math: Remove mpa files [BZ #15267]
[glibc.git] / manual / math.texi
blob376306cfc55efda9e85a30c4b5cefa50ea7cdc92
1 @c We need some definitions here.
2 @ifclear mult
3 @ifhtml
4 @set mult @U{00B7}
5 @set infty @U{221E}
6 @set pie @U{03C0}
7 @end ifhtml
8 @iftex
9 @set mult @cdot
10 @set infty @infty
11 @end iftex
12 @ifclear mult
13 @set mult *
14 @set infty oo
15 @set pie pi
16 @end ifclear
17 @macro mul
18 @value{mult}
19 @end macro
20 @macro infinity
21 @value{infty}
22 @end macro
23 @ifnottex
24 @macro pi
25 @value{pie}
26 @end macro
27 @end ifnottex
28 @end ifclear
30 @node Mathematics, Arithmetic, Syslog, Top
31 @c %MENU% Math functions, useful constants, random numbers
32 @chapter Mathematics
34 This chapter contains information about functions for performing
35 mathematical computations, such as trigonometric functions.  Most of
36 these functions have prototypes declared in the header file
37 @file{math.h}.  The complex-valued functions are defined in
38 @file{complex.h}.
39 @pindex math.h
40 @pindex complex.h
42 All mathematical functions which take a floating-point argument
43 have three variants, one each for @code{double}, @code{float}, and
44 @code{long double} arguments.  The @code{double} versions are mostly
45 defined in @w{ISO C89}.  The @code{float} and @code{long double}
46 versions are from the numeric extensions to C included in @w{ISO C99}.
48 Which of the three versions of a function should be used depends on the
49 situation.  For most calculations, the @code{float} functions are the
50 fastest.  On the other hand, the @code{long double} functions have the
51 highest precision.  @code{double} is somewhere in between.  It is
52 usually wise to pick the narrowest type that can accommodate your data.
53 Not all machines have a distinct @code{long double} type; it may be the
54 same as @code{double}.
56 @Theglibc{} also provides @code{_Float@var{N}} and
57 @code{_Float@var{N}x} types.  These types are defined in @w{ISO/IEC TS
58 18661-3}, which extends @w{ISO C} and defines floating-point types that
59 are not machine-dependent.  When such a type, such as @code{_Float128},
60 is supported by @theglibc{}, extra variants for most of the mathematical
61 functions provided for @code{double}, @code{float}, and @code{long
62 double} are also provided for the supported type.  Throughout this
63 manual, the @code{_Float@var{N}} and @code{_Float@var{N}x} variants of
64 these functions are described along with the @code{double},
65 @code{float}, and @code{long double} variants and they come from
66 @w{ISO/IEC TS 18661-3}, unless explicitly stated otherwise.
68 Support for @code{_Float@var{N}} or @code{_Float@var{N}x} types is
69 provided for @code{_Float32}, @code{_Float64} and @code{_Float32x} on
70 all platforms.
71 It is also provided for @code{_Float128} and @code{_Float64x} on
72 powerpc64le (PowerPC 64-bits little-endian), x86_64, x86, ia64,
73 aarch64, alpha, mips64, riscv, s390 and sparc.
75 @menu
76 * Mathematical Constants::      Precise numeric values for often-used
77                                  constants.
78 * Trig Functions::              Sine, cosine, tangent, and friends.
79 * Inverse Trig Functions::      Arcsine, arccosine, etc.
80 * Exponents and Logarithms::    Also pow and sqrt.
81 * Hyperbolic Functions::        sinh, cosh, tanh, etc.
82 * Special Functions::           Bessel, gamma, erf.
83 * Errors in Math Functions::    Known Maximum Errors in Math Functions.
84 * Pseudo-Random Numbers::       Functions for generating pseudo-random
85                                  numbers.
86 * FP Function Optimizations::   Fast code or small code.
87 @end menu
89 @node Mathematical Constants
90 @section Predefined Mathematical Constants
91 @cindex constants
92 @cindex mathematical constants
94 The header @file{math.h} defines several useful mathematical constants.
95 All values are defined as preprocessor macros starting with @code{M_}.
96 The values provided are:
98 @vtable @code
99 @item M_E
100 The base of natural logarithms.
101 @item M_LOG2E
102 The logarithm to base @code{2} of @code{M_E}.
103 @item M_LOG10E
104 The logarithm to base @code{10} of @code{M_E}.
105 @item M_LN2
106 The natural logarithm of @code{2}.
107 @item M_LN10
108 The natural logarithm of @code{10}.
109 @item M_PI
110 Pi, the ratio of a circle's circumference to its diameter.
111 @item M_PI_2
112 Pi divided by two.
113 @item M_PI_4
114 Pi divided by four.
115 @item M_1_PI
116 The reciprocal of pi (1/pi)
117 @item M_2_PI
118 Two times the reciprocal of pi.
119 @item M_2_SQRTPI
120 Two times the reciprocal of the square root of pi.
121 @item M_SQRT2
122 The square root of two.
123 @item M_SQRT1_2
124 The reciprocal of the square root of two (also the square root of 1/2).
125 @end vtable
127 These constants come from the Unix98 standard and were also available in
128 4.4BSD; therefore they are only defined if
129 @code{_XOPEN_SOURCE=500}, or a more general feature select macro, is
130 defined.  The default set of features includes these constants.
131 @xref{Feature Test Macros}.
133 All values are of type @code{double}.  As an extension, @theglibc{}
134 also defines these constants with type @code{long double}.  The
135 @code{long double} macros have a lowercase @samp{l} appended to their
136 names: @code{M_El}, @code{M_PIl}, and so forth.  These are only
137 available if @code{_GNU_SOURCE} is defined.
139 Likewise, @theglibc{} also defines these constants with the types
140 @code{_Float@var{N}} and @code{_Float@var{N}x} for the machines that
141 have support for such types enabled (@pxref{Mathematics}) and if
142 @code{_GNU_SOURCE} is defined.  When available, the macros names are
143 appended with @samp{f@var{N}} or @samp{f@var{N}x}, such as @samp{f128}
144 for the type @code{_Float128}.
146 @vindex PI
147 @emph{Note:} Some programs use a constant named @code{PI} which has the
148 same value as @code{M_PI}.  This constant is not standard; it may have
149 appeared in some old AT&T headers, and is mentioned in Stroustrup's book
150 on C++.  It infringes on the user's name space, so @theglibc{}
151 does not define it.  Fixing programs written to expect it is simple:
152 replace @code{PI} with @code{M_PI} throughout, or put @samp{-DPI=M_PI}
153 on the compiler command line.
155 @node Trig Functions
156 @section Trigonometric Functions
157 @cindex trigonometric functions
159 These are the familiar @code{sin}, @code{cos}, and @code{tan} functions.
160 The arguments to all of these functions are in units of radians; recall
161 that pi radians equals 180 degrees.
163 @cindex pi (trigonometric constant)
164 The math library normally defines @code{M_PI} to a @code{double}
165 approximation of pi.  If strict ISO and/or POSIX compliance
166 are requested this constant is not defined, but you can easily define it
167 yourself:
169 @smallexample
170 #define M_PI 3.14159265358979323846264338327
171 @end smallexample
173 @noindent
174 You can also compute the value of pi with the expression @code{acos
175 (-1.0)}.
177 @deftypefun double sin (double @var{x})
178 @deftypefunx float sinf (float @var{x})
179 @deftypefunx {long double} sinl (long double @var{x})
180 @deftypefunx _FloatN sinfN (_Float@var{N} @var{x})
181 @deftypefunx _FloatNx sinfNx (_Float@var{N}x @var{x})
182 @standards{ISO, math.h}
183 @standardsx{sinfN, TS 18661-3:2015, math.h}
184 @standardsx{sinfNx, TS 18661-3:2015, math.h}
185 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
186 These functions return the sine of @var{x}, where @var{x} is given in
187 radians.  The return value is in the range @code{-1} to @code{1}.
188 @end deftypefun
190 @deftypefun double cos (double @var{x})
191 @deftypefunx float cosf (float @var{x})
192 @deftypefunx {long double} cosl (long double @var{x})
193 @deftypefunx _FloatN cosfN (_Float@var{N} @var{x})
194 @deftypefunx _FloatNx cosfNx (_Float@var{N}x @var{x})
195 @standards{ISO, math.h}
196 @standardsx{cosfN, TS 18661-3:2015, math.h}
197 @standardsx{cosfNx, TS 18661-3:2015, math.h}
198 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
199 These functions return the cosine of @var{x}, where @var{x} is given in
200 radians.  The return value is in the range @code{-1} to @code{1}.
201 @end deftypefun
203 @deftypefun double tan (double @var{x})
204 @deftypefunx float tanf (float @var{x})
205 @deftypefunx {long double} tanl (long double @var{x})
206 @deftypefunx _FloatN tanfN (_Float@var{N} @var{x})
207 @deftypefunx _FloatNx tanfNx (_Float@var{N}x @var{x})
208 @standards{ISO, math.h}
209 @standardsx{tanfN, TS 18661-3:2015, math.h}
210 @standardsx{tanfNx, TS 18661-3:2015, math.h}
211 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
212 These functions return the tangent of @var{x}, where @var{x} is given in
213 radians.
215 Mathematically, the tangent function has singularities at odd multiples
216 of pi/2.  If the argument @var{x} is too close to one of these
217 singularities, @code{tan} will signal overflow.
218 @end deftypefun
220 In many applications where @code{sin} and @code{cos} are used, the sine
221 and cosine of the same angle are needed at the same time.  It is more
222 efficient to compute them simultaneously, so the library provides a
223 function to do that.
225 @deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx})
226 @deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx})
227 @deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx})
228 @deftypefunx _FloatN sincosfN (_Float@var{N} @var{x}, _Float@var{N} *@var{sinx}, _Float@var{N} *@var{cosx})
229 @deftypefunx _FloatNx sincosfNx (_Float@var{N}x @var{x}, _Float@var{N}x *@var{sinx}, _Float@var{N}x *@var{cosx})
230 @standards{GNU, math.h}
231 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
232 These functions return the sine of @var{x} in @code{*@var{sinx}} and the
233 cosine of @var{x} in @code{*@var{cosx}}, where @var{x} is given in
234 radians.  Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in
235 the range of @code{-1} to @code{1}.
237 All these functions, including the @code{_Float@var{N}} and
238 @code{_Float@var{N}x} variants, are GNU extensions.  Portable programs
239 should be prepared to cope with their absence.
240 @end deftypefun
242 @cindex complex trigonometric functions
244 @w{ISO C99} defines variants of the trig functions which work on
245 complex numbers.  @Theglibc{} provides these functions, but they
246 are only useful if your compiler supports the new complex types defined
247 by the standard.
248 @c XXX Change this when gcc is fixed. -zw
249 (As of this writing GCC supports complex numbers, but there are bugs in
250 the implementation.)
252 @deftypefun {complex double} csin (complex double @var{z})
253 @deftypefunx {complex float} csinf (complex float @var{z})
254 @deftypefunx {complex long double} csinl (complex long double @var{z})
255 @deftypefunx {complex _FloatN} csinfN (complex _Float@var{N} @var{z})
256 @deftypefunx {complex _FloatNx} csinfNx (complex _Float@var{N}x @var{z})
257 @standards{ISO, complex.h}
258 @standardsx{csinfN, TS 18661-3:2015, complex.h}
259 @standardsx{csinfNx, TS 18661-3:2015, complex.h}
260 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
261 @c There are calls to nan* that could trigger @mtslocale if they didn't get
262 @c empty strings.
263 These functions return the complex sine of @var{z}.
264 The mathematical definition of the complex sine is
266 @ifnottex
267 @math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}.
268 @end ifnottex
269 @tex
270 $$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$
271 @end tex
272 @end deftypefun
274 @deftypefun {complex double} ccos (complex double @var{z})
275 @deftypefunx {complex float} ccosf (complex float @var{z})
276 @deftypefunx {complex long double} ccosl (complex long double @var{z})
277 @deftypefunx {complex _FloatN} ccosfN (complex _Float@var{N} @var{z})
278 @deftypefunx {complex _FloatNx} ccosfNx (complex _Float@var{N}x @var{z})
279 @standards{ISO, complex.h}
280 @standardsx{ccosfN, TS 18661-3:2015, complex.h}
281 @standardsx{ccosfNx, TS 18661-3:2015, complex.h}
282 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
283 These functions return the complex cosine of @var{z}.
284 The mathematical definition of the complex cosine is
286 @ifnottex
287 @math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))}
288 @end ifnottex
289 @tex
290 $$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$
291 @end tex
292 @end deftypefun
294 @deftypefun {complex double} ctan (complex double @var{z})
295 @deftypefunx {complex float} ctanf (complex float @var{z})
296 @deftypefunx {complex long double} ctanl (complex long double @var{z})
297 @deftypefunx {complex _FloatN} ctanfN (complex _Float@var{N} @var{z})
298 @deftypefunx {complex _FloatNx} ctanfNx (complex _Float@var{N}x @var{z})
299 @standards{ISO, complex.h}
300 @standardsx{ctanfN, TS 18661-3:2015, complex.h}
301 @standardsx{ctanfNx, TS 18661-3:2015, complex.h}
302 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
303 These functions return the complex tangent of @var{z}.
304 The mathematical definition of the complex tangent is
306 @ifnottex
307 @math{tan (z) = -i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))}
308 @end ifnottex
309 @tex
310 $$\tan(z) = -i \cdot {e^{zi} - e^{-zi}\over e^{zi} + e^{-zi}}$$
311 @end tex
313 @noindent
314 The complex tangent has poles at @math{pi/2 + 2n}, where @math{n} is an
315 integer.  @code{ctan} may signal overflow if @var{z} is too close to a
316 pole.
317 @end deftypefun
320 @node Inverse Trig Functions
321 @section Inverse Trigonometric Functions
322 @cindex inverse trigonometric functions
324 These are the usual arcsine, arccosine and arctangent functions,
325 which are the inverses of the sine, cosine and tangent functions
326 respectively.
328 @deftypefun double asin (double @var{x})
329 @deftypefunx float asinf (float @var{x})
330 @deftypefunx {long double} asinl (long double @var{x})
331 @deftypefunx _FloatN asinfN (_Float@var{N} @var{x})
332 @deftypefunx _FloatNx asinfNx (_Float@var{N}x @var{x})
333 @standards{ISO, math.h}
334 @standardsx{asinfN, TS 18661-3:2015, math.h}
335 @standardsx{asinfNx, TS 18661-3:2015, math.h}
336 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
337 These functions compute the arcsine of @var{x}---that is, the value whose
338 sine is @var{x}.  The value is in units of radians.  Mathematically,
339 there are infinitely many such values; the one actually returned is the
340 one between @code{-pi/2} and @code{pi/2} (inclusive).
342 The arcsine function is defined mathematically only
343 over the domain @code{-1} to @code{1}.  If @var{x} is outside the
344 domain, @code{asin} signals a domain error.
345 @end deftypefun
347 @deftypefun double acos (double @var{x})
348 @deftypefunx float acosf (float @var{x})
349 @deftypefunx {long double} acosl (long double @var{x})
350 @deftypefunx _FloatN acosfN (_Float@var{N} @var{x})
351 @deftypefunx _FloatNx acosfNx (_Float@var{N}x @var{x})
352 @standards{ISO, math.h}
353 @standardsx{acosfN, TS 18661-3:2015, math.h}
354 @standardsx{acosfNx, TS 18661-3:2015, math.h}
355 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
356 These functions compute the arccosine of @var{x}---that is, the value
357 whose cosine is @var{x}.  The value is in units of radians.
358 Mathematically, there are infinitely many such values; the one actually
359 returned is the one between @code{0} and @code{pi} (inclusive).
361 The arccosine function is defined mathematically only
362 over the domain @code{-1} to @code{1}.  If @var{x} is outside the
363 domain, @code{acos} signals a domain error.
364 @end deftypefun
366 @deftypefun double atan (double @var{x})
367 @deftypefunx float atanf (float @var{x})
368 @deftypefunx {long double} atanl (long double @var{x})
369 @deftypefunx _FloatN atanfN (_Float@var{N} @var{x})
370 @deftypefunx _FloatNx atanfNx (_Float@var{N}x @var{x})
371 @standards{ISO, math.h}
372 @standardsx{atanfN, TS 18661-3:2015, math.h}
373 @standardsx{atanfNx, TS 18661-3:2015, math.h}
374 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
375 These functions compute the arctangent of @var{x}---that is, the value
376 whose tangent is @var{x}.  The value is in units of radians.
377 Mathematically, there are infinitely many such values; the one actually
378 returned is the one between @code{-pi/2} and @code{pi/2} (inclusive).
379 @end deftypefun
381 @deftypefun double atan2 (double @var{y}, double @var{x})
382 @deftypefunx float atan2f (float @var{y}, float @var{x})
383 @deftypefunx {long double} atan2l (long double @var{y}, long double @var{x})
384 @deftypefunx _FloatN atan2fN (_Float@var{N} @var{y}, _Float@var{N} @var{x})
385 @deftypefunx _FloatNx atan2fNx (_Float@var{N}x @var{y}, _Float@var{N}x @var{x})
386 @standards{ISO, math.h}
387 @standardsx{atan2fN, TS 18661-3:2015, math.h}
388 @standardsx{atan2fNx, TS 18661-3:2015, math.h}
389 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
390 This function computes the arctangent of @var{y}/@var{x}, but the signs
391 of both arguments are used to determine the quadrant of the result, and
392 @var{x} is permitted to be zero.  The return value is given in radians
393 and is in the range @code{-pi} to @code{pi}, inclusive.
395 If @var{x} and @var{y} are coordinates of a point in the plane,
396 @code{atan2} returns the signed angle between the line from the origin
397 to that point and the x-axis.  Thus, @code{atan2} is useful for
398 converting Cartesian coordinates to polar coordinates.  (To compute the
399 radial coordinate, use @code{hypot}; see @ref{Exponents and
400 Logarithms}.)
402 @c This is experimentally true.  Should it be so? -zw
403 If both @var{x} and @var{y} are zero, @code{atan2} returns zero.
404 @end deftypefun
406 @cindex inverse complex trigonometric functions
407 @w{ISO C99} defines complex versions of the inverse trig functions.
409 @deftypefun {complex double} casin (complex double @var{z})
410 @deftypefunx {complex float} casinf (complex float @var{z})
411 @deftypefunx {complex long double} casinl (complex long double @var{z})
412 @deftypefunx {complex _FloatN} casinfN (complex _Float@var{N} @var{z})
413 @deftypefunx {complex _FloatNx} casinfNx (complex _Float@var{N}x @var{z})
414 @standards{ISO, complex.h}
415 @standardsx{casinfN, TS 18661-3:2015, complex.h}
416 @standardsx{casinfNx, TS 18661-3:2015, complex.h}
417 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
418 These functions compute the complex arcsine of @var{z}---that is, the
419 value whose sine is @var{z}.  The value returned is in radians.
421 Unlike the real-valued functions, @code{casin} is defined for all
422 values of @var{z}.
423 @end deftypefun
425 @deftypefun {complex double} cacos (complex double @var{z})
426 @deftypefunx {complex float} cacosf (complex float @var{z})
427 @deftypefunx {complex long double} cacosl (complex long double @var{z})
428 @deftypefunx {complex _FloatN} cacosfN (complex _Float@var{N} @var{z})
429 @deftypefunx {complex _FloatNx} cacosfNx (complex _Float@var{N}x @var{z})
430 @standards{ISO, complex.h}
431 @standardsx{cacosfN, TS 18661-3:2015, complex.h}
432 @standardsx{cacosfNx, TS 18661-3:2015, complex.h}
433 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
434 These functions compute the complex arccosine of @var{z}---that is, the
435 value whose cosine is @var{z}.  The value returned is in radians.
437 Unlike the real-valued functions, @code{cacos} is defined for all
438 values of @var{z}.
439 @end deftypefun
442 @deftypefun {complex double} catan (complex double @var{z})
443 @deftypefunx {complex float} catanf (complex float @var{z})
444 @deftypefunx {complex long double} catanl (complex long double @var{z})
445 @deftypefunx {complex _FloatN} catanfN (complex _Float@var{N} @var{z})
446 @deftypefunx {complex _FloatNx} catanfNx (complex _Float@var{N}x @var{z})
447 @standards{ISO, complex.h}
448 @standardsx{catanfN, TS 18661-3:2015, complex.h}
449 @standardsx{catanfNx, TS 18661-3:2015, complex.h}
450 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
451 These functions compute the complex arctangent of @var{z}---that is,
452 the value whose tangent is @var{z}.  The value is in units of radians.
453 @end deftypefun
456 @node Exponents and Logarithms
457 @section Exponentiation and Logarithms
458 @cindex exponentiation functions
459 @cindex power functions
460 @cindex logarithm functions
462 @deftypefun double exp (double @var{x})
463 @deftypefunx float expf (float @var{x})
464 @deftypefunx {long double} expl (long double @var{x})
465 @deftypefunx _FloatN expfN (_Float@var{N} @var{x})
466 @deftypefunx _FloatNx expfNx (_Float@var{N}x @var{x})
467 @standards{ISO, math.h}
468 @standardsx{expfN, TS 18661-3:2015, math.h}
469 @standardsx{expfNx, TS 18661-3:2015, math.h}
470 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
471 These functions compute @code{e} (the base of natural logarithms) raised
472 to the power @var{x}.
474 If the magnitude of the result is too large to be representable,
475 @code{exp} signals overflow.
476 @end deftypefun
478 @deftypefun double exp2 (double @var{x})
479 @deftypefunx float exp2f (float @var{x})
480 @deftypefunx {long double} exp2l (long double @var{x})
481 @deftypefunx _FloatN exp2fN (_Float@var{N} @var{x})
482 @deftypefunx _FloatNx exp2fNx (_Float@var{N}x @var{x})
483 @standards{ISO, math.h}
484 @standardsx{exp2fN, TS 18661-3:2015, math.h}
485 @standardsx{exp2fNx, TS 18661-3:2015, math.h}
486 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
487 These functions compute @code{2} raised to the power @var{x}.
488 Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}.
489 @end deftypefun
491 @deftypefun double exp10 (double @var{x})
492 @deftypefunx float exp10f (float @var{x})
493 @deftypefunx {long double} exp10l (long double @var{x})
494 @deftypefunx _FloatN exp10fN (_Float@var{N} @var{x})
495 @deftypefunx _FloatNx exp10fNx (_Float@var{N}x @var{x})
496 @standards{ISO, math.h}
497 @standardsx{exp10fN, TS 18661-4:2015, math.h}
498 @standardsx{exp10fNx, TS 18661-4:2015, math.h}
499 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
500 These functions compute @code{10} raised to the power @var{x}.
501 Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}.
503 The @code{exp10} functions are from TS 18661-4:2015.
504 @end deftypefun
507 @deftypefun double log (double @var{x})
508 @deftypefunx float logf (float @var{x})
509 @deftypefunx {long double} logl (long double @var{x})
510 @deftypefunx _FloatN logfN (_Float@var{N} @var{x})
511 @deftypefunx _FloatNx logfNx (_Float@var{N}x @var{x})
512 @standards{ISO, math.h}
513 @standardsx{logfN, TS 18661-3:2015, math.h}
514 @standardsx{logfNx, TS 18661-3:2015, math.h}
515 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
516 These functions compute the natural logarithm of @var{x}.  @code{exp (log
517 (@var{x}))} equals @var{x}, exactly in mathematics and approximately in
520 If @var{x} is negative, @code{log} signals a domain error.  If @var{x}
521 is zero, it returns negative infinity; if @var{x} is too close to zero,
522 it may signal overflow.
523 @end deftypefun
525 @deftypefun double log10 (double @var{x})
526 @deftypefunx float log10f (float @var{x})
527 @deftypefunx {long double} log10l (long double @var{x})
528 @deftypefunx _FloatN log10fN (_Float@var{N} @var{x})
529 @deftypefunx _FloatNx log10fNx (_Float@var{N}x @var{x})
530 @standards{ISO, math.h}
531 @standardsx{log10fN, TS 18661-3:2015, math.h}
532 @standardsx{log10fNx, TS 18661-3:2015, math.h}
533 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
534 These functions return the base-10 logarithm of @var{x}.
535 @code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}.
537 @end deftypefun
539 @deftypefun double log2 (double @var{x})
540 @deftypefunx float log2f (float @var{x})
541 @deftypefunx {long double} log2l (long double @var{x})
542 @deftypefunx _FloatN log2fN (_Float@var{N} @var{x})
543 @deftypefunx _FloatNx log2fNx (_Float@var{N}x @var{x})
544 @standards{ISO, math.h}
545 @standardsx{log2fN, TS 18661-3:2015, math.h}
546 @standardsx{log2fNx, TS 18661-3:2015, math.h}
547 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
548 These functions return the base-2 logarithm of @var{x}.
549 @code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}.
550 @end deftypefun
552 @deftypefun double logb (double @var{x})
553 @deftypefunx float logbf (float @var{x})
554 @deftypefunx {long double} logbl (long double @var{x})
555 @deftypefunx _FloatN logbfN (_Float@var{N} @var{x})
556 @deftypefunx _FloatNx logbfNx (_Float@var{N}x @var{x})
557 @standards{ISO, math.h}
558 @standardsx{logbfN, TS 18661-3:2015, math.h}
559 @standardsx{logbfNx, TS 18661-3:2015, math.h}
560 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
561 These functions extract the exponent of @var{x} and return it as a
562 floating-point value.  If @code{FLT_RADIX} is two, @code{logb} is equal
563 to @code{floor (log2 (x))}, except it's probably faster.
565 If @var{x} is de-normalized, @code{logb} returns the exponent @var{x}
566 would have if it were normalized.  If @var{x} is infinity (positive or
567 negative), @code{logb} returns @math{@infinity{}}.  If @var{x} is zero,
568 @code{logb} returns @math{@infinity{}}.  It does not signal.
569 @end deftypefun
571 @deftypefun int ilogb (double @var{x})
572 @deftypefunx int ilogbf (float @var{x})
573 @deftypefunx int ilogbl (long double @var{x})
574 @deftypefunx int ilogbfN (_Float@var{N} @var{x})
575 @deftypefunx int ilogbfNx (_Float@var{N}x @var{x})
576 @deftypefunx {long int} llogb (double @var{x})
577 @deftypefunx {long int} llogbf (float @var{x})
578 @deftypefunx {long int} llogbl (long double @var{x})
579 @deftypefunx {long int} llogbfN (_Float@var{N} @var{x})
580 @deftypefunx {long int} llogbfNx (_Float@var{N}x @var{x})
581 @standards{ISO, math.h}
582 @standardsx{ilogbfN, TS 18661-3:2015, math.h}
583 @standardsx{ilogbfNx, TS 18661-3:2015, math.h}
584 @standardsx{llogbfN, TS 18661-3:2015, math.h}
585 @standardsx{llogbfNx, TS 18661-3:2015, math.h}
586 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
587 These functions are equivalent to the corresponding @code{logb}
588 functions except that they return signed integer values.  The
589 @code{ilogb}, @code{ilogbf}, and @code{ilogbl} functions are from ISO
590 C99; the @code{llogb}, @code{llogbf}, @code{llogbl} functions are from
591 TS 18661-1:2014; the @code{ilogbfN}, @code{ilogbfNx}, @code{llogbfN},
592 and @code{llogbfNx} functions are from TS 18661-3:2015.
593 @end deftypefun
595 @noindent
596 Since integers cannot represent infinity and NaN, @code{ilogb} instead
597 returns an integer that can't be the exponent of a normal floating-point
598 number.  @file{math.h} defines constants so you can check for this.
600 @deftypevr Macro int FP_ILOGB0
601 @standards{ISO, math.h}
602 @code{ilogb} returns this value if its argument is @code{0}.  The
603 numeric value is either @code{INT_MIN} or @code{-INT_MAX}.
605 This macro is defined in @w{ISO C99}.
606 @end deftypevr
608 @deftypevr Macro {long int} FP_LLOGB0
609 @standards{ISO, math.h}
610 @code{llogb} returns this value if its argument is @code{0}.  The
611 numeric value is either @code{LONG_MIN} or @code{-LONG_MAX}.
613 This macro is defined in TS 18661-1:2014.
614 @end deftypevr
616 @deftypevr Macro int FP_ILOGBNAN
617 @standards{ISO, math.h}
618 @code{ilogb} returns this value if its argument is @code{NaN}.  The
619 numeric value is either @code{INT_MIN} or @code{INT_MAX}.
621 This macro is defined in @w{ISO C99}.
622 @end deftypevr
624 @deftypevr Macro {long int} FP_LLOGBNAN
625 @standards{ISO, math.h}
626 @code{llogb} returns this value if its argument is @code{NaN}.  The
627 numeric value is either @code{LONG_MIN} or @code{LONG_MAX}.
629 This macro is defined in TS 18661-1:2014.
630 @end deftypevr
632 These values are system specific.  They might even be the same.  The
633 proper way to test the result of @code{ilogb} is as follows:
635 @smallexample
636 i = ilogb (f);
637 if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
638   @{
639     if (isnan (f))
640       @{
641         /* @r{Handle NaN.}  */
642       @}
643     else if (f  == 0.0)
644       @{
645         /* @r{Handle 0.0.}  */
646       @}
647     else
648       @{
649         /* @r{Some other value with large exponent,}
650            @r{perhaps +Inf.}  */
651       @}
652   @}
653 @end smallexample
655 @deftypefun double pow (double @var{base}, double @var{power})
656 @deftypefunx float powf (float @var{base}, float @var{power})
657 @deftypefunx {long double} powl (long double @var{base}, long double @var{power})
658 @deftypefunx _FloatN powfN (_Float@var{N} @var{base}, _Float@var{N} @var{power})
659 @deftypefunx _FloatNx powfNx (_Float@var{N}x @var{base}, _Float@var{N}x @var{power})
660 @standards{ISO, math.h}
661 @standardsx{powfN, TS 18661-3:2015, math.h}
662 @standardsx{powfNx, TS 18661-3:2015, math.h}
663 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
664 These are general exponentiation functions, returning @var{base} raised
665 to @var{power}.
667 Mathematically, @code{pow} would return a complex number when @var{base}
668 is negative and @var{power} is not an integral value.  @code{pow} can't
669 do that, so instead it signals a domain error. @code{pow} may also
670 underflow or overflow the destination type.
671 @end deftypefun
673 @cindex square root function
674 @deftypefun double sqrt (double @var{x})
675 @deftypefunx float sqrtf (float @var{x})
676 @deftypefunx {long double} sqrtl (long double @var{x})
677 @deftypefunx _FloatN sqrtfN (_Float@var{N} @var{x})
678 @deftypefunx _FloatNx sqrtfNx (_Float@var{N}x @var{x})
679 @standards{ISO, math.h}
680 @standardsx{sqrtfN, TS 18661-3:2015, math.h}
681 @standardsx{sqrtfNx, TS 18661-3:2015, math.h}
682 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
683 These functions return the nonnegative square root of @var{x}.
685 If @var{x} is negative, @code{sqrt} signals a domain error.
686 Mathematically, it should return a complex number.
687 @end deftypefun
689 @cindex cube root function
690 @deftypefun double cbrt (double @var{x})
691 @deftypefunx float cbrtf (float @var{x})
692 @deftypefunx {long double} cbrtl (long double @var{x})
693 @deftypefunx _FloatN cbrtfN (_Float@var{N} @var{x})
694 @deftypefunx _FloatNx cbrtfNx (_Float@var{N}x @var{x})
695 @standards{BSD, math.h}
696 @standardsx{cbrtfN, TS 18661-3:2015, math.h}
697 @standardsx{cbrtfNx, TS 18661-3:2015, math.h}
698 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
699 These functions return the cube root of @var{x}.  They cannot
700 fail; every representable real value has a representable real cube root.
701 @end deftypefun
703 @deftypefun double hypot (double @var{x}, double @var{y})
704 @deftypefunx float hypotf (float @var{x}, float @var{y})
705 @deftypefunx {long double} hypotl (long double @var{x}, long double @var{y})
706 @deftypefunx _FloatN hypotfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
707 @deftypefunx _FloatNx hypotfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
708 @standards{ISO, math.h}
709 @standardsx{hypotfN, TS 18661-3:2015, math.h}
710 @standardsx{hypotfNx, TS 18661-3:2015, math.h}
711 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
712 These functions return @code{sqrt (@var{x}*@var{x} +
713 @var{y}*@var{y})}.  This is the length of the hypotenuse of a right
714 triangle with sides of length @var{x} and @var{y}, or the distance
715 of the point (@var{x}, @var{y}) from the origin.  Using this function
716 instead of the direct formula is wise, since the error is
717 much smaller.  See also the function @code{cabs} in @ref{Absolute Value}.
718 @end deftypefun
720 @deftypefun double expm1 (double @var{x})
721 @deftypefunx float expm1f (float @var{x})
722 @deftypefunx {long double} expm1l (long double @var{x})
723 @deftypefunx _FloatN expm1fN (_Float@var{N} @var{x})
724 @deftypefunx _FloatNx expm1fNx (_Float@var{N}x @var{x})
725 @standards{ISO, math.h}
726 @standardsx{expm1fN, TS 18661-3:2015, math.h}
727 @standardsx{expm1fNx, TS 18661-3:2015, math.h}
728 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
729 These functions return a value equivalent to @code{exp (@var{x}) - 1}.
730 They are computed in a way that is accurate even if @var{x} is
731 near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing
732 to subtraction of two numbers that are nearly equal.
733 @end deftypefun
735 @deftypefun double log1p (double @var{x})
736 @deftypefunx float log1pf (float @var{x})
737 @deftypefunx {long double} log1pl (long double @var{x})
738 @deftypefunx _FloatN log1pfN (_Float@var{N} @var{x})
739 @deftypefunx _FloatNx log1pfNx (_Float@var{N}x @var{x})
740 @standards{ISO, math.h}
741 @standardsx{log1pfN, TS 18661-3:2015, math.h}
742 @standardsx{log1pfNx, TS 18661-3:2015, math.h}
743 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
744 These functions return a value equivalent to @w{@code{log (1 + @var{x})}}.
745 They are computed in a way that is accurate even if @var{x} is
746 near zero.
747 @end deftypefun
749 @cindex complex exponentiation functions
750 @cindex complex logarithm functions
752 @w{ISO C99} defines complex variants of some of the exponentiation and
753 logarithm functions.
755 @deftypefun {complex double} cexp (complex double @var{z})
756 @deftypefunx {complex float} cexpf (complex float @var{z})
757 @deftypefunx {complex long double} cexpl (complex long double @var{z})
758 @deftypefunx {complex _FloatN} cexpfN (complex _Float@var{N} @var{z})
759 @deftypefunx {complex _FloatNx} cexpfNx (complex _Float@var{N}x @var{z})
760 @standards{ISO, complex.h}
761 @standardsx{cexpfN, TS 18661-3:2015, complex.h}
762 @standardsx{cexpfNx, TS 18661-3:2015, complex.h}
763 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
764 These functions return @code{e} (the base of natural
765 logarithms) raised to the power of @var{z}.
766 Mathematically, this corresponds to the value
768 @ifnottex
769 @math{exp (z) = exp (creal (z)) * (cos (cimag (z)) + I * sin (cimag (z)))}
770 @end ifnottex
771 @tex
772 $$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$
773 @end tex
774 @end deftypefun
776 @deftypefun {complex double} clog (complex double @var{z})
777 @deftypefunx {complex float} clogf (complex float @var{z})
778 @deftypefunx {complex long double} clogl (complex long double @var{z})
779 @deftypefunx {complex _FloatN} clogfN (complex _Float@var{N} @var{z})
780 @deftypefunx {complex _FloatNx} clogfNx (complex _Float@var{N}x @var{z})
781 @standards{ISO, complex.h}
782 @standardsx{clogfN, TS 18661-3:2015, complex.h}
783 @standardsx{clogfNx, TS 18661-3:2015, complex.h}
784 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
785 These functions return the natural logarithm of @var{z}.
786 Mathematically, this corresponds to the value
788 @ifnottex
789 @math{log (z) = log (cabs (z)) + I * carg (z)}
790 @end ifnottex
791 @tex
792 $$\log(z) = \log |z| + i \arg z$$
793 @end tex
795 @noindent
796 @code{clog} has a pole at 0, and will signal overflow if @var{z} equals
797 or is very close to 0.  It is well-defined for all other values of
798 @var{z}.
799 @end deftypefun
802 @deftypefun {complex double} clog10 (complex double @var{z})
803 @deftypefunx {complex float} clog10f (complex float @var{z})
804 @deftypefunx {complex long double} clog10l (complex long double @var{z})
805 @deftypefunx {complex _FloatN} clog10fN (complex _Float@var{N} @var{z})
806 @deftypefunx {complex _FloatNx} clog10fNx (complex _Float@var{N}x @var{z})
807 @standards{GNU, complex.h}
808 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
809 These functions return the base 10 logarithm of the complex value
810 @var{z}.  Mathematically, this corresponds to the value
812 @ifnottex
813 @math{log10 (z) = log10 (cabs (z)) + I * carg (z) / log (10)}
814 @end ifnottex
815 @tex
816 $$\log_{10}(z) = \log_{10}|z| + i \arg z / \log (10)$$
817 @end tex
819 All these functions, including the @code{_Float@var{N}} and
820 @code{_Float@var{N}x} variants, are GNU extensions.
821 @end deftypefun
823 @deftypefun {complex double} csqrt (complex double @var{z})
824 @deftypefunx {complex float} csqrtf (complex float @var{z})
825 @deftypefunx {complex long double} csqrtl (complex long double @var{z})
826 @deftypefunx {complex _FloatN} csqrtfN (_Float@var{N} @var{z})
827 @deftypefunx {complex _FloatNx} csqrtfNx (complex _Float@var{N}x @var{z})
828 @standards{ISO, complex.h}
829 @standardsx{csqrtfN, TS 18661-3:2015, complex.h}
830 @standardsx{csqrtfNx, TS 18661-3:2015, complex.h}
831 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
832 These functions return the complex square root of the argument @var{z}.  Unlike
833 the real-valued functions, they are defined for all values of @var{z}.
834 @end deftypefun
836 @deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power})
837 @deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power})
838 @deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power})
839 @deftypefunx {complex _FloatN} cpowfN (complex _Float@var{N} @var{base}, complex _Float@var{N} @var{power})
840 @deftypefunx {complex _FloatNx} cpowfNx (complex _Float@var{N}x @var{base}, complex _Float@var{N}x @var{power})
841 @standards{ISO, complex.h}
842 @standardsx{cpowfN, TS 18661-3:2015, complex.h}
843 @standardsx{cpowfNx, TS 18661-3:2015, complex.h}
844 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
845 These functions return @var{base} raised to the power of
846 @var{power}.  This is equivalent to @w{@code{cexp (y * clog (x))}}
847 @end deftypefun
849 @node Hyperbolic Functions
850 @section Hyperbolic Functions
851 @cindex hyperbolic functions
853 The functions in this section are related to the exponential functions;
854 see @ref{Exponents and Logarithms}.
856 @deftypefun double sinh (double @var{x})
857 @deftypefunx float sinhf (float @var{x})
858 @deftypefunx {long double} sinhl (long double @var{x})
859 @deftypefunx _FloatN sinhfN (_Float@var{N} @var{x})
860 @deftypefunx _FloatNx sinhfNx (_Float@var{N}x @var{x})
861 @standards{ISO, math.h}
862 @standardsx{sinhfN, TS 18661-3:2015, math.h}
863 @standardsx{sinhfNx, TS 18661-3:2015, math.h}
864 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
865 These functions return the hyperbolic sine of @var{x}, defined
866 mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}.  They
867 may signal overflow if @var{x} is too large.
868 @end deftypefun
870 @deftypefun double cosh (double @var{x})
871 @deftypefunx float coshf (float @var{x})
872 @deftypefunx {long double} coshl (long double @var{x})
873 @deftypefunx _FloatN coshfN (_Float@var{N} @var{x})
874 @deftypefunx _FloatNx coshfNx (_Float@var{N}x @var{x})
875 @standards{ISO, math.h}
876 @standardsx{coshfN, TS 18661-3:2015, math.h}
877 @standardsx{coshfNx, TS 18661-3:2015, math.h}
878 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
879 These functions return the hyperbolic cosine of @var{x},
880 defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}.
881 They may signal overflow if @var{x} is too large.
882 @end deftypefun
884 @deftypefun double tanh (double @var{x})
885 @deftypefunx float tanhf (float @var{x})
886 @deftypefunx {long double} tanhl (long double @var{x})
887 @deftypefunx _FloatN tanhfN (_Float@var{N} @var{x})
888 @deftypefunx _FloatNx tanhfNx (_Float@var{N}x @var{x})
889 @standards{ISO, math.h}
890 @standardsx{tanhfN, TS 18661-3:2015, math.h}
891 @standardsx{tanhfNx, TS 18661-3:2015, math.h}
892 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
893 These functions return the hyperbolic tangent of @var{x},
894 defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}.
895 They may signal overflow if @var{x} is too large.
896 @end deftypefun
898 @cindex hyperbolic functions
900 There are counterparts for the hyperbolic functions which take
901 complex arguments.
903 @deftypefun {complex double} csinh (complex double @var{z})
904 @deftypefunx {complex float} csinhf (complex float @var{z})
905 @deftypefunx {complex long double} csinhl (complex long double @var{z})
906 @deftypefunx {complex _FloatN} csinhfN (complex _Float@var{N} @var{z})
907 @deftypefunx {complex _FloatNx} csinhfNx (complex _Float@var{N}x @var{z})
908 @standards{ISO, complex.h}
909 @standardsx{csinhfN, TS 18661-3:2015, complex.h}
910 @standardsx{csinhfNx, TS 18661-3:2015, complex.h}
911 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
912 These functions return the complex hyperbolic sine of @var{z}, defined
913 mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}.
914 @end deftypefun
916 @deftypefun {complex double} ccosh (complex double @var{z})
917 @deftypefunx {complex float} ccoshf (complex float @var{z})
918 @deftypefunx {complex long double} ccoshl (complex long double @var{z})
919 @deftypefunx {complex _FloatN} ccoshfN (complex _Float@var{N} @var{z})
920 @deftypefunx {complex _FloatNx} ccoshfNx (complex _Float@var{N}x @var{z})
921 @standards{ISO, complex.h}
922 @standardsx{ccoshfN, TS 18661-3:2015, complex.h}
923 @standardsx{ccoshfNx, TS 18661-3:2015, complex.h}
924 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
925 These functions return the complex hyperbolic cosine of @var{z}, defined
926 mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}.
927 @end deftypefun
929 @deftypefun {complex double} ctanh (complex double @var{z})
930 @deftypefunx {complex float} ctanhf (complex float @var{z})
931 @deftypefunx {complex long double} ctanhl (complex long double @var{z})
932 @deftypefunx {complex _FloatN} ctanhfN (complex _Float@var{N} @var{z})
933 @deftypefunx {complex _FloatNx} ctanhfNx (complex _Float@var{N}x @var{z})
934 @standards{ISO, complex.h}
935 @standardsx{ctanhfN, TS 18661-3:2015, complex.h}
936 @standardsx{ctanhfNx, TS 18661-3:2015, complex.h}
937 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
938 These functions return the complex hyperbolic tangent of @var{z},
939 defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
940 @end deftypefun
943 @cindex inverse hyperbolic functions
945 @deftypefun double asinh (double @var{x})
946 @deftypefunx float asinhf (float @var{x})
947 @deftypefunx {long double} asinhl (long double @var{x})
948 @deftypefunx _FloatN asinhfN (_Float@var{N} @var{x})
949 @deftypefunx _FloatNx asinhfNx (_Float@var{N}x @var{x})
950 @standards{ISO, math.h}
951 @standardsx{asinhfN, TS 18661-3:2015, math.h}
952 @standardsx{asinhfNx, TS 18661-3:2015, math.h}
953 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
954 These functions return the inverse hyperbolic sine of @var{x}---the
955 value whose hyperbolic sine is @var{x}.
956 @end deftypefun
958 @deftypefun double acosh (double @var{x})
959 @deftypefunx float acoshf (float @var{x})
960 @deftypefunx {long double} acoshl (long double @var{x})
961 @deftypefunx _FloatN acoshfN (_Float@var{N} @var{x})
962 @deftypefunx _FloatNx acoshfNx (_Float@var{N}x @var{x})
963 @standards{ISO, math.h}
964 @standardsx{acoshfN, TS 18661-3:2015, math.h}
965 @standardsx{acoshfNx, TS 18661-3:2015, math.h}
966 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
967 These functions return the inverse hyperbolic cosine of @var{x}---the
968 value whose hyperbolic cosine is @var{x}.  If @var{x} is less than
969 @code{1}, @code{acosh} signals a domain error.
970 @end deftypefun
972 @deftypefun double atanh (double @var{x})
973 @deftypefunx float atanhf (float @var{x})
974 @deftypefunx {long double} atanhl (long double @var{x})
975 @deftypefunx _FloatN atanhfN (_Float@var{N} @var{x})
976 @deftypefunx _FloatNx atanhfNx (_Float@var{N}x @var{x})
977 @standards{ISO, math.h}
978 @standardsx{atanhfN, TS 18661-3:2015, math.h}
979 @standardsx{atanhfNx, TS 18661-3:2015, math.h}
980 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
981 These functions return the inverse hyperbolic tangent of @var{x}---the
982 value whose hyperbolic tangent is @var{x}.  If the absolute value of
983 @var{x} is greater than @code{1}, @code{atanh} signals a domain error;
984 if it is equal to 1, @code{atanh} returns infinity.
985 @end deftypefun
987 @cindex inverse complex hyperbolic functions
989 @deftypefun {complex double} casinh (complex double @var{z})
990 @deftypefunx {complex float} casinhf (complex float @var{z})
991 @deftypefunx {complex long double} casinhl (complex long double @var{z})
992 @deftypefunx {complex _FloatN} casinhfN (complex _Float@var{N} @var{z})
993 @deftypefunx {complex _FloatNx} casinhfNx (complex _Float@var{N}x @var{z})
994 @standards{ISO, complex.h}
995 @standardsx{casinhfN, TS 18661-3:2015, complex.h}
996 @standardsx{casinhfNx, TS 18661-3:2015, complex.h}
997 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
998 These functions return the inverse complex hyperbolic sine of
999 @var{z}---the value whose complex hyperbolic sine is @var{z}.
1000 @end deftypefun
1002 @deftypefun {complex double} cacosh (complex double @var{z})
1003 @deftypefunx {complex float} cacoshf (complex float @var{z})
1004 @deftypefunx {complex long double} cacoshl (complex long double @var{z})
1005 @deftypefunx {complex _FloatN} cacoshfN (complex _Float@var{N} @var{z})
1006 @deftypefunx {complex _FloatNx} cacoshfNx (complex _Float@var{N}x @var{z})
1007 @standards{ISO, complex.h}
1008 @standardsx{cacoshfN, TS 18661-3:2015, complex.h}
1009 @standardsx{cacoshfNx, TS 18661-3:2015, complex.h}
1010 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1011 These functions return the inverse complex hyperbolic cosine of
1012 @var{z}---the value whose complex hyperbolic cosine is @var{z}.  Unlike
1013 the real-valued functions, there are no restrictions on the value of @var{z}.
1014 @end deftypefun
1016 @deftypefun {complex double} catanh (complex double @var{z})
1017 @deftypefunx {complex float} catanhf (complex float @var{z})
1018 @deftypefunx {complex long double} catanhl (complex long double @var{z})
1019 @deftypefunx {complex _FloatN} catanhfN (complex _Float@var{N} @var{z})
1020 @deftypefunx {complex _FloatNx} catanhfNx (complex _Float@var{N}x @var{z})
1021 @standards{ISO, complex.h}
1022 @standardsx{catanhfN, TS 18661-3:2015, complex.h}
1023 @standardsx{catanhfNx, TS 18661-3:2015, complex.h}
1024 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1025 These functions return the inverse complex hyperbolic tangent of
1026 @var{z}---the value whose complex hyperbolic tangent is @var{z}.  Unlike
1027 the real-valued functions, there are no restrictions on the value of
1028 @var{z}.
1029 @end deftypefun
1031 @node Special Functions
1032 @section Special Functions
1033 @cindex special functions
1034 @cindex Bessel functions
1035 @cindex gamma function
1037 These are some more exotic mathematical functions which are sometimes
1038 useful.  Currently they only have real-valued versions.
1040 @deftypefun double erf (double @var{x})
1041 @deftypefunx float erff (float @var{x})
1042 @deftypefunx {long double} erfl (long double @var{x})
1043 @deftypefunx _FloatN erffN (_Float@var{N} @var{x})
1044 @deftypefunx _FloatNx erffNx (_Float@var{N}x @var{x})
1045 @standards{SVID, math.h}
1046 @standardsx{erffN, TS 18661-3:2015, math.h}
1047 @standardsx{erffNx, TS 18661-3:2015, math.h}
1048 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1049 @code{erf} returns the error function of @var{x}.  The error
1050 function is defined as
1051 @tex
1052 $$\hbox{erf}(x) = {2\over\sqrt{\pi}}\cdot\int_0^x e^{-t^2} \hbox{d}t$$
1053 @end tex
1054 @ifnottex
1055 @smallexample
1056 erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
1057 @end smallexample
1058 @end ifnottex
1059 @end deftypefun
1061 @deftypefun double erfc (double @var{x})
1062 @deftypefunx float erfcf (float @var{x})
1063 @deftypefunx {long double} erfcl (long double @var{x})
1064 @deftypefunx _FloatN erfcfN (_Float@var{N} @var{x})
1065 @deftypefunx _FloatNx erfcfNx (_Float@var{N}x @var{x})
1066 @standards{SVID, math.h}
1067 @standardsx{erfcfN, TS 18661-3:2015, math.h}
1068 @standardsx{erfcfNx, TS 18661-3:2015, math.h}
1069 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1070 @code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a
1071 fashion that avoids round-off error when @var{x} is large.
1072 @end deftypefun
1074 @deftypefun double lgamma (double @var{x})
1075 @deftypefunx float lgammaf (float @var{x})
1076 @deftypefunx {long double} lgammal (long double @var{x})
1077 @deftypefunx _FloatN lgammafN (_Float@var{N} @var{x})
1078 @deftypefunx _FloatNx lgammafNx (_Float@var{N}x @var{x})
1079 @standards{SVID, math.h}
1080 @standardsx{lgammafN, TS 18661-3:2015, math.h}
1081 @standardsx{lgammafNx, TS 18661-3:2015, math.h}
1082 @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
1083 @code{lgamma} returns the natural logarithm of the absolute value of
1084 the gamma function of @var{x}.  The gamma function is defined as
1085 @tex
1086 $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
1087 @end tex
1088 @ifnottex
1089 @smallexample
1090 gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
1091 @end smallexample
1092 @end ifnottex
1094 @vindex signgam
1095 The sign of the gamma function is stored in the global variable
1096 @var{signgam}, which is declared in @file{math.h}.  It is @code{1} if
1097 the intermediate result was positive or zero, or @code{-1} if it was
1098 negative.
1100 To compute the real gamma function you can use the @code{tgamma}
1101 function or you can compute the values as follows:
1102 @smallexample
1103 lgam = lgamma(x);
1104 gam  = signgam*exp(lgam);
1105 @end smallexample
1107 The gamma function has singularities at the non-positive integers.
1108 @code{lgamma} will raise the zero divide exception if evaluated at a
1109 singularity.
1110 @end deftypefun
1112 @deftypefun double lgamma_r (double @var{x}, int *@var{signp})
1113 @deftypefunx float lgammaf_r (float @var{x}, int *@var{signp})
1114 @deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp})
1115 @deftypefunx _FloatN lgammafN_r (_Float@var{N} @var{x}, int *@var{signp})
1116 @deftypefunx _FloatNx lgammafNx_r (_Float@var{N}x @var{x}, int *@var{signp})
1117 @standards{XPG, math.h}
1118 @standardsx{lgammafN_r, GNU, math.h}
1119 @standardsx{lgammafNx_r, GNU, math.h}
1120 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1121 @code{lgamma_r} is just like @code{lgamma}, but it stores the sign of
1122 the intermediate result in the variable pointed to by @var{signp}
1123 instead of in the @var{signgam} global.  This means it is reentrant.
1125 The @code{lgammaf@var{N}_r} and @code{lgammaf@var{N}x_r} functions are
1126 GNU extensions.
1127 @end deftypefun
1129 @deftypefun double gamma (double @var{x})
1130 @deftypefunx float gammaf (float @var{x})
1131 @deftypefunx {long double} gammal (long double @var{x})
1132 @standards{SVID, math.h}
1133 @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
1134 These functions exist for compatibility reasons.  They are equivalent to
1135 @code{lgamma} etc.  It is better to use @code{lgamma} since for one the
1136 name reflects better the actual computation, and moreover @code{lgamma} is
1137 standardized in @w{ISO C99} while @code{gamma} is not.
1138 @end deftypefun
1140 @deftypefun double tgamma (double @var{x})
1141 @deftypefunx float tgammaf (float @var{x})
1142 @deftypefunx {long double} tgammal (long double @var{x})
1143 @deftypefunx _FloatN tgammafN (_Float@var{N} @var{x})
1144 @deftypefunx _FloatNx tgammafNx (_Float@var{N}x @var{x})
1145 @standardsx{tgamma, XPG, math.h}
1146 @standardsx{tgamma, ISO, math.h}
1147 @standardsx{tgammaf, XPG, math.h}
1148 @standardsx{tgammaf, ISO, math.h}
1149 @standardsx{tgammal, XPG, math.h}
1150 @standardsx{tgammal, ISO, math.h}
1151 @standardsx{tgammafN, TS 18661-3:2015, math.h}
1152 @standardsx{tgammafNx, TS 18661-3:2015, math.h}
1153 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1154 @code{tgamma} applies the gamma function to @var{x}.  The gamma
1155 function is defined as
1156 @tex
1157 $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
1158 @end tex
1159 @ifnottex
1160 @smallexample
1161 gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
1162 @end smallexample
1163 @end ifnottex
1165 This function was introduced in @w{ISO C99}.  The @code{_Float@var{N}}
1166 and @code{_Float@var{N}x} variants were introduced in @w{ISO/IEC TS
1167 18661-3}.
1168 @end deftypefun
1170 @deftypefun double j0 (double @var{x})
1171 @deftypefunx float j0f (float @var{x})
1172 @deftypefunx {long double} j0l (long double @var{x})
1173 @deftypefunx _FloatN j0fN (_Float@var{N} @var{x})
1174 @deftypefunx _FloatNx j0fNx (_Float@var{N}x @var{x})
1175 @standards{SVID, math.h}
1176 @standardsx{j0fN, GNU, math.h}
1177 @standardsx{j0fNx, GNU, math.h}
1178 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1179 @code{j0} returns the Bessel function of the first kind of order 0 of
1180 @var{x}.  It may signal underflow if @var{x} is too large.
1182 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1183 extensions.
1184 @end deftypefun
1186 @deftypefun double j1 (double @var{x})
1187 @deftypefunx float j1f (float @var{x})
1188 @deftypefunx {long double} j1l (long double @var{x})
1189 @deftypefunx _FloatN j1fN (_Float@var{N} @var{x})
1190 @deftypefunx _FloatNx j1fNx (_Float@var{N}x @var{x})
1191 @standards{SVID, math.h}
1192 @standardsx{j1fN, GNU, math.h}
1193 @standardsx{j1fNx, GNU, math.h}
1194 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1195 @code{j1} returns the Bessel function of the first kind of order 1 of
1196 @var{x}.  It may signal underflow if @var{x} is too large.
1198 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1199 extensions.
1200 @end deftypefun
1202 @deftypefun double jn (int @var{n}, double @var{x})
1203 @deftypefunx float jnf (int @var{n}, float @var{x})
1204 @deftypefunx {long double} jnl (int @var{n}, long double @var{x})
1205 @deftypefunx _FloatN jnfN (int @var{n}, _Float@var{N} @var{x})
1206 @deftypefunx _FloatNx jnfNx (int @var{n}, _Float@var{N}x @var{x})
1207 @standards{SVID, math.h}
1208 @standardsx{jnfN, GNU, math.h}
1209 @standardsx{jnfNx, GNU, math.h}
1210 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1211 @code{jn} returns the Bessel function of the first kind of order
1212 @var{n} of @var{x}.  It may signal underflow if @var{x} is too large.
1214 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1215 extensions.
1216 @end deftypefun
1218 @deftypefun double y0 (double @var{x})
1219 @deftypefunx float y0f (float @var{x})
1220 @deftypefunx {long double} y0l (long double @var{x})
1221 @deftypefunx _FloatN y0fN (_Float@var{N} @var{x})
1222 @deftypefunx _FloatNx y0fNx (_Float@var{N}x @var{x})
1223 @standards{SVID, math.h}
1224 @standardsx{y0fN, GNU, math.h}
1225 @standardsx{y0fNx, GNU, math.h}
1226 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1227 @code{y0} returns the Bessel function of the second kind of order 0 of
1228 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1229 is negative, @code{y0} signals a domain error; if it is zero,
1230 @code{y0} signals overflow and returns @math{-@infinity}.
1232 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1233 extensions.
1234 @end deftypefun
1236 @deftypefun double y1 (double @var{x})
1237 @deftypefunx float y1f (float @var{x})
1238 @deftypefunx {long double} y1l (long double @var{x})
1239 @deftypefunx _FloatN y1fN (_Float@var{N} @var{x})
1240 @deftypefunx _FloatNx y1fNx (_Float@var{N}x @var{x})
1241 @standards{SVID, math.h}
1242 @standardsx{y1fN, GNU, math.h}
1243 @standardsx{y1fNx, GNU, math.h}
1244 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1245 @code{y1} returns the Bessel function of the second kind of order 1 of
1246 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1247 is negative, @code{y1} signals a domain error; if it is zero,
1248 @code{y1} signals overflow and returns @math{-@infinity}.
1250 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1251 extensions.
1252 @end deftypefun
1254 @deftypefun double yn (int @var{n}, double @var{x})
1255 @deftypefunx float ynf (int @var{n}, float @var{x})
1256 @deftypefunx {long double} ynl (int @var{n}, long double @var{x})
1257 @deftypefunx _FloatN ynfN (int @var{n}, _Float@var{N} @var{x})
1258 @deftypefunx _FloatNx ynfNx (int @var{n}, _Float@var{N}x @var{x})
1259 @standards{SVID, math.h}
1260 @standardsx{ynfN, GNU, math.h}
1261 @standardsx{ynfNx, GNU, math.h}
1262 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1263 @code{yn} returns the Bessel function of the second kind of order @var{n} of
1264 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1265 is negative, @code{yn} signals a domain error; if it is zero,
1266 @code{yn} signals overflow and returns @math{-@infinity}.
1268 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1269 extensions.
1270 @end deftypefun
1272 @node Errors in Math Functions
1273 @section Known Maximum Errors in Math Functions
1274 @cindex math errors
1275 @cindex ulps
1277 This section lists the known errors of the functions in the math
1278 library.  Errors are measured in ``units of the last place''.  This is a
1279 measure for the relative error.  For a number @math{z} with the
1280 representation @math{d.d@dots{}d@mul{}2^e} (we assume IEEE
1281 floating-point numbers with base 2) the ULP is represented by
1283 @tex
1284 $${|d.d\dots d - (z/2^e)|}\over {2^{p-1}}$$
1285 @end tex
1286 @ifnottex
1287 @smallexample
1288 |d.d...d - (z / 2^e)| / 2^(p - 1)
1289 @end smallexample
1290 @end ifnottex
1292 @noindent
1293 where @math{p} is the number of bits in the mantissa of the
1294 floating-point number representation.  Ideally the error for all
1295 functions is always less than 0.5ulps in round-to-nearest mode.  Using
1296 rounding bits this is also
1297 possible and normally implemented for the basic operations.  Except
1298 for certain functions such as @code{sqrt}, @code{fma} and @code{rint}
1299 whose results are fully specified by reference to corresponding IEEE
1300 754 floating-point operations, and conversions between strings and
1301 floating point, @theglibc{} does not aim for correctly rounded results
1302 for functions in the math library, and does not aim for correctness in
1303 whether ``inexact'' exceptions are raised.  Instead, the goals for
1304 accuracy of functions without fully specified results are as follows;
1305 some functions have bugs meaning they do not meet these goals in all
1306 cases.  In the future, @theglibc{} may provide some other correctly
1307 rounding functions under the names such as @code{crsin} proposed for
1308 an extension to ISO C.
1310 @itemize @bullet
1312 @item
1313 Each function with a floating-point result behaves as if it computes
1314 an infinite-precision result that is within a few ulp (in both real
1315 and complex parts, for functions with complex results) of the
1316 mathematically correct value of the function (interpreted together
1317 with ISO C or POSIX semantics for the function in question) at the
1318 exact value passed as the input.  Exceptions are raised appropriately
1319 for this value and in accordance with IEEE 754 / ISO C / POSIX
1320 semantics, and it is then rounded according to the current rounding
1321 direction to the result that is returned to the user.  @code{errno}
1322 may also be set (@pxref{Math Error Reporting}).  (The ``inexact''
1323 exception may be raised, or not raised, even if this is inconsistent
1324 with the infinite-precision value.)
1326 @item
1327 For the IBM @code{long double} format, as used on PowerPC GNU/Linux,
1328 the accuracy goal is weaker for input values not exactly representable
1329 in 106 bits of precision; it is as if the input value is some value
1330 within 0.5ulp of the value actually passed, where ``ulp'' is
1331 interpreted in terms of a fixed-precision 106-bit mantissa, but not
1332 necessarily the exact value actually passed with discontiguous
1333 mantissa bits.
1335 @item
1336 For the IBM @code{long double} format, functions whose results are
1337 fully specified by reference to corresponding IEEE 754 floating-point
1338 operations have the same accuracy goals as other functions, but with
1339 the error bound being the same as that for division (3ulp).
1340 Furthermore, ``inexact'' and ``underflow'' exceptions may be raised
1341 for all functions for any inputs, even where such exceptions are
1342 inconsistent with the returned value, since the underlying
1343 floating-point arithmetic has that property.
1345 @item
1346 Functions behave as if the infinite-precision result computed is zero,
1347 infinity or NaN if and only if that is the mathematically correct
1348 infinite-precision result.  They behave as if the infinite-precision
1349 result computed always has the same sign as the mathematically correct
1350 result.
1352 @item
1353 If the mathematical result is more than a few ulp above the overflow
1354 threshold for the current rounding direction, the value returned is
1355 the appropriate overflow value for the current rounding direction,
1356 with the overflow exception raised.
1358 @item
1359 If the mathematical result has magnitude well below half the least
1360 subnormal magnitude, the returned value is either zero or the least
1361 subnormal (in each case, with the correct sign), according to the
1362 current rounding direction and with the underflow exception raised.
1364 @item
1365 Where the mathematical result underflows (before rounding) and is not
1366 exactly representable as a floating-point value, the function does not
1367 behave as if the computed infinite-precision result is an exact value
1368 in the subnormal range.  This means that the underflow exception is
1369 raised other than possibly for cases where the mathematical result is
1370 very close to the underflow threshold and the function behaves as if
1371 it computes an infinite-precision result that does not underflow.  (So
1372 there may be spurious underflow exceptions in cases where the
1373 underflowing result is exact, but not missing underflow exceptions in
1374 cases where it is inexact.)
1376 @item
1377 @Theglibc{} does not aim for functions to satisfy other properties of
1378 the underlying mathematical function, such as monotonicity, where not
1379 implied by the above goals.
1381 @item
1382 All the above applies to both real and complex parts, for complex
1383 functions.
1385 @end itemize
1387 Therefore many of the functions in the math library have errors.  The
1388 table lists the maximum error for each function which is exposed by one
1389 of the existing tests in the test suite.  The table tries to cover as much
1390 as possible and list the actual maximum error (or at least a ballpark
1391 figure) but this is often not achieved due to the large search space.
1393 The table lists the ULP values for different architectures.  Different
1394 architectures have different results since their hardware support for
1395 floating-point operations varies and also the existing hardware support
1396 is different.  Only the round-to-nearest rounding mode is covered by
1397 this table, and vector versions of functions are not covered.
1398 Functions not listed do not have known errors.
1400 @page
1401 @c This multitable does not fit on a single page
1402 @include libm-err.texi
1404 @node Pseudo-Random Numbers
1405 @section Pseudo-Random Numbers
1406 @cindex random numbers
1407 @cindex pseudo-random numbers
1408 @cindex seed (for random numbers)
1410 This section describes the GNU facilities for generating a series of
1411 pseudo-random numbers.  The numbers generated are not truly random;
1412 typically, they form a sequence that repeats periodically, with a period
1413 so large that you can ignore it for ordinary purposes.  The random
1414 number generator works by remembering a @dfn{seed} value which it uses
1415 to compute the next random number and also to compute a new seed.
1417 Although the generated numbers look unpredictable within one run of a
1418 program, the sequence of numbers is @emph{exactly the same} from one run
1419 to the next.  This is because the initial seed is always the same.  This
1420 is convenient when you are debugging a program, but it is unhelpful if
1421 you want the program to behave unpredictably.  If you want a different
1422 pseudo-random series each time your program runs, you must specify a
1423 different seed each time.  For ordinary purposes, basing the seed on the
1424 current time works well.  For random numbers in cryptography,
1425 @pxref{Unpredictable Bytes}.
1427 You can obtain repeatable sequences of numbers on a particular machine type
1428 by specifying the same initial seed value for the random number
1429 generator.  There is no standard meaning for a particular seed value;
1430 the same seed, used in different C libraries or on different CPU types,
1431 will give you different random numbers.
1433 @Theglibc{} supports the standard @w{ISO C} random number functions
1434 plus two other sets derived from BSD and SVID.  The BSD and @w{ISO C}
1435 functions provide identical, somewhat limited functionality.  If only a
1436 small number of random bits are required, we recommend you use the
1437 @w{ISO C} interface, @code{rand} and @code{srand}.  The SVID functions
1438 provide a more flexible interface, which allows better random number
1439 generator algorithms, provides more random bits (up to 48) per call, and
1440 can provide random floating-point numbers.  These functions are required
1441 by the XPG standard and therefore will be present in all modern Unix
1442 systems.
1444 @menu
1445 * ISO Random::                  @code{rand} and friends.
1446 * BSD Random::                  @code{random} and friends.
1447 * SVID Random::                 @code{drand48} and friends.
1448 @end menu
1450 @node ISO Random
1451 @subsection ISO C Random Number Functions
1453 This section describes the random number functions that are part of
1454 the @w{ISO C} standard.
1456 To use these facilities, you should include the header file
1457 @file{stdlib.h} in your program.
1458 @pindex stdlib.h
1460 @deftypevr Macro int RAND_MAX
1461 @standards{ISO, stdlib.h}
1462 The value of this macro is an integer constant representing the largest
1463 value the @code{rand} function can return.  In @theglibc{}, it is
1464 @code{2147483647}, which is the largest signed integer representable in
1465 32 bits.  In other libraries, it may be as low as @code{32767}.
1466 @end deftypevr
1468 @deftypefun int rand (void)
1469 @standards{ISO, stdlib.h}
1470 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1471 @c Just calls random.
1472 The @code{rand} function returns the next pseudo-random number in the
1473 series.  The value ranges from @code{0} to @code{RAND_MAX}.
1474 @end deftypefun
1476 @deftypefun void srand (unsigned int @var{seed})
1477 @standards{ISO, stdlib.h}
1478 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1479 @c Alias to srandom.
1480 This function establishes @var{seed} as the seed for a new series of
1481 pseudo-random numbers.  If you call @code{rand} before a seed has been
1482 established with @code{srand}, it uses the value @code{1} as a default
1483 seed.
1485 To produce a different pseudo-random series each time your program is
1486 run, do @code{srand (time (0))}.
1487 @end deftypefun
1489 POSIX.1 extended the C standard functions to support reproducible random
1490 numbers in multi-threaded programs.  However, the extension is badly
1491 designed and unsuitable for serious work.
1493 @deftypefun int rand_r (unsigned int *@var{seed})
1494 @standards{POSIX.1, stdlib.h}
1495 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1496 This function returns a random number in the range 0 to @code{RAND_MAX}
1497 just as @code{rand} does.  However, all its state is stored in the
1498 @var{seed} argument.  This means the RNG's state can only have as many
1499 bits as the type @code{unsigned int} has.  This is far too few to
1500 provide a good RNG.
1502 If your program requires a reentrant RNG, we recommend you use the
1503 reentrant GNU extensions to the SVID random number generator.  The
1504 POSIX.1 interface should only be used when the GNU extensions are not
1505 available.
1506 @end deftypefun
1509 @node BSD Random
1510 @subsection BSD Random Number Functions
1512 This section describes a set of random number generation functions that
1513 are derived from BSD.  There is no advantage to using these functions
1514 with @theglibc{}; we support them for BSD compatibility only.
1516 The prototypes for these functions are in @file{stdlib.h}.
1517 @pindex stdlib.h
1519 @deftypefun {long int} random (void)
1520 @standards{BSD, stdlib.h}
1521 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1522 @c Takes a lock and calls random_r with an automatic variable and the
1523 @c global state, while holding a lock.
1524 This function returns the next pseudo-random number in the sequence.
1525 The value returned ranges from @code{0} to @code{2147483647}.
1527 @strong{NB:} Temporarily this function was defined to return a
1528 @code{int32_t} value to indicate that the return value always contains
1529 32 bits even if @code{long int} is wider.  The standard demands it
1530 differently.  Users must always be aware of the 32-bit limitation,
1531 though.
1532 @end deftypefun
1534 @deftypefun void srandom (unsigned int @var{seed})
1535 @standards{BSD, stdlib.h}
1536 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1537 @c Takes a lock and calls srandom_r with an automatic variable and a
1538 @c static buffer.  There's no MT-safety issue because the static buffer
1539 @c is internally protected by a lock, although other threads may modify
1540 @c the set state before it is used.
1541 The @code{srandom} function sets the state of the random number
1542 generator based on the integer @var{seed}.  If you supply a @var{seed} value
1543 of @code{1}, this will cause @code{random} to reproduce the default set
1544 of random numbers.
1546 To produce a different set of pseudo-random numbers each time your
1547 program runs, do @code{srandom (time (0))}.
1548 @end deftypefun
1550 @deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size})
1551 @standards{BSD, stdlib.h}
1552 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1553 The @code{initstate} function is used to initialize the random number
1554 generator state.  The argument @var{state} is an array of @var{size}
1555 bytes, used to hold the state information.  It is initialized based on
1556 @var{seed}.  The size must be between 8 and 256 bytes, and should be a
1557 power of two.  The bigger the @var{state} array, the better.
1559 The return value is the previous value of the state information array.
1560 You can use this value later as an argument to @code{setstate} to
1561 restore that state.
1562 @end deftypefun
1564 @deftypefun {char *} setstate (char *@var{state})
1565 @standards{BSD, stdlib.h}
1566 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1567 The @code{setstate} function restores the random number state
1568 information @var{state}.  The argument must have been the result of
1569 a previous call to @var{initstate} or @var{setstate}.
1571 The return value is the previous value of the state information array.
1572 You can use this value later as an argument to @code{setstate} to
1573 restore that state.
1575 If the function fails the return value is @code{NULL}.
1576 @end deftypefun
1578 The four functions described so far in this section all work on a state
1579 which is shared by all threads.  The state is not directly accessible to
1580 the user and can only be modified by these functions.  This makes it
1581 hard to deal with situations where each thread should have its own
1582 pseudo-random number generator.
1584 @Theglibc{} contains four additional functions which contain the
1585 state as an explicit parameter and therefore make it possible to handle
1586 thread-local PRNGs.  Besides this there is no difference.  In fact, the
1587 four functions already discussed are implemented internally using the
1588 following interfaces.
1590 The @file{stdlib.h} header contains a definition of the following type:
1592 @deftp {Data Type} {struct random_data}
1593 @standards{GNU, stdlib.h}
1595 Objects of type @code{struct random_data} contain the information
1596 necessary to represent the state of the PRNG.  Although a complete
1597 definition of the type is present the type should be treated as opaque.
1598 @end deftp
1600 The functions modifying the state follow exactly the already described
1601 functions.
1603 @deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result})
1604 @standards{GNU, stdlib.h}
1605 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1606 The @code{random_r} function behaves exactly like the @code{random}
1607 function except that it uses and modifies the state in the object
1608 pointed to by the first parameter instead of the global state.
1609 @end deftypefun
1611 @deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf})
1612 @standards{GNU, stdlib.h}
1613 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1614 The @code{srandom_r} function behaves exactly like the @code{srandom}
1615 function except that it uses and modifies the state in the object
1616 pointed to by the second parameter instead of the global state.
1617 @end deftypefun
1619 @deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf})
1620 @standards{GNU, stdlib.h}
1621 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1622 The @code{initstate_r} function behaves exactly like the @code{initstate}
1623 function except that it uses and modifies the state in the object
1624 pointed to by the fourth parameter instead of the global state.
1625 @end deftypefun
1627 @deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf})
1628 @standards{GNU, stdlib.h}
1629 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1630 The @code{setstate_r} function behaves exactly like the @code{setstate}
1631 function except that it uses and modifies the state in the object
1632 pointed to by the first parameter instead of the global state.
1633 @end deftypefun
1635 @node SVID Random
1636 @subsection SVID Random Number Function
1638 The C library on SVID systems contains yet another kind of random number
1639 generator functions.  They use a state of 48 bits of data.  The user can
1640 choose among a collection of functions which return the random bits
1641 in different forms.
1643 Generally there are two kinds of function.  The first uses a state of
1644 the random number generator which is shared among several functions and
1645 by all threads of the process.  The second requires the user to handle
1646 the state.
1648 All functions have in common that they use the same congruential
1649 formula with the same constants.  The formula is
1651 @smallexample
1652 Y = (a * X + c) mod m
1653 @end smallexample
1655 @noindent
1656 where @var{X} is the state of the generator at the beginning and
1657 @var{Y} the state at the end.  @code{a} and @code{c} are constants
1658 determining the way the generator works.  By default they are
1660 @smallexample
1661 a = 0x5DEECE66D = 25214903917
1662 c = 0xb = 11
1663 @end smallexample
1665 @noindent
1666 but they can also be changed by the user.  @code{m} is of course 2^48
1667 since the state consists of a 48-bit array.
1669 The prototypes for these functions are in @file{stdlib.h}.
1670 @pindex stdlib.h
1673 @deftypefun double drand48 (void)
1674 @standards{SVID, stdlib.h}
1675 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1676 @c Uses of the static state buffer are not guarded by a lock (thus
1677 @c @mtasurace:drand48), so they may be found or left at a
1678 @c partially-updated state in case of calls from within signal handlers
1679 @c or cancellation.  None of this will break safety rules or invoke
1680 @c undefined behavior, but it may affect randomness.
1681 This function returns a @code{double} value in the range of @code{0.0}
1682 to @code{1.0} (exclusive).  The random bits are determined by the global
1683 state of the random number generator in the C library.
1685 Since the @code{double} type according to @w{IEEE 754} has a 52-bit
1686 mantissa this means 4 bits are not initialized by the random number
1687 generator.  These are (of course) chosen to be the least significant
1688 bits and they are initialized to @code{0}.
1689 @end deftypefun
1691 @deftypefun double erand48 (unsigned short int @var{xsubi}[3])
1692 @standards{SVID, stdlib.h}
1693 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1694 @c The static buffer is just initialized with default parameters, which
1695 @c are later read to advance the state held in xsubi.
1696 This function returns a @code{double} value in the range of @code{0.0}
1697 to @code{1.0} (exclusive), similarly to @code{drand48}.  The argument is
1698 an array describing the state of the random number generator.
1700 This function can be called subsequently since it updates the array to
1701 guarantee random numbers.  The array should have been initialized before
1702 initial use to obtain reproducible results.
1703 @end deftypefun
1705 @deftypefun {long int} lrand48 (void)
1706 @standards{SVID, stdlib.h}
1707 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1708 The @code{lrand48} function returns an integer value in the range of
1709 @code{0} to @code{2^31} (exclusive).  Even if the size of the @code{long
1710 int} type can take more than 32 bits, no higher numbers are returned.
1711 The random bits are determined by the global state of the random number
1712 generator in the C library.
1713 @end deftypefun
1715 @deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3])
1716 @standards{SVID, stdlib.h}
1717 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1718 This function is similar to the @code{lrand48} function in that it
1719 returns a number in the range of @code{0} to @code{2^31} (exclusive) but
1720 the state of the random number generator used to produce the random bits
1721 is determined by the array provided as the parameter to the function.
1723 The numbers in the array are updated afterwards so that subsequent calls
1724 to this function yield different results (as is expected of a random
1725 number generator).  The array should have been initialized before the
1726 first call to obtain reproducible results.
1727 @end deftypefun
1729 @deftypefun {long int} mrand48 (void)
1730 @standards{SVID, stdlib.h}
1731 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1732 The @code{mrand48} function is similar to @code{lrand48}.  The only
1733 difference is that the numbers returned are in the range @code{-2^31} to
1734 @code{2^31} (exclusive).
1735 @end deftypefun
1737 @deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3])
1738 @standards{SVID, stdlib.h}
1739 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1740 The @code{jrand48} function is similar to @code{nrand48}.  The only
1741 difference is that the numbers returned are in the range @code{-2^31} to
1742 @code{2^31} (exclusive).  For the @code{xsubi} parameter the same
1743 requirements are necessary.
1744 @end deftypefun
1746 The internal state of the random number generator can be initialized in
1747 several ways.  The methods differ in the completeness of the
1748 information provided.
1750 @deftypefun void srand48 (long int @var{seedval})
1751 @standards{SVID, stdlib.h}
1752 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1753 The @code{srand48} function sets the most significant 32 bits of the
1754 internal state of the random number generator to the least
1755 significant 32 bits of the @var{seedval} parameter.  The lower 16 bits
1756 are initialized to the value @code{0x330E}.  Even if the @code{long
1757 int} type contains more than 32 bits only the lower 32 bits are used.
1759 Owing to this limitation, initialization of the state of this
1760 function is not very useful.  But it makes it easy to use a construct
1761 like @code{srand48 (time (0))}.
1763 A side-effect of this function is that the values @code{a} and @code{c}
1764 from the internal state, which are used in the congruential formula,
1765 are reset to the default values given above.  This is of importance once
1766 the user has called the @code{lcong48} function (see below).
1767 @end deftypefun
1769 @deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3])
1770 @standards{SVID, stdlib.h}
1771 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1772 The @code{seed48} function initializes all 48 bits of the state of the
1773 internal random number generator from the contents of the parameter
1774 @var{seed16v}.  Here the lower 16 bits of the first element of
1775 @var{seed16v} initialize the least significant 16 bits of the internal
1776 state, the lower 16 bits of @code{@var{seed16v}[1]} initialize the mid-order
1777 16 bits of the state and the 16 lower bits of @code{@var{seed16v}[2]}
1778 initialize the most significant 16 bits of the state.
1780 Unlike @code{srand48} this function lets the user initialize all 48 bits
1781 of the state.
1783 The value returned by @code{seed48} is a pointer to an array containing
1784 the values of the internal state before the change.  This might be
1785 useful to restart the random number generator at a certain state.
1786 Otherwise the value can simply be ignored.
1788 As for @code{srand48}, the values @code{a} and @code{c} from the
1789 congruential formula are reset to the default values.
1790 @end deftypefun
1792 There is one more function to initialize the random number generator
1793 which enables you to specify even more information by allowing you to
1794 change the parameters in the congruential formula.
1796 @deftypefun void lcong48 (unsigned short int @var{param}[7])
1797 @standards{SVID, stdlib.h}
1798 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1799 The @code{lcong48} function allows the user to change the complete state
1800 of the random number generator.  Unlike @code{srand48} and
1801 @code{seed48}, this function also changes the constants in the
1802 congruential formula.
1804 From the seven elements in the array @var{param} the least significant
1805 16 bits of the entries @code{@var{param}[0]} to @code{@var{param}[2]}
1806 determine the initial state, the least significant 16 bits of
1807 @code{@var{param}[3]} to @code{@var{param}[5]} determine the 48 bit
1808 constant @code{a} and @code{@var{param}[6]} determines the 16-bit value
1809 @code{c}.
1810 @end deftypefun
1812 All the above functions have in common that they use the global
1813 parameters for the congruential formula.  In multi-threaded programs it
1814 might sometimes be useful to have different parameters in different
1815 threads.  For this reason all the above functions have a counterpart
1816 which works on a description of the random number generator in the
1817 user-supplied buffer instead of the global state.
1819 Please note that it is no problem if several threads use the global
1820 state if all threads use the functions which take a pointer to an array
1821 containing the state.  The random numbers are computed following the
1822 same loop but if the state in the array is different all threads will
1823 obtain an individual random number generator.
1825 The user-supplied buffer must be of type @code{struct drand48_data}.
1826 This type should be regarded as opaque and not manipulated directly.
1828 @deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result})
1829 @standards{GNU, stdlib.h}
1830 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1831 This function is equivalent to the @code{drand48} function with the
1832 difference that it does not modify the global random number generator
1833 parameters but instead the parameters in the buffer supplied through the
1834 pointer @var{buffer}.  The random number is returned in the variable
1835 pointed to by @var{result}.
1837 The return value of the function indicates whether the call succeeded.
1838 If the value is less than @code{0} an error occurred and @code{errno} is
1839 set to indicate the problem.
1841 This function is a GNU extension and should not be used in portable
1842 programs.
1843 @end deftypefun
1845 @deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result})
1846 @standards{GNU, stdlib.h}
1847 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1848 The @code{erand48_r} function works like @code{erand48}, but in addition
1849 it takes an argument @var{buffer} which describes the random number
1850 generator.  The state of the random number generator is taken from the
1851 @code{xsubi} array, the parameters for the congruential formula from the
1852 global random number generator data.  The random number is returned in
1853 the variable pointed to by @var{result}.
1855 The return value is non-negative if the call succeeded.
1857 This function is a GNU extension and should not be used in portable
1858 programs.
1859 @end deftypefun
1861 @deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
1862 @standards{GNU, stdlib.h}
1863 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1864 This function is similar to @code{lrand48}, but in addition it takes a
1865 pointer to a buffer describing the state of the random number generator
1866 just like @code{drand48}.
1868 If the return value of the function is non-negative the variable pointed
1869 to by @var{result} contains the result.  Otherwise an error occurred.
1871 This function is a GNU extension and should not be used in portable
1872 programs.
1873 @end deftypefun
1875 @deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
1876 @standards{GNU, stdlib.h}
1877 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1878 The @code{nrand48_r} function works like @code{nrand48} in that it
1879 produces a random number in the range @code{0} to @code{2^31}.  But instead
1880 of using the global parameters for the congruential formula it uses the
1881 information from the buffer pointed to by @var{buffer}.  The state is
1882 described by the values in @var{xsubi}.
1884 If the return value is non-negative the variable pointed to by
1885 @var{result} contains the result.
1887 This function is a GNU extension and should not be used in portable
1888 programs.
1889 @end deftypefun
1891 @deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
1892 @standards{GNU, stdlib.h}
1893 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1894 This function is similar to @code{mrand48} but like the other reentrant
1895 functions it uses the random number generator described by the value in
1896 the buffer pointed to by @var{buffer}.
1898 If the return value is non-negative the variable pointed to by
1899 @var{result} contains the result.
1901 This function is a GNU extension and should not be used in portable
1902 programs.
1903 @end deftypefun
1905 @deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
1906 @standards{GNU, stdlib.h}
1907 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1908 The @code{jrand48_r} function is similar to @code{jrand48}.  Like the
1909 other reentrant functions of this function family it uses the
1910 congruential formula parameters from the buffer pointed to by
1911 @var{buffer}.
1913 If the return value is non-negative the variable pointed to by
1914 @var{result} contains the result.
1916 This function is a GNU extension and should not be used in portable
1917 programs.
1918 @end deftypefun
1920 Before any of the above functions are used the buffer of type
1921 @code{struct drand48_data} should be initialized.  The easiest way to do
1922 this is to fill the whole buffer with null bytes, e.g. by
1924 @smallexample
1925 memset (buffer, '\0', sizeof (struct drand48_data));
1926 @end smallexample
1928 @noindent
1929 Using any of the reentrant functions of this family now will
1930 automatically initialize the random number generator to the default
1931 values for the state and the parameters of the congruential formula.
1933 The other possibility is to use any of the functions which explicitly
1934 initialize the buffer.  Though it might be obvious how to initialize the
1935 buffer from looking at the parameter to the function, it is highly
1936 recommended to use these functions since the result might not always be
1937 what you expect.
1939 @deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer})
1940 @standards{GNU, stdlib.h}
1941 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1942 The description of the random number generator represented by the
1943 information in @var{buffer} is initialized similarly to what the function
1944 @code{srand48} does.  The state is initialized from the parameter
1945 @var{seedval} and the parameters for the congruential formula are
1946 initialized to their default values.
1948 If the return value is non-negative the function call succeeded.
1950 This function is a GNU extension and should not be used in portable
1951 programs.
1952 @end deftypefun
1954 @deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer})
1955 @standards{GNU, stdlib.h}
1956 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1957 This function is similar to @code{srand48_r} but like @code{seed48} it
1958 initializes all 48 bits of the state from the parameter @var{seed16v}.
1960 If the return value is non-negative the function call succeeded.  It
1961 does not return a pointer to the previous state of the random number
1962 generator like the @code{seed48} function does.  If the user wants to
1963 preserve the state for a later re-run s/he can copy the whole buffer
1964 pointed to by @var{buffer}.
1966 This function is a GNU extension and should not be used in portable
1967 programs.
1968 @end deftypefun
1970 @deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer})
1971 @standards{GNU, stdlib.h}
1972 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1973 This function initializes all aspects of the random number generator
1974 described in @var{buffer} with the data in @var{param}.  Here it is
1975 especially true that the function does more than just copying the
1976 contents of @var{param} and @var{buffer}.  More work is required and
1977 therefore it is important to use this function rather than initializing
1978 the random number generator directly.
1980 If the return value is non-negative the function call succeeded.
1982 This function is a GNU extension and should not be used in portable
1983 programs.
1984 @end deftypefun
1986 @node FP Function Optimizations
1987 @section Is Fast Code or Small Code preferred?
1988 @cindex Optimization
1990 If an application uses many floating point functions it is often the case
1991 that the cost of the function calls themselves is not negligible.
1992 Modern processors can often execute the operations themselves
1993 very fast, but the function call disrupts the instruction pipeline.
1995 For this reason @theglibc{} provides optimizations for many of the
1996 frequently-used math functions.  When GNU CC is used and the user
1997 activates the optimizer, several new inline functions and macros are
1998 defined.  These new functions and macros have the same names as the
1999 library functions and so are used instead of the latter.  In the case of
2000 inline functions the compiler will decide whether it is reasonable to
2001 use them, and this decision is usually correct.
2003 This means that no calls to the library functions may be necessary, and
2004 can increase the speed of generated code significantly.  The drawback is
2005 that code size will increase, and the increase is not always negligible.
2007 There are two kinds of inline functions: those that give the same result
2008 as the library functions and others that might not set @code{errno} and
2009 might have a reduced precision and/or argument range in comparison with
2010 the library functions.  The latter inline functions are only available
2011 if the flag @code{-ffast-math} is given to GNU CC.
2013 Not all hardware implements the entire @w{IEEE 754} standard, and even
2014 if it does there may be a substantial performance penalty for using some
2015 of its features.  For example, enabling traps on some processors forces
2016 the FPU to run un-pipelined, which can more than double calculation time.
2017 @c ***Add explanation of -lieee, -mieee.