1 /* Internal function for converting integers to ASCII.
2 Copyright (C) 1994-1996,1999,2000,2002,2007 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Torbjorn Granlund <tege@matematik.su.se>
5 and Ulrich Drepper <drepper@gnu.org>.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
22 #include <gmp-mparam.h>
25 #include <stdlib/gmp-impl.h>
26 #include <stdlib/longlong.h>
31 /* Canonize environment. For some architectures not all values might
32 be defined in the GMP header files. */
40 /* Control memory layout. */
43 # define PACK __attribute__ ((packed))
49 /* Declare local types. */
52 #if (UDIV_TIME > 2 * UMUL_TIME)
53 mp_limb_t base_multiplier
;
57 #if BITS_PER_MP_LIMB == 32
60 char normalization_steps
;
63 #if UDIV_TIME > 2 * UMUL_TIME
64 mp_limb_t base_ninv PACK
;
70 /* To reduce the memory needed we include some fields of the tables
71 only conditionally. */
72 #if UDIV_TIME > 2 * UMUL_TIME
80 /* Factor table for the different bases. */
81 extern const struct base_table_t _itoa_base_table
[] attribute_hidden
;
83 /* Lower-case digits. */
84 extern const wchar_t _itowa_lower_digits
[] attribute_hidden
;
85 /* Upper-case digits. */
86 extern const wchar_t _itowa_upper_digits
[] attribute_hidden
;
89 #if LLONG_MAX != LONG_MAX
91 _itowa (value
, buflim
, base
, upper_case
)
92 unsigned long long int value
;
97 const wchar_t *digits
= (upper_case
98 ? _itowa_upper_digits
: _itowa_lower_digits
);
100 const struct base_table_t
*brec
= &_itoa_base_table
[base
- 2];
104 # define RUN_2N(BITS) \
107 /* `unsigned long long int' always has 64 bits. */ \
108 mp_limb_t work_hi = value >> (64 - BITS_PER_MP_LIMB); \
110 if (BITS_PER_MP_LIMB == 32) \
117 work_lo = value & 0xfffffffful; \
118 for (cnt = BITS_PER_MP_LIMB / BITS; cnt > 0; --cnt) \
120 *--bp = digits[work_lo & ((1ul << BITS) - 1)]; \
123 if (BITS_PER_MP_LIMB % BITS != 0) \
127 & ((1 << (BITS - BITS_PER_MP_LIMB%BITS)) \
129 << BITS_PER_MP_LIMB % BITS); \
130 work_hi >>= BITS - BITS_PER_MP_LIMB % BITS; \
134 *--bp = digits[work_lo]; \
138 work_hi = value & 0xfffffffful; \
142 *--bp = digits[work_hi & ((1 << BITS) - 1)]; \
145 while (work_hi != 0); \
158 # if BITS_PER_MP_LIMB == 64
159 mp_limb_t base_multiplier
= brec
->base_multiplier
;
163 mp_limb_t quo
, rem
, x
, dummy
;
165 umul_ppmm (x
, dummy
, value
, base_multiplier
);
166 quo
= (x
+ ((value
- x
) >> 1)) >> (brec
->post_shift
- 1);
167 rem
= value
- quo
* base
;
174 mp_limb_t quo
, rem
, x
, dummy
;
176 umul_ppmm (x
, dummy
, value
, base_multiplier
);
177 quo
= x
>> brec
->post_shift
;
178 rem
= value
- quo
* base
;
183 # if BITS_PER_MP_LIMB == 32
187 /* First convert x0 to 1-3 words in base s->big.base.
188 Optimize for frequent cases of 32 bit numbers. */
189 if ((mp_limb_t
) (value
>> 32) >= 1)
191 # if UDIV_TIME > 2 * UMUL_TIME || UDIV_NEEDS_NORMALIZATION
192 int big_normalization_steps
= brec
->big
.normalization_steps
;
193 mp_limb_t big_base_norm
194 = brec
->big
.base
<< big_normalization_steps
;
196 if ((mp_limb_t
) (value
>> 32) >= brec
->big
.base
)
198 mp_limb_t x1hi
, x1lo
, r
;
199 /* If you want to optimize this, take advantage of
200 that the quotient in the first udiv_qrnnd will
201 always be very small. It might be faster just to
202 subtract in a tight loop. */
204 # if UDIV_TIME > 2 * UMUL_TIME
207 if (big_normalization_steps
== 0)
210 xh
= (mp_limb_t
) (value
>> (64 - big_normalization_steps
));
211 xl
= (mp_limb_t
) (value
>> (32 - big_normalization_steps
));
212 udiv_qrnnd_preinv (x1hi
, r
, xh
, xl
, big_base_norm
,
213 brec
->big
.base_ninv
);
215 xl
= ((mp_limb_t
) value
) << big_normalization_steps
;
216 udiv_qrnnd_preinv (x1lo
, x
, r
, xl
, big_base_norm
,
217 brec
->big
.base_ninv
);
218 t
[2] = x
>> big_normalization_steps
;
220 if (big_normalization_steps
== 0)
223 xh
= ((x1hi
<< big_normalization_steps
)
224 | (x1lo
>> (32 - big_normalization_steps
)));
225 xl
= x1lo
<< big_normalization_steps
;
226 udiv_qrnnd_preinv (t
[0], x
, xh
, xl
, big_base_norm
,
227 brec
->big
.base_ninv
);
228 t
[1] = x
>> big_normalization_steps
;
229 # elif UDIV_NEEDS_NORMALIZATION
232 if (big_normalization_steps
== 0)
235 xh
= (mp_limb_t
) (value
>> 64 - big_normalization_steps
);
236 xl
= (mp_limb_t
) (value
>> 32 - big_normalization_steps
);
237 udiv_qrnnd (x1hi
, r
, xh
, xl
, big_base_norm
);
239 xl
= ((mp_limb_t
) value
) << big_normalization_steps
;
240 udiv_qrnnd (x1lo
, x
, r
, xl
, big_base_norm
);
241 t
[2] = x
>> big_normalization_steps
;
243 if (big_normalization_steps
== 0)
246 xh
= ((x1hi
<< big_normalization_steps
)
247 | (x1lo
>> 32 - big_normalization_steps
));
248 xl
= x1lo
<< big_normalization_steps
;
249 udiv_qrnnd (t
[0], x
, xh
, xl
, big_base_norm
);
250 t
[1] = x
>> big_normalization_steps
;
252 udiv_qrnnd (x1hi
, r
, 0, (mp_limb_t
) (value
>> 32),
254 udiv_qrnnd (x1lo
, t
[2], r
, (mp_limb_t
) value
, brec
->big
.base
);
255 udiv_qrnnd (t
[0], t
[1], x1hi
, x1lo
, brec
->big
.base
);
261 # if UDIV_TIME > 2 * UMUL_TIME
264 value
<<= brec
->big
.normalization_steps
;
265 udiv_qrnnd_preinv (t
[0], x
, (mp_limb_t
) (value
>> 32),
266 (mp_limb_t
) value
, big_base_norm
,
267 brec
->big
.base_ninv
);
268 t
[1] = x
>> brec
->big
.normalization_steps
;
269 # elif UDIV_NEEDS_NORMALIZATION
272 value
<<= big_normalization_steps
;
273 udiv_qrnnd (t
[0], x
, (mp_limb_t
) (value
>> 32),
274 (mp_limb_t
) value
, big_base_norm
);
275 t
[1] = x
>> big_normalization_steps
;
277 udiv_qrnnd (t
[0], t
[1], (mp_limb_t
) (value
>> 32),
278 (mp_limb_t
) value
, brec
->big
.base
);
289 /* Convert the 1-3 words in t[], word by word, to ASCII. */
292 mp_limb_t ti
= t
[--n
];
293 int ndig_for_this_limb
= 0;
295 # if UDIV_TIME > 2 * UMUL_TIME
296 mp_limb_t base_multiplier
= brec
->base_multiplier
;
300 mp_limb_t quo
, rem
, x
, dummy
;
302 umul_ppmm (x
, dummy
, ti
, base_multiplier
);
303 quo
= (x
+ ((ti
- x
) >> 1)) >> (brec
->post_shift
- 1);
304 rem
= ti
- quo
* base
;
307 ++ndig_for_this_limb
;
312 mp_limb_t quo
, rem
, x
, dummy
;
314 umul_ppmm (x
, dummy
, ti
, base_multiplier
);
315 quo
= x
>> brec
->post_shift
;
316 rem
= ti
- quo
* base
;
319 ++ndig_for_this_limb
;
330 ++ndig_for_this_limb
;
333 /* If this wasn't the most significant word, pad with zeros. */
335 while (ndig_for_this_limb
< brec
->big
.ndigits
)
338 ++ndig_for_this_limb
;