* crypt/md5-crypt.c: Fix comment.
[glibc.git] / sysdeps / ieee754 / dbl-64 / s_erf.c
blob94fb5c964ff8a6d24a1ca4c238fdbc6fa2e9b6fb
1 /* @(#)s_erf.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13 for performance improvement on pipelined processors.
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
18 #endif
20 /* double erf(double x)
21 * double erfc(double x)
22 * x
23 * 2 |\
24 * erf(x) = --------- | exp(-t*t)dt
25 * sqrt(pi) \|
26 * 0
28 * erfc(x) = 1-erf(x)
29 * Note that
30 * erf(-x) = -erf(x)
31 * erfc(-x) = 2 - erfc(x)
33 * Method:
34 * 1. For |x| in [0, 0.84375]
35 * erf(x) = x + x*R(x^2)
36 * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
37 * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
38 * where R = P/Q where P is an odd poly of degree 8 and
39 * Q is an odd poly of degree 10.
40 * -57.90
41 * | R - (erf(x)-x)/x | <= 2
44 * Remark. The formula is derived by noting
45 * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
46 * and that
47 * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
48 * is close to one. The interval is chosen because the fix
49 * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
50 * near 0.6174), and by some experiment, 0.84375 is chosen to
51 * guarantee the error is less than one ulp for erf.
53 * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
54 * c = 0.84506291151 rounded to single (24 bits)
55 * erf(x) = sign(x) * (c + P1(s)/Q1(s))
56 * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
57 * 1+(c+P1(s)/Q1(s)) if x < 0
58 * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
59 * Remark: here we use the taylor series expansion at x=1.
60 * erf(1+s) = erf(1) + s*Poly(s)
61 * = 0.845.. + P1(s)/Q1(s)
62 * That is, we use rational approximation to approximate
63 * erf(1+s) - (c = (single)0.84506291151)
64 * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
65 * where
66 * P1(s) = degree 6 poly in s
67 * Q1(s) = degree 6 poly in s
69 * 3. For x in [1.25,1/0.35(~2.857143)],
70 * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
71 * erf(x) = 1 - erfc(x)
72 * where
73 * R1(z) = degree 7 poly in z, (z=1/x^2)
74 * S1(z) = degree 8 poly in z
76 * 4. For x in [1/0.35,28]
77 * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
78 * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
79 * = 2.0 - tiny (if x <= -6)
80 * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
81 * erf(x) = sign(x)*(1.0 - tiny)
82 * where
83 * R2(z) = degree 6 poly in z, (z=1/x^2)
84 * S2(z) = degree 7 poly in z
86 * Note1:
87 * To compute exp(-x*x-0.5625+R/S), let s be a single
88 * precision number and s := x; then
89 * -x*x = -s*s + (s-x)*(s+x)
90 * exp(-x*x-0.5626+R/S) =
91 * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
92 * Note2:
93 * Here 4 and 5 make use of the asymptotic series
94 * exp(-x*x)
95 * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
96 * x*sqrt(pi)
97 * We use rational approximation to approximate
98 * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
99 * Here is the error bound for R1/S1 and R2/S2
100 * |R1/S1 - f(x)| < 2**(-62.57)
101 * |R2/S2 - f(x)| < 2**(-61.52)
103 * 5. For inf > x >= 28
104 * erf(x) = sign(x) *(1 - tiny) (raise inexact)
105 * erfc(x) = tiny*tiny (raise underflow) if x > 0
106 * = 2 - tiny if x<0
108 * 7. Special case:
109 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
110 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
111 * erfc/erf(NaN) is NaN
115 #include "math.h"
116 #include "math_private.h"
118 #ifdef __STDC__
119 static const double
120 #else
121 static double
122 #endif
123 tiny = 1e-300,
124 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
125 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
126 two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
127 /* c = (float)0.84506291151 */
128 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
130 * Coefficients for approximation to erf on [0,0.84375]
132 efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
133 efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
134 pp[] = {1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
135 -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
136 -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
137 -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
138 -2.37630166566501626084e-05}, /* 0xBEF8EAD6, 0x120016AC */
139 qq[] = {0.0, 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
140 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
141 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
142 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
143 -3.96022827877536812320e-06}, /* 0xBED09C43, 0x42A26120 */
145 * Coefficients for approximation to erf in [0.84375,1.25]
147 pa[] = {-2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
148 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
149 -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
150 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
151 -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
152 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
153 -2.16637559486879084300e-03}, /* 0xBF61BF38, 0x0A96073F */
154 qa[] = {0.0, 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
155 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
156 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
157 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
158 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
159 1.19844998467991074170e-02}, /* 0x3F888B54, 0x5735151D */
161 * Coefficients for approximation to erfc in [1.25,1/0.35]
163 ra[] = {-9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
164 -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
165 -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
166 -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
167 -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
168 -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
169 -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
170 -9.81432934416914548592e+00}, /* 0xC023A0EF, 0xC69AC25C */
171 sa[] = {0.0,1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
172 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
173 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
174 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
175 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
176 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
177 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
178 -6.04244152148580987438e-02}, /* 0xBFAEEFF2, 0xEE749A62 */
180 * Coefficients for approximation to erfc in [1/.35,28]
182 rb[] = {-9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
183 -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
184 -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
185 -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
186 -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
187 -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
188 -4.83519191608651397019e+02}, /* 0xC07E384E, 0x9BDC383F */
189 sb[] = {0.0,3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
190 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
191 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
192 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
193 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
194 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
195 -2.24409524465858183362e+01}; /* 0xC03670E2, 0x42712D62 */
197 #ifdef __STDC__
198 double __erf(double x)
199 #else
200 double __erf(x)
201 double x;
202 #endif
204 int32_t hx,ix,i;
205 double R,S,P,Q,s,y,z,r;
206 GET_HIGH_WORD(hx,x);
207 ix = hx&0x7fffffff;
208 if(ix>=0x7ff00000) { /* erf(nan)=nan */
209 i = ((u_int32_t)hx>>31)<<1;
210 return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
213 if(ix < 0x3feb0000) { /* |x|<0.84375 */
214 double r1,r2,s1,s2,s3,z2,z4;
215 if(ix < 0x3e300000) { /* |x|<2**-28 */
216 if (ix < 0x00800000)
217 return 0.125*(8.0*x+efx8*x); /*avoid underflow */
218 return x + efx*x;
220 z = x*x;
221 #ifdef DO_NOT_USE_THIS
222 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
223 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
224 #else
225 r1 = pp[0]+z*pp[1]; z2=z*z;
226 r2 = pp[2]+z*pp[3]; z4=z2*z2;
227 s1 = one+z*qq[1];
228 s2 = qq[2]+z*qq[3];
229 s3 = qq[4]+z*qq[5];
230 r = r1 + z2*r2 + z4*pp[4];
231 s = s1 + z2*s2 + z4*s3;
232 #endif
233 y = r/s;
234 return x + x*y;
236 if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
237 double s2,s4,s6,P1,P2,P3,P4,Q1,Q2,Q3,Q4;
238 s = fabs(x)-one;
239 #ifdef DO_NOT_USE_THIS
240 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
241 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
242 #else
243 P1 = pa[0]+s*pa[1]; s2=s*s;
244 Q1 = one+s*qa[1]; s4=s2*s2;
245 P2 = pa[2]+s*pa[3]; s6=s4*s2;
246 Q2 = qa[2]+s*qa[3];
247 P3 = pa[4]+s*pa[5];
248 Q3 = qa[4]+s*qa[5];
249 P4 = pa[6];
250 Q4 = qa[6];
251 P = P1 + s2*P2 + s4*P3 + s6*P4;
252 Q = Q1 + s2*Q2 + s4*Q3 + s6*Q4;
253 #endif
254 if(hx>=0) return erx + P/Q; else return -erx - P/Q;
256 if (ix >= 0x40180000) { /* inf>|x|>=6 */
257 if(hx>=0) return one-tiny; else return tiny-one;
259 x = fabs(x);
260 s = one/(x*x);
261 if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
262 #ifdef DO_NOT_USE_THIS
263 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
264 ra5+s*(ra6+s*ra7))))));
265 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
266 sa5+s*(sa6+s*(sa7+s*sa8)))))));
267 #else
268 double R1,R2,R3,R4,S1,S2,S3,S4,s2,s4,s6,s8;
269 R1 = ra[0]+s*ra[1];s2 = s*s;
270 S1 = one+s*sa[1]; s4 = s2*s2;
271 R2 = ra[2]+s*ra[3];s6 = s4*s2;
272 S2 = sa[2]+s*sa[3];s8 = s4*s4;
273 R3 = ra[4]+s*ra[5];
274 S3 = sa[4]+s*sa[5];
275 R4 = ra[6]+s*ra[7];
276 S4 = sa[6]+s*sa[7];
277 R = R1 + s2*R2 + s4*R3 + s6*R4;
278 S = S1 + s2*S2 + s4*S3 + s6*S4 + s8*sa[8];
279 #endif
280 } else { /* |x| >= 1/0.35 */
281 #ifdef DO_NOT_USE_THIS
282 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
283 rb5+s*rb6)))));
284 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
285 sb5+s*(sb6+s*sb7))))));
286 #else
287 double R1,R2,R3,S1,S2,S3,S4,s2,s4,s6;
288 R1 = rb[0]+s*rb[1];s2 = s*s;
289 S1 = one+s*sb[1]; s4 = s2*s2;
290 R2 = rb[2]+s*rb[3];s6 = s4*s2;
291 S2 = sb[2]+s*sb[3];
292 R3 = rb[4]+s*rb[5];
293 S3 = sb[4]+s*sb[5];
294 S4 = sb[6]+s*sb[7];
295 R = R1 + s2*R2 + s4*R3 + s6*rb[6];
296 S = S1 + s2*S2 + s4*S3 + s6*S4;
297 #endif
299 z = x;
300 SET_LOW_WORD(z,0);
301 r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
302 if(hx>=0) return one-r/x; else return r/x-one;
304 weak_alias (__erf, erf)
305 #ifdef NO_LONG_DOUBLE
306 strong_alias (__erf, __erfl)
307 weak_alias (__erf, erfl)
308 #endif
310 #ifdef __STDC__
311 double __erfc(double x)
312 #else
313 double __erfc(x)
314 double x;
315 #endif
317 int32_t hx,ix;
318 double R,S,P,Q,s,y,z,r;
319 GET_HIGH_WORD(hx,x);
320 ix = hx&0x7fffffff;
321 if(ix>=0x7ff00000) { /* erfc(nan)=nan */
322 /* erfc(+-inf)=0,2 */
323 return (double)(((u_int32_t)hx>>31)<<1)+one/x;
326 if(ix < 0x3feb0000) { /* |x|<0.84375 */
327 double r1,r2,s1,s2,s3,z2,z4;
328 if(ix < 0x3c700000) /* |x|<2**-56 */
329 return one-x;
330 z = x*x;
331 #ifdef DO_NOT_USE_THIS
332 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
333 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
334 #else
335 r1 = pp[0]+z*pp[1]; z2=z*z;
336 r2 = pp[2]+z*pp[3]; z4=z2*z2;
337 s1 = one+z*qq[1];
338 s2 = qq[2]+z*qq[3];
339 s3 = qq[4]+z*qq[5];
340 r = r1 + z2*r2 + z4*pp[4];
341 s = s1 + z2*s2 + z4*s3;
342 #endif
343 y = r/s;
344 if(hx < 0x3fd00000) { /* x<1/4 */
345 return one-(x+x*y);
346 } else {
347 r = x*y;
348 r += (x-half);
349 return half - r ;
352 if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
353 double s2,s4,s6,P1,P2,P3,P4,Q1,Q2,Q3,Q4;
354 s = fabs(x)-one;
355 #ifdef DO_NOT_USE_THIS
356 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
357 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
358 #else
359 P1 = pa[0]+s*pa[1]; s2=s*s;
360 Q1 = one+s*qa[1]; s4=s2*s2;
361 P2 = pa[2]+s*pa[3]; s6=s4*s2;
362 Q2 = qa[2]+s*qa[3];
363 P3 = pa[4]+s*pa[5];
364 Q3 = qa[4]+s*qa[5];
365 P4 = pa[6];
366 Q4 = qa[6];
367 P = P1 + s2*P2 + s4*P3 + s6*P4;
368 Q = Q1 + s2*Q2 + s4*Q3 + s6*Q4;
369 #endif
370 if(hx>=0) {
371 z = one-erx; return z - P/Q;
372 } else {
373 z = erx+P/Q; return one+z;
376 if (ix < 0x403c0000) { /* |x|<28 */
377 x = fabs(x);
378 s = one/(x*x);
379 if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
380 #ifdef DO_NOT_USE_THIS
381 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
382 ra5+s*(ra6+s*ra7))))));
383 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
384 sa5+s*(sa6+s*(sa7+s*sa8)))))));
385 #else
386 double R1,R2,R3,R4,S1,S2,S3,S4,s2,s4,s6,s8;
387 R1 = ra[0]+s*ra[1];s2 = s*s;
388 S1 = one+s*sa[1]; s4 = s2*s2;
389 R2 = ra[2]+s*ra[3];s6 = s4*s2;
390 S2 = sa[2]+s*sa[3];s8 = s4*s4;
391 R3 = ra[4]+s*ra[5];
392 S3 = sa[4]+s*sa[5];
393 R4 = ra[6]+s*ra[7];
394 S4 = sa[6]+s*sa[7];
395 R = R1 + s2*R2 + s4*R3 + s6*R4;
396 S = S1 + s2*S2 + s4*S3 + s6*S4 + s8*sa[8];
397 #endif
398 } else { /* |x| >= 1/.35 ~ 2.857143 */
399 double R1,R2,R3,S1,S2,S3,S4,s2,s4,s6;
400 if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
401 #ifdef DO_NOT_USE_THIS
402 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
403 rb5+s*rb6)))));
404 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
405 sb5+s*(sb6+s*sb7))))));
406 #else
407 R1 = rb[0]+s*rb[1];s2 = s*s;
408 S1 = one+s*sb[1]; s4 = s2*s2;
409 R2 = rb[2]+s*rb[3];s6 = s4*s2;
410 S2 = sb[2]+s*sb[3];
411 R3 = rb[4]+s*rb[5];
412 S3 = sb[4]+s*sb[5];
413 S4 = sb[6]+s*sb[7];
414 R = R1 + s2*R2 + s4*R3 + s6*rb[6];
415 S = S1 + s2*S2 + s4*S3 + s6*S4;
416 #endif
418 z = x;
419 SET_LOW_WORD(z,0);
420 r = __ieee754_exp(-z*z-0.5625)*
421 __ieee754_exp((z-x)*(z+x)+R/S);
422 if(hx>0) return r/x; else return two-r/x;
423 } else {
424 if(hx>0) return tiny*tiny; else return two-tiny;
427 weak_alias (__erfc, erfc)
428 #ifdef NO_LONG_DOUBLE
429 strong_alias (__erfc, __erfcl)
430 weak_alias (__erfc, erfcl)
431 #endif