1 /* Compute complex base 10 logarithm.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
22 #include <math_private.h>
26 #define M_LOG10_2 0.3010299956639811952137388947244930267682
29 __clog10 (__complex__
double x
)
31 __complex__
double result
;
32 int rcls
= fpclassify (__real__ x
);
33 int icls
= fpclassify (__imag__ x
);
35 if (__builtin_expect (rcls
== FP_ZERO
&& icls
== FP_ZERO
, 0))
37 /* Real and imaginary part are 0.0. */
38 __imag__ result
= signbit (__real__ x
) ? M_PI
: 0.0;
39 __imag__ result
= __copysign (__imag__ result
, __imag__ x
);
40 /* Yes, the following line raises an exception. */
41 __real__ result
= -1.0 / fabs (__real__ x
);
43 else if (__builtin_expect (rcls
!= FP_NAN
&& icls
!= FP_NAN
, 1))
45 /* Neither real nor imaginary part is NaN. */
46 double absx
= fabs (__real__ x
), absy
= fabs (__imag__ x
);
56 if (absx
> DBL_MAX
/ 2.0)
59 absx
= __scalbn (absx
, scale
);
60 absy
= (absy
>= DBL_MIN
* 2.0 ? __scalbn (absy
, scale
) : 0.0);
62 else if (absx
< DBL_MIN
&& absy
< DBL_MIN
)
65 absx
= __scalbn (absx
, scale
);
66 absy
= __scalbn (absy
, scale
);
69 if (absx
== 1.0 && scale
== 0)
71 double absy2
= absy
* absy
;
72 if (absy2
<= DBL_MIN
* 2.0 * M_LN10
)
74 #if __FLT_EVAL_METHOD__ == 0
75 __real__ result
= (absy2
/ 2.0 - absy2
* absy2
/ 4.0) * M_LOG10E
;
77 volatile double force_underflow
= absy2
* absy2
/ 4.0;
78 __real__ result
= (absy2
/ 2.0 - force_underflow
) * M_LOG10E
;
82 __real__ result
= __log1p (absy2
) * (M_LOG10E
/ 2.0);
84 else if (absx
> 1.0 && absx
< 2.0 && absy
< 1.0 && scale
== 0)
86 double d2m1
= (absx
- 1.0) * (absx
+ 1.0);
87 if (absy
>= DBL_EPSILON
)
89 __real__ result
= __log1p (d2m1
) * (M_LOG10E
/ 2.0);
93 && absy
< DBL_EPSILON
/ 2.0
96 double d2m1
= (absx
- 1.0) * (absx
+ 1.0);
97 __real__ result
= __log1p (d2m1
) * (M_LOG10E
/ 2.0);
99 else if (absx
< 1.0 && (absx
>= 0.75 || absy
>= 0.5) && scale
== 0)
101 double d2m1
= __x2y2m1 (absx
, absy
);
102 __real__ result
= __log1p (d2m1
) * (M_LOG10E
/ 2.0);
106 double d
= __ieee754_hypot (absx
, absy
);
107 __real__ result
= __ieee754_log10 (d
) - scale
* M_LOG10_2
;
110 __imag__ result
= M_LOG10E
* __ieee754_atan2 (__imag__ x
, __real__ x
);
114 __imag__ result
= __nan ("");
115 if (rcls
== FP_INFINITE
|| icls
== FP_INFINITE
)
116 /* Real or imaginary part is infinite. */
117 __real__ result
= HUGE_VAL
;
119 __real__ result
= __nan ("");
124 weak_alias (__clog10
, clog10
)
125 #ifdef NO_LONG_DOUBLE
126 strong_alias (__clog10
, __clog10l
)
127 weak_alias (__clog10
, clog10l
)