1 /* mpn_divmod_1(quot_ptr, dividend_ptr, dividend_size, divisor_limb) --
2 Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
3 Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
4 Return the single-limb remainder.
5 There are no constraints on the value of the divisor.
7 QUOT_PTR and DIVIDEND_PTR might point to the same limb.
9 Copyright (C) 1991-2012 Free Software Foundation, Inc.
11 This file is part of the GNU MP Library.
13 The GNU MP Library is free software; you can redistribute it and/or modify
14 it under the terms of the GNU Lesser General Public License as published by
15 the Free Software Foundation; either version 2.1 of the License, or (at your
16 option) any later version.
18 The GNU MP Library is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
20 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
21 License for more details.
23 You should have received a copy of the GNU Lesser General Public License
24 along with the GNU MP Library; see the file COPYING.LIB. If not, see
25 <http://www.gnu.org/licenses/>. */
36 #define UDIV_TIME UMUL_TIME
39 /* FIXME: We should be using invert_limb (or invert_normalized_limb)
40 here (not udiv_qrnnd). */
44 mpn_divmod_1 (mp_ptr quot_ptr
,
45 mp_srcptr dividend_ptr
, mp_size_t dividend_size
,
46 mp_limb_t divisor_limb
)
48 mpn_divmod_1 (quot_ptr
, dividend_ptr
, dividend_size
, divisor_limb
)
50 mp_srcptr dividend_ptr
;
51 mp_size_t dividend_size
;
52 mp_limb_t divisor_limb
;
57 mp_limb_t dummy
__attribute__ ((unused
));
59 /* ??? Should this be handled at all? Rely on callers? */
60 if (dividend_size
== 0)
63 /* If multiplication is much faster than division, and the
64 dividend is large, pre-invert the divisor, and use
65 only multiplications in the inner loop. */
67 /* This test should be read:
68 Does it ever help to use udiv_qrnnd_preinv?
69 && Does what we save compensate for the inversion overhead? */
70 if (UDIV_TIME
> (2 * UMUL_TIME
+ 6)
71 && (UDIV_TIME
- (2 * UMUL_TIME
+ 6)) * dividend_size
> UDIV_TIME
)
73 int normalization_steps
;
75 count_leading_zeros (normalization_steps
, divisor_limb
);
76 if (normalization_steps
!= 0)
78 mp_limb_t divisor_limb_inverted
;
80 divisor_limb
<<= normalization_steps
;
82 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
83 result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
84 most significant bit (with weight 2**N) implicit. */
86 /* Special case for DIVISOR_LIMB == 100...000. */
87 if (divisor_limb
<< 1 == 0)
88 divisor_limb_inverted
= ~(mp_limb_t
) 0;
90 udiv_qrnnd (divisor_limb_inverted
, dummy
,
91 -divisor_limb
, 0, divisor_limb
);
93 n1
= dividend_ptr
[dividend_size
- 1];
94 r
= n1
>> (BITS_PER_MP_LIMB
- normalization_steps
);
96 /* Possible optimization:
98 && divisor_limb > ((n1 << normalization_steps)
99 | (dividend_ptr[dividend_size - 2] >> ...)))
100 ...one division less... */
102 for (i
= dividend_size
- 2; i
>= 0; i
--)
104 n0
= dividend_ptr
[i
];
105 udiv_qrnnd_preinv (quot_ptr
[i
+ 1], r
, r
,
106 ((n1
<< normalization_steps
)
107 | (n0
>> (BITS_PER_MP_LIMB
- normalization_steps
))),
108 divisor_limb
, divisor_limb_inverted
);
111 udiv_qrnnd_preinv (quot_ptr
[0], r
, r
,
112 n1
<< normalization_steps
,
113 divisor_limb
, divisor_limb_inverted
);
114 return r
>> normalization_steps
;
118 mp_limb_t divisor_limb_inverted
;
120 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
121 result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
122 most significant bit (with weight 2**N) implicit. */
124 /* Special case for DIVISOR_LIMB == 100...000. */
125 if (divisor_limb
<< 1 == 0)
126 divisor_limb_inverted
= ~(mp_limb_t
) 0;
128 udiv_qrnnd (divisor_limb_inverted
, dummy
,
129 -divisor_limb
, 0, divisor_limb
);
131 i
= dividend_size
- 1;
134 if (r
>= divisor_limb
)
144 n0
= dividend_ptr
[i
];
145 udiv_qrnnd_preinv (quot_ptr
[i
], r
, r
,
146 n0
, divisor_limb
, divisor_limb_inverted
);
153 if (UDIV_NEEDS_NORMALIZATION
)
155 int normalization_steps
;
157 count_leading_zeros (normalization_steps
, divisor_limb
);
158 if (normalization_steps
!= 0)
160 divisor_limb
<<= normalization_steps
;
162 n1
= dividend_ptr
[dividend_size
- 1];
163 r
= n1
>> (BITS_PER_MP_LIMB
- normalization_steps
);
165 /* Possible optimization:
167 && divisor_limb > ((n1 << normalization_steps)
168 | (dividend_ptr[dividend_size - 2] >> ...)))
169 ...one division less... */
171 for (i
= dividend_size
- 2; i
>= 0; i
--)
173 n0
= dividend_ptr
[i
];
174 udiv_qrnnd (quot_ptr
[i
+ 1], r
, r
,
175 ((n1
<< normalization_steps
)
176 | (n0
>> (BITS_PER_MP_LIMB
- normalization_steps
))),
180 udiv_qrnnd (quot_ptr
[0], r
, r
,
181 n1
<< normalization_steps
,
183 return r
>> normalization_steps
;
186 /* No normalization needed, either because udiv_qrnnd doesn't require
187 it, or because DIVISOR_LIMB is already normalized. */
189 i
= dividend_size
- 1;
192 if (r
>= divisor_limb
)
202 n0
= dividend_ptr
[i
];
203 udiv_qrnnd (quot_ptr
[i
], r
, r
, n0
, divisor_limb
);