 < 0.0} is
1628 false, but @code{signbit (-0.0)} will return a nonzero value.
1629 @end deftypefun
1631 @comment math.h
1632 @comment ISO
1633 @deftypefun double nextafter (double @var{x}, double @var{y})
1634 @comment math.h
1635 @comment ISO
1636 @deftypefunx float nextafterf (float @var{x}, float @var{y})
1637 @comment math.h
1638 @comment ISO
1639 @deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1640 The @code{nextafter} function returns the next representable neighbor of
1641 @var{x} in the direction towards @var{y}.  The size of the step between
1642 @var{x} and the result depends on the type of the result.  If
1643 @math{@var{x} = @var{y}} the function simply returns @var{y}.  If either
1644 value is @code{NaN}, @code{NaN} is returned.  Otherwise
1645 a value corresponding to the value of the least significant bit in the
1646 mantissa is added or subtracted, depending on the direction.
1647 @code{nextafter} will signal overflow or underflow if the result goes
1648 outside of the range of normalized numbers.
1650 This function is defined in @w{IEC 559} (and the appendix with
1651 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1652 @end deftypefun
1654 @comment math.h
1655 @comment ISO
1656 @deftypefun double nexttoward (double @var{x}, long double @var{y})
1657 @comment math.h
1658 @comment ISO
1659 @deftypefunx float nexttowardf (float @var{x}, long double @var{y})
1660 @comment math.h
1661 @comment ISO
1662 @deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
1663 These functions are identical to the corresponding versions of
1664 @code{nextafter} except that their second argument is a @code{long
1665 double}.
1666 @end deftypefun
1668 @cindex NaN
1669 @comment math.h
1670 @comment ISO
1671 @deftypefun double nan (const char *@var{tagp})
1672 @comment math.h
1673 @comment ISO
1674 @deftypefunx float nanf (const char *@var{tagp})
1675 @comment math.h
1676 @comment ISO
1677 @deftypefunx {long double} nanl (const char *@var{tagp})
1678 The @code{nan} function returns a representation of NaN, provided that
1679 NaN is supported by the target platform.
1680 @code{nan ("@var{n-char-sequence}")} is equivalent to
1681 @code{strtod ("NAN(@var{n-char-sequence})")}.
1683 The argument @var{tagp} is used in an unspecified manner.  On @w{IEEE
1684 754} systems, there are many representations of NaN, and @var{tagp}
1685 selects one.  On other systems it may do nothing.
1686 @end deftypefun
1688 @node FP Comparison Functions
1689 @subsection Floating-Point Comparison Functions
1690 @cindex unordered comparison
1692 The standard C comparison operators provoke exceptions when one or other
1693 of the operands is NaN.  For example,
1695 @smallexample
1696 int v = a < 1.0;
1697 @end smallexample
1699 @noindent
1700 will raise an exception if @var{a} is NaN.  (This does @emph{not}
1701 happen with @code{==} and @code{!=}; those merely return false and true,
1702 respectively, when NaN is examined.)  Frequently this exception is
1703 undesirable.  @w{ISO C99} therefore defines comparison functions that
1704 do not raise exceptions when NaN is examined.  All of the functions are
1705 implemented as macros which allow their arguments to be of any
1706 floating-point type.  The macros are guaranteed to evaluate their
1707 arguments only once.
1709 @comment math.h
1710 @comment ISO
1711 @deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1712 This macro determines whether the argument @var{x} is greater than
1713 @var{y}.  It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1714 exception is raised if @var{x} or @var{y} are NaN.
1715 @end deftypefn
1717 @comment math.h
1718 @comment ISO
1719 @deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1720 This macro determines whether the argument @var{x} is greater than or
1721 equal to @var{y}.  It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1722 exception is raised if @var{x} or @var{y} are NaN.
1723 @end deftypefn
1725 @comment math.h
1726 @comment ISO
1727 @deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1728 This macro determines whether the argument @var{x} is less than @var{y}.
1729 It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1730 raised if @var{x} or @var{y} are NaN.
1731 @end deftypefn
1733 @comment math.h
1734 @comment ISO
1735 @deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1736 This macro determines whether the argument @var{x} is less than or equal
1737 to @var{y}.  It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1738 exception is raised if @var{x} or @var{y} are NaN.
1739 @end deftypefn
1741 @comment math.h
1742 @comment ISO
1743 @deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1744 This macro determines whether the argument @var{x} is less or greater
1745 than @var{y}.  It is equivalent to @code{(@var{x}) < (@var{y}) ||
1746 (@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
1747 once), but no exception is raised if @var{x} or @var{y} are NaN.
1749 This macro is not equivalent to @code{@var{x} != @var{y}}, because that
1750 expression is true if @var{x} or @var{y} are NaN.
1751 @end deftypefn
1753 @comment math.h
1754 @comment ISO
1755 @deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1756 This macro determines whether its arguments are unordered.  In other
1757 words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
1758 @end deftypefn
1760 Not all machines provide hardware support for these operations.  On
1761 machines that don't, the macros can be very slow.  Therefore, you should
1762 not use these functions when NaN is not a concern.
1764 @strong{Note:} There are no macros @code{isequal} or @code{isunequal}.
1765 They are unnecessary, because the @code{==} and @code{!=} operators do
1766 @emph{not} throw an exception if one or both of the operands are NaN.
1768 @node Misc FP Arithmetic
1769 @subsection Miscellaneous FP arithmetic functions
1770 @cindex minimum
1771 @cindex maximum
1772 @cindex positive difference
1773 @cindex multiply-add
1775 The functions in this section perform miscellaneous but common
1776 operations that are awkward to express with C operators.  On some
1777 processors these functions can use special machine instructions to
1778 perform these operations faster than the equivalent C code.
1780 @comment math.h
1781 @comment ISO
1782 @deftypefun double fmin (double @var{x}, double @var{y})
1783 @comment math.h
1784 @comment ISO
1785 @deftypefunx float fminf (float @var{x}, float @var{y})
1786 @comment math.h
1787 @comment ISO
1788 @deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
1789 The @code{fmin} function returns the lesser of the two values @var{x}
1790 and @var{y}.  It is similar to the expression
1791 @smallexample
1792 ((x) < (y) ? (x) : (y))
1793 @end smallexample
1794 except that @var{x} and @var{y} are only evaluated once.
1796 If an argument is NaN, the other argument is returned.  If both arguments
1797 are NaN, NaN is returned.
1798 @end deftypefun
1800 @comment math.h
1801 @comment ISO
1802 @deftypefun double fmax (double @var{x}, double @var{y})
1803 @comment math.h
1804 @comment ISO
1805 @deftypefunx float fmaxf (float @var{x}, float @var{y})
1806 @comment math.h
1807 @comment ISO
1808 @deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
1809 The @code{fmax} function returns the greater of the two values @var{x}
1810 and @var{y}.
1812 If an argument is NaN, the other argument is returned.  If both arguments
1813 are NaN, NaN is returned.
1814 @end deftypefun
1816 @comment math.h
1817 @comment ISO
1818 @deftypefun double fdim (double @var{x}, double @var{y})
1819 @comment math.h
1820 @comment ISO
1821 @deftypefunx float fdimf (float @var{x}, float @var{y})
1822 @comment math.h
1823 @comment ISO
1824 @deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
1825 The @code{fdim} function returns the positive difference between
1826 @var{x} and @var{y}.  The positive difference is @math{@var{x} -
1827 @var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
1829 If @var{x}, @var{y}, or both are NaN, NaN is returned.
1830 @end deftypefun
1832 @comment math.h
1833 @comment ISO
1834 @deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
1835 @comment math.h
1836 @comment ISO
1837 @deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
1838 @comment math.h
1839 @comment ISO
1840 @deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
1841 @cindex butterfly
1842 The @code{fma} function performs floating-point multiply-add.  This is
1843 the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
1844 intermediate result is not rounded to the destination type.  This can
1845 sometimes improve the precision of a calculation.
1847 This function was introduced because some processors have a special
1848 instruction to perform multiply-add.  The C compiler cannot use it
1849 directly, because the expression @samp{x*y + z} is defined to round the
1850 intermediate result.  @code{fma} lets you choose when you want to round
1851 only once.
1853 @vindex FP_FAST_FMA
1854 On processors which do not implement multiply-add in hardware,
1855 @code{fma} can be very slow since it must avoid intermediate rounding.
1856 @file{math.h} defines the symbols @code{FP_FAST_FMA},
1857 @code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
1858 version of @code{fma} is no slower than the expression @samp{x*y + z}.
1859 In the GNU C library, this always means the operation is implemented in
1860 hardware.
1861 @end deftypefun
1863 @node Complex Numbers
1864 @section Complex Numbers
1865 @pindex complex.h
1866 @cindex complex numbers
1868 @w{ISO C99} introduces support for complex numbers in C.  This is done
1869 with a new type qualifier, @code{complex}.  It is a keyword if and only
1870 if @file{complex.h} has been included.  There are three complex types,
1871 corresponding to the three real types:  @code{float complex},
1872 @code{double complex}, and @code{long double complex}.
1874 To construct complex numbers you need a way to indicate the imaginary
1875 part of a number.  There is no standard notation for an imaginary
1876 floating point constant.  Instead, @file{complex.h} defines two macros
1877 that can be used to create complex numbers.
1879 @deftypevr Macro {const float complex} _Complex_I
1880 This macro is a representation of the complex number ``@math{0+1i}''.
1881 Multiplying a real floating-point value by @code{_Complex_I} gives a
1882 complex number whose value is purely imaginary.  You can use this to
1883 construct complex constants:
1885 @smallexample
1886 @math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
1887 @end smallexample
1889 Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
1890 the type of that value is @code{complex}.
1891 @end deftypevr
1893 @c Put this back in when gcc supports _Imaginary_I.  It's too confusing.
1894 @ignore
1895 @noindent
1896 Without an optimizing compiler this is more expensive than the use of
1897 @code{_Imaginary_I} but with is better than nothing.  You can avoid all
1898 the hassles if you use the @code{I} macro below if the name is not
1899 problem.
1901 @deftypevr Macro {const float imaginary} _Imaginary_I
1902 This macro is a representation of the value ``@math{1i}''.  I.e., it is
1903 the value for which
1905 @smallexample
1906 _Imaginary_I * _Imaginary_I = -1
1907 @end smallexample
1909 @noindent
1910 The result is not of type @code{float imaginary} but instead @code{float}.
1911 One can use it to easily construct complex number like in
1913 @smallexample
1914 3.0 - _Imaginary_I * 4.0
1915 @end smallexample
1917 @noindent
1918 which results in the complex number with a real part of 3.0 and a
1919 imaginary part -4.0.
1920 @end deftypevr
1921 @end ignore
1923 @noindent
1924 @code{_Complex_I} is a bit of a mouthful.  @file{complex.h} also defines
1925 a shorter name for the same constant.
1927 @deftypevr Macro {const float complex} I
1928 This macro has exactly the same value as @code{_Complex_I}.  Most of the
1929 time it is preferable.  However, it causes problems if you want to use
1930 the identifier @code{I} for something else.  You can safely write
1932 @smallexample
1933 #include <complex.h>
1934 #undef I
1935 @end smallexample
1937 @noindent
1938 if you need @code{I} for your own purposes.  (In that case we recommend
1939 you also define some other short name for @code{_Complex_I}, such as
1940 @code{J}.)
1942 @ignore
1943 If the implementation does not support the @code{imaginary} types
1944 @code{I} is defined as @code{_Complex_I} which is the second best
1945 solution.  It still can be used in the same way but requires a most
1946 clever compiler to get the same results.
1947 @end ignore
1948 @end deftypevr
1950 @node Operations on Complex
1951 @section Projections, Conjugates, and Decomposing of Complex Numbers
1952 @cindex project complex numbers
1953 @cindex conjugate complex numbers
1954 @cindex decompose complex numbers
1955 @pindex complex.h
1957 @w{ISO C99} also defines functions that perform basic operations on
1958 complex numbers, such as decomposition and conjugation.  The prototypes
1959 for all these functions are in @file{complex.h}.  All functions are
1960 available in three variants, one for each of the three complex types.
1962 @comment complex.h
1963 @comment ISO
1964 @deftypefun double creal (complex double @var{z})
1965 @comment complex.h
1966 @comment ISO
1967 @deftypefunx float crealf (complex float @var{z})
1968 @comment complex.h
1969 @comment ISO
1970 @deftypefunx {long double} creall (complex long double @var{z})
1971 These functions return the real part of the complex number @var{z}.
1972 @end deftypefun
1974 @comment complex.h
1975 @comment ISO
1976 @deftypefun double cimag (complex double @var{z})
1977 @comment complex.h
1978 @comment ISO
1979 @deftypefunx float cimagf (complex float @var{z})
1980 @comment complex.h
1981 @comment ISO
1982 @deftypefunx {long double} cimagl (complex long double @var{z})
1983 These functions return the imaginary part of the complex number @var{z}.
1984 @end deftypefun
1986 @comment complex.h
1987 @comment ISO
1988 @deftypefun {complex double} conj (complex double @var{z})
1989 @comment complex.h
1990 @comment ISO
1991 @deftypefunx {complex float} conjf (complex float @var{z})
1992 @comment complex.h
1993 @comment ISO
1994 @deftypefunx {complex long double} conjl (complex long double @var{z})
1995 These functions return the conjugate value of the complex number
1996 @var{z}.  The conjugate of a complex number has the same real part and a
1997 negated imaginary part.  In other words, @samp{conj(a + bi) = a + -bi}.
1998 @end deftypefun
2000 @comment complex.h
2001 @comment ISO
2002 @deftypefun double carg (complex double @var{z})
2003 @comment complex.h
2004 @comment ISO
2005 @deftypefunx float cargf (complex float @var{z})
2006 @comment complex.h
2007 @comment ISO
2008 @deftypefunx {long double} cargl (complex long double @var{z})
2009 These functions return the argument of the complex number @var{z}.
2010 The argument of a complex number is the angle in the complex plane
2011 between the positive real axis and a line passing through zero and the
2012 number.  This angle is measured in the usual fashion and ranges from @math{0}
2013 to @math{2@pi{}}.
2015 @code{carg} has a branch cut along the positive real axis.
2016 @end deftypefun
2018 @comment complex.h
2019 @comment ISO
2020 @deftypefun {complex double} cproj (complex double @var{z})
2021 @comment complex.h
2022 @comment ISO
2023 @deftypefunx {complex float} cprojf (complex float @var{z})
2024 @comment complex.h
2025 @comment ISO
2026 @deftypefunx {complex long double} cprojl (complex long double @var{z})
2027 These functions return the projection of the complex value @var{z} onto
2028 the Riemann sphere.  Values with a infinite imaginary part are projected
2029 to positive infinity on the real axis, even if the real part is NaN.  If
2030 the real part is infinite, the result is equivalent to
2032 @smallexample
2033 INFINITY + I * copysign (0.0, cimag (z))
2034 @end smallexample
2035 @end deftypefun
2037 @node Parsing of Numbers
2038 @section Parsing of Numbers
2039 @cindex parsing numbers (in formatted input)
2040 @cindex converting strings to numbers
2041 @cindex number syntax, parsing
2042 @cindex syntax, for reading numbers
2044 This section describes functions for ``reading'' integer and
2045 floating-point numbers from a string.  It may be more convenient in some
2046 cases to use @code{sscanf} or one of the related functions; see
2047 @ref{Formatted Input}.  But often you can make a program more robust by
2048 finding the tokens in the string by hand, then converting the numbers
2049 one by one.
2051 @menu
2052 * Parsing of Integers::         Functions for conversion of integer values.
2053 * Parsing of Floats::           Functions for conversion of floating-point
2054                                  values.
2055 @end menu
2057 @node Parsing of Integers
2058 @subsection Parsing of Integers
2060 @pindex stdlib.h
2061 @pindex wchar.h
2062 The @samp{str} functions are declared in @file{stdlib.h} and those
2063 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2064 wonder about the use of @code{restrict} in the prototypes of the
2065 functions in this section.  It is seemingly useless but the @w{ISO C}
2066 standard uses it (for the functions defined there) so we have to do it
2067 as well.
2069 @comment stdlib.h
2070 @comment ISO
2071 @deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2072 The @code{strtol} (``string-to-long'') function converts the initial
2073 part of @var{string} to a signed integer, which is returned as a value
2074 of type @code{long int}.
2076 This function attempts to decompose @var{string} as follows:
2078 @itemize @bullet
2079 @item
2080 A (possibly empty) sequence of whitespace characters.  Which characters
2081 are whitespace is determined by the @code{isspace} function
2082 (@pxref{Classification of Characters}).  These are discarded.
2084 @item
2085 An optional plus or minus sign (@samp{+} or @samp{-}).
2087 @item
2088 A nonempty sequence of digits in the radix specified by @var{base}.
2090 If @var{base} is zero, decimal radix is assumed unless the series of
2091 digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2092 @samp{0X} (specifying hexadecimal radix); in other words, the same
2093 syntax used for integer constants in C.
2095 Otherwise @var{base} must have a value between @code{2} and @code{36}.
2096 If @var{base} is @code{16}, the digits may optionally be preceded by
2097 @samp{0x} or @samp{0X}.  If base has no legal value the value returned
2098 is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
2100 @item
2101 Any remaining characters in the string.  If @var{tailptr} is not a null
2102 pointer, @code{strtol} stores a pointer to this tail in
2103 @code{*@var{tailptr}}.
2104 @end itemize
2106 If the string is empty, contains only whitespace, or does not contain an
2107 initial substring that has the expected syntax for an integer in the
2108 specified @var{base}, no conversion is performed.  In this case,
2109 @code{strtol} returns a value of zero and the value stored in
2110 @code{*@var{tailptr}} is the value of @var{string}.
2112 In a locale other than the standard @code{"C"} locale, this function
2113 may recognize additional implementation-dependent syntax.
2115 If the string has valid syntax for an integer but the value is not
2116 representable because of overflow, @code{strtol} returns either
2117 @code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2118 appropriate for the sign of the value.  It also sets @code{errno}
2119 to @code{ERANGE} to indicate there was overflow.
2121 You should not check for errors by examining the return value of
2122 @code{strtol}, because the string might be a valid representation of
2123 @code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}.  Instead, check whether
2124 @var{tailptr} points to what you expect after the number
2125 (e.g. @code{'\0'} if the string should end after the number).  You also
2126 need to clear @var{errno} before the call and check it afterward, in
2127 case there was overflow.
2129 There is an example at the end of this section.
2130 @end deftypefun
2132 @comment wchar.h
2133 @comment ISO
2134 @deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2135 The @code{wcstol} function is equivalent to the @code{strtol} function
2136 in nearly all aspects but handles wide character strings.
2138 The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2139 @end deftypefun
2141 @comment stdlib.h
2142 @comment ISO
2143 @deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2144 The @code{strtoul} (``string-to-unsigned-long'') function is like
2145 @code{strtol} except it converts to an @code{unsigned long int} value.
2146 The syntax is the same as described above for @code{strtol}.  The value
2147 returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2149 If @var{string} depicts a negative number, @code{strtoul} acts the same
2150 as @var{strtol} but casts the result to an unsigned integer.  That means
2151 for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
2152 and an input more negative than @code{LONG_MIN} returns
2153 (@code{ULONG_MAX} + 1) / 2.
2155 @code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2156 range, or @code{ERANGE} on overflow.
2157 @end deftypefun
2159 @comment wchar.h
2160 @comment ISO
2161 @deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2162 The @code{wcstoul} function is equivalent to the @code{strtoul} function
2163 in nearly all aspects but handles wide character strings.
2165 The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2166 @end deftypefun
2168 @comment stdlib.h
2169 @comment ISO
2170 @deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2171 The @code{strtoll} function is like @code{strtol} except that it returns
2172 a @code{long long int} value, and accepts numbers with a correspondingly
2173 larger range.
2175 If the string has valid syntax for an integer but the value is not
2176 representable because of overflow, @code{strtoll} returns either
2177 @code{LONG_LONG_MAX} or @code{LONG_LONG_MIN} (@pxref{Range of Type}), as
2178 appropriate for the sign of the value.  It also sets @code{errno} to
2179 @code{ERANGE} to indicate there was overflow.
2181 The @code{strtoll} function was introduced in @w{ISO C99}.
2182 @end deftypefun
2184 @comment wchar.h
2185 @comment ISO
2186 @deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2187 The @code{wcstoll} function is equivalent to the @code{strtoll} function
2188 in nearly all aspects but handles wide character strings.
2190 The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2191 @end deftypefun
2193 @comment stdlib.h
2194 @comment BSD
2195 @deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2196 @code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2197 @end deftypefun
2199 @comment wchar.h
2200 @comment GNU
2201 @deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2202 The @code{wcstoq} function is equivalent to the @code{strtoq} function
2203 in nearly all aspects but handles wide character strings.
2205 The @code{wcstoq} function is a GNU extension.
2206 @end deftypefun
2208 @comment stdlib.h
2209 @comment ISO
2210 @deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2211 The @code{strtoull} function is related to @code{strtoll} the same way
2212 @code{strtoul} is related to @code{strtol}.
2214 The @code{strtoull} function was introduced in @w{ISO C99}.
2215 @end deftypefun
2217 @comment wchar.h
2218 @comment ISO
2219 @deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2220 The @code{wcstoull} function is equivalent to the @code{strtoull} function
2221 in nearly all aspects but handles wide character strings.
2223 The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2224 @end deftypefun
2226 @comment stdlib.h
2227 @comment BSD
2228 @deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2229 @code{strtouq} is the BSD name for @code{strtoull}.
2230 @end deftypefun
2232 @comment wchar.h
2233 @comment GNU
2234 @deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2235 The @code{wcstouq} function is equivalent to the @code{strtouq} function
2236 in nearly all aspects but handles wide character strings.
2238 The @code{wcstoq} function is a GNU extension.
2239 @end deftypefun
2241 @comment inttypes.h
2242 @comment ISO
2243 @deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2244 The @code{strtoimax} function is like @code{strtol} except that it returns
2245 a @code{intmax_t} value, and accepts numbers of a corresponding range.
2247 If the string has valid syntax for an integer but the value is not
2248 representable because of overflow, @code{strtoimax} returns either
2249 @code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2250 appropriate for the sign of the value.  It also sets @code{errno} to
2251 @code{ERANGE} to indicate there was overflow.
2253 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2254 @code{strtoimax} function was introduced in @w{ISO C99}.
2255 @end deftypefun
2257 @comment wchar.h
2258 @comment ISO
2259 @deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2260 The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2261 in nearly all aspects but handles wide character strings.
2263 The @code{wcstoimax} function was introduced in @w{ISO C99}.
2264 @end deftypefun
2266 @comment inttypes.h
2267 @comment ISO
2268 @deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2269 The @code{strtoumax} function is related to @code{strtoimax}
2270 the same way that @code{strtoul} is related to @code{strtol}.
2272 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2273 @code{strtoumax} function was introduced in @w{ISO C99}.
2274 @end deftypefun
2276 @comment wchar.h
2277 @comment ISO
2278 @deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2279 The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2280 in nearly all aspects but handles wide character strings.
2282 The @code{wcstoumax} function was introduced in @w{ISO C99}.
2283 @end deftypefun
2285 @comment stdlib.h
2286 @comment ISO
2287 @deftypefun {long int} atol (const char *@var{string})
2288 This function is similar to the @code{strtol} function with a @var{base}
2289 argument of @code{10}, except that it need not detect overflow errors.
2290 The @code{atol} function is provided mostly for compatibility with
2291 existing code; using @code{strtol} is more robust.
2292 @end deftypefun
2294 @comment stdlib.h
2295 @comment ISO
2296 @deftypefun int atoi (const char *@var{string})
2297 This function is like @code{atol}, except that it returns an @code{int}.
2298 The @code{atoi} function is also considered obsolete; use @code{strtol}
2299 instead.
2300 @end deftypefun
2302 @comment stdlib.h
2303 @comment ISO
2304 @deftypefun {long long int} atoll (const char *@var{string})
2305 This function is similar to @code{atol}, except it returns a @code{long
2306 long int}.
2308 The @code{atoll} function was introduced in @w{ISO C99}.  It too is
2309 obsolete (despite having just been added); use @code{strtoll} instead.
2310 @end deftypefun
2312 All the functions mentioned in this section so far do not handle
2313 alternative representations of characters as described in the locale
2314 data.  Some locales specify thousands separator and the way they have to
2315 be used which can help to make large numbers more readable.  To read
2316 such numbers one has to use the @code{scanf} functions with the @samp{'}
2317 flag.
2319 Here is a function which parses a string as a sequence of integers and
2320 returns the sum of them:
2322 @smallexample
2324 sum_ints_from_string (char *string)
2326   int sum = 0;
2328   while (1) @{
2329     char *tail;
2330     int next;
2332     /* @r{Skip whitespace by hand, to detect the end.}  */
2333     while (isspace (*string)) string++;
2334     if (*string == 0)
2335       break;
2337     /* @r{There is more nonwhitespace,}  */
2338     /* @r{so it ought to be another number.}  */
2339     errno = 0;
2340     /* @r{Parse it.}  */
2341     next = strtol (string, &tail, 0);
2342     /* @r{Add it in, if not overflow.}  */
2343     if (errno)
2344       printf ("Overflow\n");
2345     else
2346       sum += next;
2347     /* @r{Advance past it.}  */
2348     string = tail;
2349   @}
2351   return sum;
2353 @end smallexample
2355 @node Parsing of Floats
2356 @subsection Parsing of Floats
2358 @pindex stdlib.h
2359 The @samp{str} functions are declared in @file{stdlib.h} and those
2360 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2361 wonder about the use of @code{restrict} in the prototypes of the
2362 functions in this section.  It is seemingly useless but the @w{ISO C}
2363 standard uses it (for the functions defined there) so we have to do it
2364 as well.
2366 @comment stdlib.h
2367 @comment ISO
2368 @deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
2369 The @code{strtod} (``string-to-double'') function converts the initial
2370 part of @var{string} to a floating-point number, which is returned as a
2371 value of type @code{double}.
2373 This function attempts to decompose @var{string} as follows:
2375 @itemize @bullet
2376 @item
2377 A (possibly empty) sequence of whitespace characters.  Which characters
2378 are whitespace is determined by the @code{isspace} function
2379 (@pxref{Classification of Characters}).  These are discarded.
2381 @item
2382 An optional plus or minus sign (@samp{+} or @samp{-}).
2384 @item A floating point number in decimal or hexadecimal format.  The
2385 decimal format is:
2386 @itemize @minus
2388 @item
2389 A nonempty sequence of digits optionally containing a decimal-point
2390 character---normally @samp{.}, but it depends on the locale
2391 (@pxref{General Numeric}).
2393 @item
2394 An optional exponent part, consisting of a character @samp{e} or
2395 @samp{E}, an optional sign, and a sequence of digits.
2397 @end itemize
2399 The hexadecimal format is as follows:
2400 @itemize @minus
2402 @item
2403 A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2404 optionally containing a decimal-point character---normally @samp{.}, but
2405 it depends on the locale (@pxref{General Numeric}).
2407 @item
2408 An optional binary-exponent part, consisting of a character @samp{p} or
2409 @samp{P}, an optional sign, and a sequence of digits.
2411 @end itemize
2413 @item
2414 Any remaining characters in the string.  If @var{tailptr} is not a null
2415 pointer, a pointer to this tail of the string is stored in
2416 @code{*@var{tailptr}}.
2417 @end itemize
2419 If the string is empty, contains only whitespace, or does not contain an
2420 initial substring that has the expected syntax for a floating-point
2421 number, no conversion is performed.  In this case, @code{strtod} returns
2422 a value of zero and the value returned in @code{*@var{tailptr}} is the
2423 value of @var{string}.
2425 In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2426 this function may recognize additional locale-dependent syntax.
2428 If the string has valid syntax for a floating-point number but the value
2429 is outside the range of a @code{double}, @code{strtod} will signal
2430 overflow or underflow as described in @ref{Math Error Reporting}.
2432 @code{strtod} recognizes four special input strings.  The strings
2433 @code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2434 or to the largest representable value if the floating-point format
2435 doesn't support infinities.  You can prepend a @code{"+"} or @code{"-"}
2436 to specify the sign.  Case is ignored when scanning these strings.
2438 The strings @code{"nan"} and @code{"nan(@var{chars...})"} are converted
2439 to NaN.  Again, case is ignored.  If @var{chars...} are provided, they
2440 are used in some unspecified fashion to select a particular
2441 representation of NaN (there can be several).
2443 Since zero is a valid result as well as the value returned on error, you
2444 should check for errors in the same way as for @code{strtol}, by
2445 examining @var{errno} and @var{tailptr}.
2446 @end deftypefun
2448 @comment stdlib.h
2449 @comment ISO
2450 @deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
2451 @comment stdlib.h
2452 @comment ISO
2453 @deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2454 These functions are analogous to @code{strtod}, but return @code{float}
2455 and @code{long double} values respectively.  They report errors in the
2456 same way as @code{strtod}.  @code{strtof} can be substantially faster
2457 than @code{strtod}, but has less precision; conversely, @code{strtold}
2458 can be much slower but has more precision (on systems where @code{long
2459 double} is a separate type).
2461 These functions have been GNU extensions and are new to @w{ISO C99}.
2462 @end deftypefun
2464 @comment wchar.h
2465 @comment ISO
2466 @deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2467 @comment stdlib.h
2468 @comment ISO
2469 @deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2470 @comment stdlib.h
2471 @comment ISO
2472 @deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2473 The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2474 equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2475 @code{strtold} functions but it handles wide character string.
2477 The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2478 C90}.  The @code{wcstof} and @code{wcstold} functions were introduced in
2479 @w{ISO C99}.
2480 @end deftypefun
2482 @comment stdlib.h
2483 @comment ISO
2484 @deftypefun double atof (const char *@var{string})
2485 This function is similar to the @code{strtod} function, except that it
2486 need not detect overflow and underflow errors.  The @code{atof} function
2487 is provided mostly for compatibility with existing code; using
2488 @code{strtod} is more robust.
2489 @end deftypefun
2491 The GNU C library also provides @samp{_l} versions of these functions,
2492 which take an additional argument, the locale to use in conversion.
2493 @xref{Parsing of Integers}.
2495 @node System V Number Conversion
2496 @section Old-fashioned System V number-to-string functions
2498 The old @w{System V} C library provided three functions to convert
2499 numbers to strings, with unusual and hard-to-use semantics.  The GNU C
2500 library also provides these functions and some natural extensions.
2502 These functions are only available in glibc and on systems descended
2503 from AT&T Unix.  Therefore, unless these functions do precisely what you
2504 need, it is better to use @code{sprintf}, which is standard.
2506 All these functions are defined in @file{stdlib.h}.
2508 @comment stdlib.h
2509 @comment SVID, Unix98
2510 @deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2511 The function @code{ecvt} converts the floating-point number @var{value}
2512 to a string with at most @var{ndigit} decimal digits.  The
2513 returned string contains no decimal point or sign. The first digit of
2514 the string is non-zero (unless @var{value} is actually zero) and the
2515 last digit is rounded to nearest.  @code{*@var{decpt}} is set to the
2516 index in the string of the first digit after the decimal point.
2517 @code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2518 zero otherwise.
2520 If @var{ndigit} decimal digits would exceed the precision of a
2521 @code{double} it is reduced to a system-specific value.
2523 The returned string is statically allocated and overwritten by each call
2524 to @code{ecvt}.
2526 If @var{value} is zero, it is implementation defined whether
2527 @code{*@var{decpt}} is @code{0} or @code{1}.
2529 For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2530 and sets @var{d} to @code{2} and @var{n} to @code{0}.
2531 @end deftypefun
2533 @comment stdlib.h
2534 @comment SVID, Unix98
2535 @deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2536 The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2537 the number of digits after the decimal point.  If @var{ndigit} is less
2538 than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2539 left of the decimal point.  For example, if @var{ndigit} is @code{-1},
2540 @var{value} will be rounded to the nearest 10.  If @var{ndigit} is
2541 negative and larger than the number of digits to the left of the decimal
2542 point in @var{value}, @var{value} will be rounded to one significant digit.
2544 If @var{ndigit} decimal digits would exceed the precision of a
2545 @code{double} it is reduced to a system-specific value.
2547 The returned string is statically allocated and overwritten by each call
2548 to @code{fcvt}.
2549 @end deftypefun
2551 @comment stdlib.h
2552 @comment SVID, Unix98
2553 @deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
2554 @code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
2555 ndigit, value}.  It is provided only for compatibility's sake.  It
2556 returns @var{buf}.
2558 If @var{ndigit} decimal digits would exceed the precision of a
2559 @code{double} it is reduced to a system-specific value.
2560 @end deftypefun
2562 As extensions, the GNU C library provides versions of these three
2563 functions that take @code{long double} arguments.
2565 @comment stdlib.h
2566 @comment GNU
2567 @deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2568 This function is equivalent to @code{ecvt} except that it takes a
2569 @code{long double} for the first parameter and that @var{ndigit} is
2570 restricted by the precision of a @code{long double}.
2571 @end deftypefun
2573 @comment stdlib.h
2574 @comment GNU
2575 @deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2576 This function is equivalent to @code{fcvt} except that it
2577 takes a @code{long double} for the first parameter and that @var{ndigit} is
2578 restricted by the precision of a @code{long double}.
2579 @end deftypefun
2581 @comment stdlib.h
2582 @comment GNU
2583 @deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
2584 This function is equivalent to @code{gcvt} except that it takes a
2585 @code{long double} for the first parameter and that @var{ndigit} is
2586 restricted by the precision of a @code{long double}.
2587 @end deftypefun
2590 @cindex gcvt_r
2591 The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
2592 equivalents, all return a string located in a static buffer which is
2593 overwritten by the next call to the function.  The GNU C library
2594 provides another set of extended functions which write the converted
2595 string into a user-supplied buffer.  These have the conventional
2596 @code{_r} suffix.
2598 @code{gcvt_r} is not necessary, because @code{gcvt} already uses a
2599 user-supplied buffer.
2601 @comment stdlib.h
2602 @comment GNU
2603 @deftypefun {char *} ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2604 The @code{ecvt_r} function is the same as @code{ecvt}, except
2605 that it places its result into the user-specified buffer pointed to by
2606 @var{buf}, with length @var{len}.
2608 This function is a GNU extension.
2609 @end deftypefun
2611 @comment stdlib.h
2612 @comment SVID, Unix98
2613 @deftypefun {char *} fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2614 The @code{fcvt_r} function is the same as @code{fcvt}, except
2615 that it places its result into the user-specified buffer pointed to by
2616 @var{buf}, with length @var{len}.
2618 This function is a GNU extension.
2619 @end deftypefun
2621 @comment stdlib.h
2622 @comment GNU
2623 @deftypefun {char *} qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2624 The @code{qecvt_r} function is the same as @code{qecvt}, except
2625 that it places its result into the user-specified buffer pointed to by
2626 @var{buf}, with length @var{len}.
2628 This function is a GNU extension.
2629 @end deftypefun
2631 @comment stdlib.h
2632 @comment GNU
2633 @deftypefun {char *} qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2634 The @code{qfcvt_r} function is the same as @code{qfcvt}, except
2635 that it places its result into the user-specified buffer pointed to by
2636 @var{buf}, with length @var{len}.
2638 This function is a GNU extension.
2639 @end deftypefun