1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
38 # define PARAMS(args) ()
40 #endif /* Not PARAMS. */
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 /* For platform which support the ISO C amendement 1 functionality we
50 support user defined character classes. */
51 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
56 /* This is for other GNU distributions with internationalized messages. */
57 #if HAVE_LIBINTL_H || defined _LIBC
60 # define gettext(msgid) (msgid)
64 /* This define is so xgettext can find the internationalizable
66 # define gettext_noop(String) String
69 /* The `emacs' switch turns on certain matching commands
70 that make sense only in Emacs. */
79 /* If we are not linking with Emacs proper,
80 we can't use the relocating allocator
81 even if config.h says that we can. */
84 # if defined STDC_HEADERS || defined _LIBC
91 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
92 If nothing else has been done, use the method below. */
93 # ifdef INHIBIT_STRING_HEADER
94 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
95 # if !defined bzero && !defined bcopy
96 # undef INHIBIT_STRING_HEADER
101 /* This is the normal way of making sure we have a bcopy and a bzero.
102 This is used in most programs--a few other programs avoid this
103 by defining INHIBIT_STRING_HEADER. */
104 # ifndef INHIBIT_STRING_HEADER
105 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
107 # if !defined bzero && !defined _LIBC
108 # define bzero(s, n) (memset (s, '\0', n), (s))
111 # include <strings.h>
113 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
116 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
121 /* Define the syntax stuff for \<, \>, etc. */
123 /* This must be nonzero for the wordchar and notwordchar pattern
124 commands in re_match_2. */
129 # ifdef SWITCH_ENUM_BUG
130 # define SWITCH_ENUM_CAST(x) ((int)(x))
132 # define SWITCH_ENUM_CAST(x) (x)
135 /* How many characters in the character set. */
136 # define CHAR_SET_SIZE 256
140 extern char *re_syntax_table
;
142 # else /* not SYNTAX_TABLE */
144 static char re_syntax_table
[CHAR_SET_SIZE
];
155 bzero (re_syntax_table
, sizeof re_syntax_table
);
157 for (c
= 'a'; c
<= 'z'; c
++)
158 re_syntax_table
[c
] = Sword
;
160 for (c
= 'A'; c
<= 'Z'; c
++)
161 re_syntax_table
[c
] = Sword
;
163 for (c
= '0'; c
<= '9'; c
++)
164 re_syntax_table
[c
] = Sword
;
166 re_syntax_table
['_'] = Sword
;
171 # endif /* not SYNTAX_TABLE */
173 # define SYNTAX(c) re_syntax_table[c]
175 #endif /* not emacs */
177 /* Get the interface, including the syntax bits. */
180 /* isalpha etc. are used for the character classes. */
183 /* Jim Meyering writes:
185 "... Some ctype macros are valid only for character codes that
186 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
187 using /bin/cc or gcc but without giving an ansi option). So, all
188 ctype uses should be through macros like ISPRINT... If
189 STDC_HEADERS is defined, then autoconf has verified that the ctype
190 macros don't need to be guarded with references to isascii. ...
191 Defining isascii to 1 should let any compiler worth its salt
192 eliminate the && through constant folding." */
194 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
195 # define ISASCII(c) 1
197 # define ISASCII(c) isascii(c)
201 # define ISBLANK(c) (ISASCII (c) && isblank (c))
203 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
206 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
208 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
211 #define ISPRINT(c) (ISASCII (c) && isprint (c))
212 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
213 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
214 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
215 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
216 #define ISLOWER(c) (ISASCII (c) && islower (c))
217 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
218 #define ISSPACE(c) (ISASCII (c) && isspace (c))
219 #define ISUPPER(c) (ISASCII (c) && isupper (c))
220 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
223 # define NULL (void *)0
226 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
227 since ours (we hope) works properly with all combinations of
228 machines, compilers, `char' and `unsigned char' argument types.
229 (Per Bothner suggested the basic approach.) */
230 #undef SIGN_EXTEND_CHAR
232 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
233 #else /* not __STDC__ */
234 /* As in Harbison and Steele. */
235 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
238 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
239 use `alloca' instead of `malloc'. This is because using malloc in
240 re_search* or re_match* could cause memory leaks when C-g is used in
241 Emacs; also, malloc is slower and causes storage fragmentation. On
242 the other hand, malloc is more portable, and easier to debug.
244 Because we sometimes use alloca, some routines have to be macros,
245 not functions -- `alloca'-allocated space disappears at the end of the
246 function it is called in. */
250 # define REGEX_ALLOCATE malloc
251 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
252 # define REGEX_FREE free
254 #else /* not REGEX_MALLOC */
256 /* Emacs already defines alloca, sometimes. */
259 /* Make alloca work the best possible way. */
261 # define alloca __builtin_alloca
262 # else /* not __GNUC__ */
265 # endif /* HAVE_ALLOCA_H */
266 # endif /* not __GNUC__ */
268 # endif /* not alloca */
270 # define REGEX_ALLOCATE alloca
272 /* Assumes a `char *destination' variable. */
273 # define REGEX_REALLOCATE(source, osize, nsize) \
274 (destination = (char *) alloca (nsize), \
275 memcpy (destination, source, osize))
277 /* No need to do anything to free, after alloca. */
278 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
280 #endif /* not REGEX_MALLOC */
282 /* Define how to allocate the failure stack. */
284 #if defined REL_ALLOC && defined REGEX_MALLOC
286 # define REGEX_ALLOCATE_STACK(size) \
287 r_alloc (&failure_stack_ptr, (size))
288 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
289 r_re_alloc (&failure_stack_ptr, (nsize))
290 # define REGEX_FREE_STACK(ptr) \
291 r_alloc_free (&failure_stack_ptr)
293 #else /* not using relocating allocator */
297 # define REGEX_ALLOCATE_STACK malloc
298 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
299 # define REGEX_FREE_STACK free
301 # else /* not REGEX_MALLOC */
303 # define REGEX_ALLOCATE_STACK alloca
305 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
306 REGEX_REALLOCATE (source, osize, nsize)
307 /* No need to explicitly free anything. */
308 # define REGEX_FREE_STACK(arg)
310 # endif /* not REGEX_MALLOC */
311 #endif /* not using relocating allocator */
314 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
315 `string1' or just past its end. This works if PTR is NULL, which is
317 #define FIRST_STRING_P(ptr) \
318 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
320 /* (Re)Allocate N items of type T using malloc, or fail. */
321 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
322 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
323 #define RETALLOC_IF(addr, n, t) \
324 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
325 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
327 #define BYTEWIDTH 8 /* In bits. */
329 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
333 #define MAX(a, b) ((a) > (b) ? (a) : (b))
334 #define MIN(a, b) ((a) < (b) ? (a) : (b))
336 typedef char boolean
;
340 static int re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
341 const char *string1
, int size1
,
342 const char *string2
, int size2
,
344 struct re_registers
*regs
,
347 /* These are the command codes that appear in compiled regular
348 expressions. Some opcodes are followed by argument bytes. A
349 command code can specify any interpretation whatsoever for its
350 arguments. Zero bytes may appear in the compiled regular expression. */
356 /* Succeed right away--no more backtracking. */
359 /* Followed by one byte giving n, then by n literal bytes. */
362 /* Matches any (more or less) character. */
365 /* Matches any one char belonging to specified set. First
366 following byte is number of bitmap bytes. Then come bytes
367 for a bitmap saying which chars are in. Bits in each byte
368 are ordered low-bit-first. A character is in the set if its
369 bit is 1. A character too large to have a bit in the map is
370 automatically not in the set. */
373 /* Same parameters as charset, but match any character that is
374 not one of those specified. */
377 /* Start remembering the text that is matched, for storing in a
378 register. Followed by one byte with the register number, in
379 the range 0 to one less than the pattern buffer's re_nsub
380 field. Then followed by one byte with the number of groups
381 inner to this one. (This last has to be part of the
382 start_memory only because we need it in the on_failure_jump
386 /* Stop remembering the text that is matched and store it in a
387 memory register. Followed by one byte with the register
388 number, in the range 0 to one less than `re_nsub' in the
389 pattern buffer, and one byte with the number of inner groups,
390 just like `start_memory'. (We need the number of inner
391 groups here because we don't have any easy way of finding the
392 corresponding start_memory when we're at a stop_memory.) */
395 /* Match a duplicate of something remembered. Followed by one
396 byte containing the register number. */
399 /* Fail unless at beginning of line. */
402 /* Fail unless at end of line. */
405 /* Succeeds if at beginning of buffer (if emacs) or at beginning
406 of string to be matched (if not). */
409 /* Analogously, for end of buffer/string. */
412 /* Followed by two byte relative address to which to jump. */
415 /* Same as jump, but marks the end of an alternative. */
418 /* Followed by two-byte relative address of place to resume at
419 in case of failure. */
422 /* Like on_failure_jump, but pushes a placeholder instead of the
423 current string position when executed. */
424 on_failure_keep_string_jump
,
426 /* Throw away latest failure point and then jump to following
427 two-byte relative address. */
430 /* Change to pop_failure_jump if know won't have to backtrack to
431 match; otherwise change to jump. This is used to jump
432 back to the beginning of a repeat. If what follows this jump
433 clearly won't match what the repeat does, such that we can be
434 sure that there is no use backtracking out of repetitions
435 already matched, then we change it to a pop_failure_jump.
436 Followed by two-byte address. */
439 /* Jump to following two-byte address, and push a dummy failure
440 point. This failure point will be thrown away if an attempt
441 is made to use it for a failure. A `+' construct makes this
442 before the first repeat. Also used as an intermediary kind
443 of jump when compiling an alternative. */
446 /* Push a dummy failure point and continue. Used at the end of
450 /* Followed by two-byte relative address and two-byte number n.
451 After matching N times, jump to the address upon failure. */
454 /* Followed by two-byte relative address, and two-byte number n.
455 Jump to the address N times, then fail. */
458 /* Set the following two-byte relative address to the
459 subsequent two-byte number. The address *includes* the two
463 wordchar
, /* Matches any word-constituent character. */
464 notwordchar
, /* Matches any char that is not a word-constituent. */
466 wordbeg
, /* Succeeds if at word beginning. */
467 wordend
, /* Succeeds if at word end. */
469 wordbound
, /* Succeeds if at a word boundary. */
470 notwordbound
/* Succeeds if not at a word boundary. */
473 ,before_dot
, /* Succeeds if before point. */
474 at_dot
, /* Succeeds if at point. */
475 after_dot
, /* Succeeds if after point. */
477 /* Matches any character whose syntax is specified. Followed by
478 a byte which contains a syntax code, e.g., Sword. */
481 /* Matches any character whose syntax is not that specified. */
486 /* Common operations on the compiled pattern. */
488 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
490 #define STORE_NUMBER(destination, number) \
492 (destination)[0] = (number) & 0377; \
493 (destination)[1] = (number) >> 8; \
496 /* Same as STORE_NUMBER, except increment DESTINATION to
497 the byte after where the number is stored. Therefore, DESTINATION
498 must be an lvalue. */
500 #define STORE_NUMBER_AND_INCR(destination, number) \
502 STORE_NUMBER (destination, number); \
503 (destination) += 2; \
506 /* Put into DESTINATION a number stored in two contiguous bytes starting
509 #define EXTRACT_NUMBER(destination, source) \
511 (destination) = *(source) & 0377; \
512 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
516 static void extract_number
_RE_ARGS ((int *dest
, unsigned char *source
));
518 extract_number (dest
, source
)
520 unsigned char *source
;
522 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
523 *dest
= *source
& 0377;
527 # ifndef EXTRACT_MACROS /* To debug the macros. */
528 # undef EXTRACT_NUMBER
529 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
530 # endif /* not EXTRACT_MACROS */
534 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
535 SOURCE must be an lvalue. */
537 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
539 EXTRACT_NUMBER (destination, source); \
544 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
545 unsigned char **source
));
547 extract_number_and_incr (destination
, source
)
549 unsigned char **source
;
551 extract_number (destination
, *source
);
555 # ifndef EXTRACT_MACROS
556 # undef EXTRACT_NUMBER_AND_INCR
557 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
558 extract_number_and_incr (&dest, &src)
559 # endif /* not EXTRACT_MACROS */
563 /* If DEBUG is defined, Regex prints many voluminous messages about what
564 it is doing (if the variable `debug' is nonzero). If linked with the
565 main program in `iregex.c', you can enter patterns and strings
566 interactively. And if linked with the main program in `main.c' and
567 the other test files, you can run the already-written tests. */
571 /* We use standard I/O for debugging. */
574 /* It is useful to test things that ``must'' be true when debugging. */
577 static int debug
= 0;
579 # define DEBUG_STATEMENT(e) e
580 # define DEBUG_PRINT1(x) if (debug) printf (x)
581 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
582 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
583 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
584 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
585 if (debug) print_partial_compiled_pattern (s, e)
586 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
587 if (debug) print_double_string (w, s1, sz1, s2, sz2)
590 /* Print the fastmap in human-readable form. */
593 print_fastmap (fastmap
)
596 unsigned was_a_range
= 0;
599 while (i
< (1 << BYTEWIDTH
))
605 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
621 /* Print a compiled pattern string in human-readable form, starting at
622 the START pointer into it and ending just before the pointer END. */
625 print_partial_compiled_pattern (start
, end
)
626 unsigned char *start
;
631 unsigned char *p
= start
;
632 unsigned char *pend
= end
;
640 /* Loop over pattern commands. */
643 printf ("%d:\t", p
- start
);
645 switch ((re_opcode_t
) *p
++)
653 printf ("/exactn/%d", mcnt
);
664 printf ("/start_memory/%d/%d", mcnt
, *p
++);
669 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
673 printf ("/duplicate/%d", *p
++);
683 register int c
, last
= -100;
684 register int in_range
= 0;
686 printf ("/charset [%s",
687 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
689 assert (p
+ *p
< pend
);
691 for (c
= 0; c
< 256; c
++)
693 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
695 /* Are we starting a range? */
696 if (last
+ 1 == c
&& ! in_range
)
701 /* Have we broken a range? */
702 else if (last
+ 1 != c
&& in_range
)
731 case on_failure_jump
:
732 extract_number_and_incr (&mcnt
, &p
);
733 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
736 case on_failure_keep_string_jump
:
737 extract_number_and_incr (&mcnt
, &p
);
738 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
741 case dummy_failure_jump
:
742 extract_number_and_incr (&mcnt
, &p
);
743 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
746 case push_dummy_failure
:
747 printf ("/push_dummy_failure");
751 extract_number_and_incr (&mcnt
, &p
);
752 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
755 case pop_failure_jump
:
756 extract_number_and_incr (&mcnt
, &p
);
757 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
761 extract_number_and_incr (&mcnt
, &p
);
762 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
766 extract_number_and_incr (&mcnt
, &p
);
767 printf ("/jump to %d", p
+ mcnt
- start
);
771 extract_number_and_incr (&mcnt
, &p
);
773 extract_number_and_incr (&mcnt2
, &p
);
774 printf ("/succeed_n to %d, %d times", p1
- start
, mcnt2
);
778 extract_number_and_incr (&mcnt
, &p
);
780 extract_number_and_incr (&mcnt2
, &p
);
781 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
785 extract_number_and_incr (&mcnt
, &p
);
787 extract_number_and_incr (&mcnt2
, &p
);
788 printf ("/set_number_at location %d to %d", p1
- start
, mcnt2
);
792 printf ("/wordbound");
796 printf ("/notwordbound");
808 printf ("/before_dot");
816 printf ("/after_dot");
820 printf ("/syntaxspec");
822 printf ("/%d", mcnt
);
826 printf ("/notsyntaxspec");
828 printf ("/%d", mcnt
);
833 printf ("/wordchar");
837 printf ("/notwordchar");
849 printf ("?%d", *(p
-1));
855 printf ("%d:\tend of pattern.\n", p
- start
);
860 print_compiled_pattern (bufp
)
861 struct re_pattern_buffer
*bufp
;
863 unsigned char *buffer
= bufp
->buffer
;
865 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
866 printf ("%ld bytes used/%ld bytes allocated.\n",
867 bufp
->used
, bufp
->allocated
);
869 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
871 printf ("fastmap: ");
872 print_fastmap (bufp
->fastmap
);
875 printf ("re_nsub: %d\t", bufp
->re_nsub
);
876 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
877 printf ("can_be_null: %d\t", bufp
->can_be_null
);
878 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
879 printf ("no_sub: %d\t", bufp
->no_sub
);
880 printf ("not_bol: %d\t", bufp
->not_bol
);
881 printf ("not_eol: %d\t", bufp
->not_eol
);
882 printf ("syntax: %lx\n", bufp
->syntax
);
883 /* Perhaps we should print the translate table? */
888 print_double_string (where
, string1
, size1
, string2
, size2
)
901 if (FIRST_STRING_P (where
))
903 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
904 putchar (string1
[this_char
]);
909 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
910 putchar (string2
[this_char
]);
921 #else /* not DEBUG */
926 # define DEBUG_STATEMENT(e)
927 # define DEBUG_PRINT1(x)
928 # define DEBUG_PRINT2(x1, x2)
929 # define DEBUG_PRINT3(x1, x2, x3)
930 # define DEBUG_PRINT4(x1, x2, x3, x4)
931 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
932 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
934 #endif /* not DEBUG */
936 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
937 also be assigned to arbitrarily: each pattern buffer stores its own
938 syntax, so it can be changed between regex compilations. */
939 /* This has no initializer because initialized variables in Emacs
940 become read-only after dumping. */
941 reg_syntax_t re_syntax_options
;
944 /* Specify the precise syntax of regexps for compilation. This provides
945 for compatibility for various utilities which historically have
946 different, incompatible syntaxes.
948 The argument SYNTAX is a bit mask comprised of the various bits
949 defined in regex.h. We return the old syntax. */
952 re_set_syntax (syntax
)
955 reg_syntax_t ret
= re_syntax_options
;
957 re_syntax_options
= syntax
;
959 if (syntax
& RE_DEBUG
)
961 else if (debug
) /* was on but now is not */
967 /* This table gives an error message for each of the error codes listed
968 in regex.h. Obviously the order here has to be same as there.
969 POSIX doesn't require that we do anything for REG_NOERROR,
970 but why not be nice? */
972 static const char *re_error_msgid
[] =
974 gettext_noop ("Success"), /* REG_NOERROR */
975 gettext_noop ("No match"), /* REG_NOMATCH */
976 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
977 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
978 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
979 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
980 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
981 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
982 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
983 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
984 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
985 gettext_noop ("Invalid range end"), /* REG_ERANGE */
986 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
987 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
988 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
989 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
990 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
993 /* Avoiding alloca during matching, to placate r_alloc. */
995 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
996 searching and matching functions should not call alloca. On some
997 systems, alloca is implemented in terms of malloc, and if we're
998 using the relocating allocator routines, then malloc could cause a
999 relocation, which might (if the strings being searched are in the
1000 ralloc heap) shift the data out from underneath the regexp
1003 Here's another reason to avoid allocation: Emacs
1004 processes input from X in a signal handler; processing X input may
1005 call malloc; if input arrives while a matching routine is calling
1006 malloc, then we're scrod. But Emacs can't just block input while
1007 calling matching routines; then we don't notice interrupts when
1008 they come in. So, Emacs blocks input around all regexp calls
1009 except the matching calls, which it leaves unprotected, in the
1010 faith that they will not malloc. */
1012 /* Normally, this is fine. */
1013 #define MATCH_MAY_ALLOCATE
1015 /* When using GNU C, we are not REALLY using the C alloca, no matter
1016 what config.h may say. So don't take precautions for it. */
1021 /* The match routines may not allocate if (1) they would do it with malloc
1022 and (2) it's not safe for them to use malloc.
1023 Note that if REL_ALLOC is defined, matching would not use malloc for the
1024 failure stack, but we would still use it for the register vectors;
1025 so REL_ALLOC should not affect this. */
1026 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1027 # undef MATCH_MAY_ALLOCATE
1031 /* Failure stack declarations and macros; both re_compile_fastmap and
1032 re_match_2 use a failure stack. These have to be macros because of
1033 REGEX_ALLOCATE_STACK. */
1036 /* Number of failure points for which to initially allocate space
1037 when matching. If this number is exceeded, we allocate more
1038 space, so it is not a hard limit. */
1039 #ifndef INIT_FAILURE_ALLOC
1040 # define INIT_FAILURE_ALLOC 5
1043 /* Roughly the maximum number of failure points on the stack. Would be
1044 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1045 This is a variable only so users of regex can assign to it; we never
1046 change it ourselves. */
1050 # if defined MATCH_MAY_ALLOCATE
1051 /* 4400 was enough to cause a crash on Alpha OSF/1,
1052 whose default stack limit is 2mb. */
1053 long int re_max_failures
= 4000;
1055 long int re_max_failures
= 2000;
1058 union fail_stack_elt
1060 unsigned char *pointer
;
1064 typedef union fail_stack_elt fail_stack_elt_t
;
1068 fail_stack_elt_t
*stack
;
1069 unsigned long int size
;
1070 unsigned long int avail
; /* Offset of next open position. */
1073 #else /* not INT_IS_16BIT */
1075 # if defined MATCH_MAY_ALLOCATE
1076 /* 4400 was enough to cause a crash on Alpha OSF/1,
1077 whose default stack limit is 2mb. */
1078 int re_max_failures
= 20000;
1080 int re_max_failures
= 2000;
1083 union fail_stack_elt
1085 unsigned char *pointer
;
1089 typedef union fail_stack_elt fail_stack_elt_t
;
1093 fail_stack_elt_t
*stack
;
1095 unsigned avail
; /* Offset of next open position. */
1098 #endif /* INT_IS_16BIT */
1100 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1101 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1102 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1105 /* Define macros to initialize and free the failure stack.
1106 Do `return -2' if the alloc fails. */
1108 #ifdef MATCH_MAY_ALLOCATE
1109 # define INIT_FAIL_STACK() \
1111 fail_stack.stack = (fail_stack_elt_t *) \
1112 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1114 if (fail_stack.stack == NULL) \
1117 fail_stack.size = INIT_FAILURE_ALLOC; \
1118 fail_stack.avail = 0; \
1121 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1123 # define INIT_FAIL_STACK() \
1125 fail_stack.avail = 0; \
1128 # define RESET_FAIL_STACK()
1132 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1134 Return 1 if succeeds, and 0 if either ran out of memory
1135 allocating space for it or it was already too large.
1137 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1139 #define DOUBLE_FAIL_STACK(fail_stack) \
1140 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1142 : ((fail_stack).stack = (fail_stack_elt_t *) \
1143 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1144 (fail_stack).size * sizeof (fail_stack_elt_t), \
1145 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1147 (fail_stack).stack == NULL \
1149 : ((fail_stack).size <<= 1, \
1153 /* Push pointer POINTER on FAIL_STACK.
1154 Return 1 if was able to do so and 0 if ran out of memory allocating
1156 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1157 ((FAIL_STACK_FULL () \
1158 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1160 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1163 /* Push a pointer value onto the failure stack.
1164 Assumes the variable `fail_stack'. Probably should only
1165 be called from within `PUSH_FAILURE_POINT'. */
1166 #define PUSH_FAILURE_POINTER(item) \
1167 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1169 /* This pushes an integer-valued item onto the failure stack.
1170 Assumes the variable `fail_stack'. Probably should only
1171 be called from within `PUSH_FAILURE_POINT'. */
1172 #define PUSH_FAILURE_INT(item) \
1173 fail_stack.stack[fail_stack.avail++].integer = (item)
1175 /* Push a fail_stack_elt_t value onto the failure stack.
1176 Assumes the variable `fail_stack'. Probably should only
1177 be called from within `PUSH_FAILURE_POINT'. */
1178 #define PUSH_FAILURE_ELT(item) \
1179 fail_stack.stack[fail_stack.avail++] = (item)
1181 /* These three POP... operations complement the three PUSH... operations.
1182 All assume that `fail_stack' is nonempty. */
1183 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1184 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1185 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1187 /* Used to omit pushing failure point id's when we're not debugging. */
1189 # define DEBUG_PUSH PUSH_FAILURE_INT
1190 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1192 # define DEBUG_PUSH(item)
1193 # define DEBUG_POP(item_addr)
1197 /* Push the information about the state we will need
1198 if we ever fail back to it.
1200 Requires variables fail_stack, regstart, regend, reg_info, and
1201 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1204 Does `return FAILURE_CODE' if runs out of memory. */
1206 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1208 char *destination; \
1209 /* Must be int, so when we don't save any registers, the arithmetic \
1210 of 0 + -1 isn't done as unsigned. */ \
1211 /* Can't be int, since there is not a shred of a guarantee that int \
1212 is wide enough to hold a value of something to which pointer can \
1214 active_reg_t this_reg; \
1216 DEBUG_STATEMENT (failure_id++); \
1217 DEBUG_STATEMENT (nfailure_points_pushed++); \
1218 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1219 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1220 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1222 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1223 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1225 /* Ensure we have enough space allocated for what we will push. */ \
1226 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1228 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1229 return failure_code; \
1231 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1232 (fail_stack).size); \
1233 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1236 /* Push the info, starting with the registers. */ \
1237 DEBUG_PRINT1 ("\n"); \
1240 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1243 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1244 DEBUG_STATEMENT (num_regs_pushed++); \
1246 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1247 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1249 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1250 PUSH_FAILURE_POINTER (regend[this_reg]); \
1252 DEBUG_PRINT2 (" info: %p\n ", \
1253 reg_info[this_reg].word.pointer); \
1254 DEBUG_PRINT2 (" match_null=%d", \
1255 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1256 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1257 DEBUG_PRINT2 (" matched_something=%d", \
1258 MATCHED_SOMETHING (reg_info[this_reg])); \
1259 DEBUG_PRINT2 (" ever_matched=%d", \
1260 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1261 DEBUG_PRINT1 ("\n"); \
1262 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1265 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1266 PUSH_FAILURE_INT (lowest_active_reg); \
1268 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1269 PUSH_FAILURE_INT (highest_active_reg); \
1271 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1272 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1273 PUSH_FAILURE_POINTER (pattern_place); \
1275 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1276 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1278 DEBUG_PRINT1 ("'\n"); \
1279 PUSH_FAILURE_POINTER (string_place); \
1281 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1282 DEBUG_PUSH (failure_id); \
1285 /* This is the number of items that are pushed and popped on the stack
1286 for each register. */
1287 #define NUM_REG_ITEMS 3
1289 /* Individual items aside from the registers. */
1291 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1293 # define NUM_NONREG_ITEMS 4
1296 /* We push at most this many items on the stack. */
1297 /* We used to use (num_regs - 1), which is the number of registers
1298 this regexp will save; but that was changed to 5
1299 to avoid stack overflow for a regexp with lots of parens. */
1300 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1302 /* We actually push this many items. */
1303 #define NUM_FAILURE_ITEMS \
1305 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1309 /* How many items can still be added to the stack without overflowing it. */
1310 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1313 /* Pops what PUSH_FAIL_STACK pushes.
1315 We restore into the parameters, all of which should be lvalues:
1316 STR -- the saved data position.
1317 PAT -- the saved pattern position.
1318 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1319 REGSTART, REGEND -- arrays of string positions.
1320 REG_INFO -- array of information about each subexpression.
1322 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1323 `pend', `string1', `size1', `string2', and `size2'. */
1325 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1327 DEBUG_STATEMENT (unsigned failure_id;) \
1328 active_reg_t this_reg; \
1329 const unsigned char *string_temp; \
1331 assert (!FAIL_STACK_EMPTY ()); \
1333 /* Remove failure points and point to how many regs pushed. */ \
1334 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1335 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1336 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1338 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1340 DEBUG_POP (&failure_id); \
1341 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1343 /* If the saved string location is NULL, it came from an \
1344 on_failure_keep_string_jump opcode, and we want to throw away the \
1345 saved NULL, thus retaining our current position in the string. */ \
1346 string_temp = POP_FAILURE_POINTER (); \
1347 if (string_temp != NULL) \
1348 str = (const char *) string_temp; \
1350 DEBUG_PRINT2 (" Popping string %p: `", str); \
1351 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1352 DEBUG_PRINT1 ("'\n"); \
1354 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1355 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1356 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1358 /* Restore register info. */ \
1359 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1360 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1362 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1363 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1366 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1368 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1370 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1371 DEBUG_PRINT2 (" info: %p\n", \
1372 reg_info[this_reg].word.pointer); \
1374 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1375 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1377 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1378 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1382 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1384 reg_info[this_reg].word.integer = 0; \
1385 regend[this_reg] = 0; \
1386 regstart[this_reg] = 0; \
1388 highest_active_reg = high_reg; \
1391 set_regs_matched_done = 0; \
1392 DEBUG_STATEMENT (nfailure_points_popped++); \
1393 } /* POP_FAILURE_POINT */
1397 /* Structure for per-register (a.k.a. per-group) information.
1398 Other register information, such as the
1399 starting and ending positions (which are addresses), and the list of
1400 inner groups (which is a bits list) are maintained in separate
1403 We are making a (strictly speaking) nonportable assumption here: that
1404 the compiler will pack our bit fields into something that fits into
1405 the type of `word', i.e., is something that fits into one item on the
1409 /* Declarations and macros for re_match_2. */
1413 fail_stack_elt_t word
;
1416 /* This field is one if this group can match the empty string,
1417 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1418 #define MATCH_NULL_UNSET_VALUE 3
1419 unsigned match_null_string_p
: 2;
1420 unsigned is_active
: 1;
1421 unsigned matched_something
: 1;
1422 unsigned ever_matched_something
: 1;
1424 } register_info_type
;
1426 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1427 #define IS_ACTIVE(R) ((R).bits.is_active)
1428 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1429 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1432 /* Call this when have matched a real character; it sets `matched' flags
1433 for the subexpressions which we are currently inside. Also records
1434 that those subexprs have matched. */
1435 #define SET_REGS_MATCHED() \
1438 if (!set_regs_matched_done) \
1441 set_regs_matched_done = 1; \
1442 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1444 MATCHED_SOMETHING (reg_info[r]) \
1445 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1452 /* Registers are set to a sentinel when they haven't yet matched. */
1453 static char reg_unset_dummy
;
1454 #define REG_UNSET_VALUE (®_unset_dummy)
1455 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1457 /* Subroutine declarations and macros for regex_compile. */
1459 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1460 reg_syntax_t syntax
,
1461 struct re_pattern_buffer
*bufp
));
1462 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1463 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1464 int arg1
, int arg2
));
1465 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1466 int arg
, unsigned char *end
));
1467 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1468 int arg1
, int arg2
, unsigned char *end
));
1469 static boolean at_begline_loc_p
_RE_ARGS ((const char *pattern
, const char *p
,
1470 reg_syntax_t syntax
));
1471 static boolean at_endline_loc_p
_RE_ARGS ((const char *p
, const char *pend
,
1472 reg_syntax_t syntax
));
1473 static reg_errcode_t compile_range
_RE_ARGS ((const char **p_ptr
,
1476 reg_syntax_t syntax
,
1479 /* Fetch the next character in the uncompiled pattern---translating it
1480 if necessary. Also cast from a signed character in the constant
1481 string passed to us by the user to an unsigned char that we can use
1482 as an array index (in, e.g., `translate'). */
1484 # define PATFETCH(c) \
1485 do {if (p == pend) return REG_EEND; \
1486 c = (unsigned char) *p++; \
1487 if (translate) c = (unsigned char) translate[c]; \
1491 /* Fetch the next character in the uncompiled pattern, with no
1493 #define PATFETCH_RAW(c) \
1494 do {if (p == pend) return REG_EEND; \
1495 c = (unsigned char) *p++; \
1498 /* Go backwards one character in the pattern. */
1499 #define PATUNFETCH p--
1502 /* If `translate' is non-null, return translate[D], else just D. We
1503 cast the subscript to translate because some data is declared as
1504 `char *', to avoid warnings when a string constant is passed. But
1505 when we use a character as a subscript we must make it unsigned. */
1507 # define TRANSLATE(d) \
1508 (translate ? (char) translate[(unsigned char) (d)] : (d))
1512 /* Macros for outputting the compiled pattern into `buffer'. */
1514 /* If the buffer isn't allocated when it comes in, use this. */
1515 #define INIT_BUF_SIZE 32
1517 /* Make sure we have at least N more bytes of space in buffer. */
1518 #define GET_BUFFER_SPACE(n) \
1519 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1522 /* Make sure we have one more byte of buffer space and then add C to it. */
1523 #define BUF_PUSH(c) \
1525 GET_BUFFER_SPACE (1); \
1526 *b++ = (unsigned char) (c); \
1530 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1531 #define BUF_PUSH_2(c1, c2) \
1533 GET_BUFFER_SPACE (2); \
1534 *b++ = (unsigned char) (c1); \
1535 *b++ = (unsigned char) (c2); \
1539 /* As with BUF_PUSH_2, except for three bytes. */
1540 #define BUF_PUSH_3(c1, c2, c3) \
1542 GET_BUFFER_SPACE (3); \
1543 *b++ = (unsigned char) (c1); \
1544 *b++ = (unsigned char) (c2); \
1545 *b++ = (unsigned char) (c3); \
1549 /* Store a jump with opcode OP at LOC to location TO. We store a
1550 relative address offset by the three bytes the jump itself occupies. */
1551 #define STORE_JUMP(op, loc, to) \
1552 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1554 /* Likewise, for a two-argument jump. */
1555 #define STORE_JUMP2(op, loc, to, arg) \
1556 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1558 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1559 #define INSERT_JUMP(op, loc, to) \
1560 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1562 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1563 #define INSERT_JUMP2(op, loc, to, arg) \
1564 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1567 /* This is not an arbitrary limit: the arguments which represent offsets
1568 into the pattern are two bytes long. So if 2^16 bytes turns out to
1569 be too small, many things would have to change. */
1570 /* Any other compiler which, like MSC, has allocation limit below 2^16
1571 bytes will have to use approach similar to what was done below for
1572 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1573 reallocating to 0 bytes. Such thing is not going to work too well.
1574 You have been warned!! */
1575 #if defined _MSC_VER && !defined WIN32
1576 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1577 The REALLOC define eliminates a flurry of conversion warnings,
1578 but is not required. */
1579 # define MAX_BUF_SIZE 65500L
1580 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1582 # define MAX_BUF_SIZE (1L << 16)
1583 # define REALLOC(p,s) realloc ((p), (s))
1586 /* Extend the buffer by twice its current size via realloc and
1587 reset the pointers that pointed into the old block to point to the
1588 correct places in the new one. If extending the buffer results in it
1589 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1590 #define EXTEND_BUFFER() \
1592 unsigned char *old_buffer = bufp->buffer; \
1593 if (bufp->allocated == MAX_BUF_SIZE) \
1595 bufp->allocated <<= 1; \
1596 if (bufp->allocated > MAX_BUF_SIZE) \
1597 bufp->allocated = MAX_BUF_SIZE; \
1598 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1599 if (bufp->buffer == NULL) \
1600 return REG_ESPACE; \
1601 /* If the buffer moved, move all the pointers into it. */ \
1602 if (old_buffer != bufp->buffer) \
1604 b = (b - old_buffer) + bufp->buffer; \
1605 begalt = (begalt - old_buffer) + bufp->buffer; \
1606 if (fixup_alt_jump) \
1607 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1609 laststart = (laststart - old_buffer) + bufp->buffer; \
1610 if (pending_exact) \
1611 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1616 /* Since we have one byte reserved for the register number argument to
1617 {start,stop}_memory, the maximum number of groups we can report
1618 things about is what fits in that byte. */
1619 #define MAX_REGNUM 255
1621 /* But patterns can have more than `MAX_REGNUM' registers. We just
1622 ignore the excess. */
1623 typedef unsigned regnum_t
;
1626 /* Macros for the compile stack. */
1628 /* Since offsets can go either forwards or backwards, this type needs to
1629 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1630 /* int may be not enough when sizeof(int) == 2. */
1631 typedef long pattern_offset_t
;
1635 pattern_offset_t begalt_offset
;
1636 pattern_offset_t fixup_alt_jump
;
1637 pattern_offset_t inner_group_offset
;
1638 pattern_offset_t laststart_offset
;
1640 } compile_stack_elt_t
;
1645 compile_stack_elt_t
*stack
;
1647 unsigned avail
; /* Offset of next open position. */
1648 } compile_stack_type
;
1651 #define INIT_COMPILE_STACK_SIZE 32
1653 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1654 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1656 /* The next available element. */
1657 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1660 /* Set the bit for character C in a list. */
1661 #define SET_LIST_BIT(c) \
1662 (b[((unsigned char) (c)) / BYTEWIDTH] \
1663 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1666 /* Get the next unsigned number in the uncompiled pattern. */
1667 #define GET_UNSIGNED_NUMBER(num) \
1671 while (ISDIGIT (c)) \
1675 num = num * 10 + c - '0'; \
1683 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1684 /* The GNU C library provides support for user-defined character classes
1685 and the functions from ISO C amendement 1. */
1686 # ifdef CHARCLASS_NAME_MAX
1687 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1689 /* This shouldn't happen but some implementation might still have this
1690 problem. Use a reasonable default value. */
1691 # define CHAR_CLASS_MAX_LENGTH 256
1694 # define IS_CHAR_CLASS(string) wctype (string)
1696 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1698 # define IS_CHAR_CLASS(string) \
1699 (STREQ (string, "alpha") || STREQ (string, "upper") \
1700 || STREQ (string, "lower") || STREQ (string, "digit") \
1701 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1702 || STREQ (string, "space") || STREQ (string, "print") \
1703 || STREQ (string, "punct") || STREQ (string, "graph") \
1704 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1707 #ifndef MATCH_MAY_ALLOCATE
1709 /* If we cannot allocate large objects within re_match_2_internal,
1710 we make the fail stack and register vectors global.
1711 The fail stack, we grow to the maximum size when a regexp
1713 The register vectors, we adjust in size each time we
1714 compile a regexp, according to the number of registers it needs. */
1716 static fail_stack_type fail_stack
;
1718 /* Size with which the following vectors are currently allocated.
1719 That is so we can make them bigger as needed,
1720 but never make them smaller. */
1721 static int regs_allocated_size
;
1723 static const char ** regstart
, ** regend
;
1724 static const char ** old_regstart
, ** old_regend
;
1725 static const char **best_regstart
, **best_regend
;
1726 static register_info_type
*reg_info
;
1727 static const char **reg_dummy
;
1728 static register_info_type
*reg_info_dummy
;
1730 /* Make the register vectors big enough for NUM_REGS registers,
1731 but don't make them smaller. */
1734 regex_grow_registers (num_regs
)
1737 if (num_regs
> regs_allocated_size
)
1739 RETALLOC_IF (regstart
, num_regs
, const char *);
1740 RETALLOC_IF (regend
, num_regs
, const char *);
1741 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1742 RETALLOC_IF (old_regend
, num_regs
, const char *);
1743 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1744 RETALLOC_IF (best_regend
, num_regs
, const char *);
1745 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1746 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1747 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1749 regs_allocated_size
= num_regs
;
1753 #endif /* not MATCH_MAY_ALLOCATE */
1755 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1759 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1760 Returns one of error codes defined in `regex.h', or zero for success.
1762 Assumes the `allocated' (and perhaps `buffer') and `translate'
1763 fields are set in BUFP on entry.
1765 If it succeeds, results are put in BUFP (if it returns an error, the
1766 contents of BUFP are undefined):
1767 `buffer' is the compiled pattern;
1768 `syntax' is set to SYNTAX;
1769 `used' is set to the length of the compiled pattern;
1770 `fastmap_accurate' is zero;
1771 `re_nsub' is the number of subexpressions in PATTERN;
1772 `not_bol' and `not_eol' are zero;
1774 The `fastmap' and `newline_anchor' fields are neither
1775 examined nor set. */
1777 /* Return, freeing storage we allocated. */
1778 #define FREE_STACK_RETURN(value) \
1779 return (free (compile_stack.stack), value)
1781 static reg_errcode_t
1782 regex_compile (pattern
, size
, syntax
, bufp
)
1783 const char *pattern
;
1785 reg_syntax_t syntax
;
1786 struct re_pattern_buffer
*bufp
;
1788 /* We fetch characters from PATTERN here. Even though PATTERN is
1789 `char *' (i.e., signed), we declare these variables as unsigned, so
1790 they can be reliably used as array indices. */
1791 register unsigned char c
, c1
;
1793 /* A random temporary spot in PATTERN. */
1796 /* Points to the end of the buffer, where we should append. */
1797 register unsigned char *b
;
1799 /* Keeps track of unclosed groups. */
1800 compile_stack_type compile_stack
;
1802 /* Points to the current (ending) position in the pattern. */
1803 const char *p
= pattern
;
1804 const char *pend
= pattern
+ size
;
1806 /* How to translate the characters in the pattern. */
1807 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1809 /* Address of the count-byte of the most recently inserted `exactn'
1810 command. This makes it possible to tell if a new exact-match
1811 character can be added to that command or if the character requires
1812 a new `exactn' command. */
1813 unsigned char *pending_exact
= 0;
1815 /* Address of start of the most recently finished expression.
1816 This tells, e.g., postfix * where to find the start of its
1817 operand. Reset at the beginning of groups and alternatives. */
1818 unsigned char *laststart
= 0;
1820 /* Address of beginning of regexp, or inside of last group. */
1821 unsigned char *begalt
;
1823 /* Place in the uncompiled pattern (i.e., the {) to
1824 which to go back if the interval is invalid. */
1825 const char *beg_interval
;
1827 /* Address of the place where a forward jump should go to the end of
1828 the containing expression. Each alternative of an `or' -- except the
1829 last -- ends with a forward jump of this sort. */
1830 unsigned char *fixup_alt_jump
= 0;
1832 /* Counts open-groups as they are encountered. Remembered for the
1833 matching close-group on the compile stack, so the same register
1834 number is put in the stop_memory as the start_memory. */
1835 regnum_t regnum
= 0;
1838 DEBUG_PRINT1 ("\nCompiling pattern: ");
1841 unsigned debug_count
;
1843 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1844 putchar (pattern
[debug_count
]);
1849 /* Initialize the compile stack. */
1850 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1851 if (compile_stack
.stack
== NULL
)
1854 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1855 compile_stack
.avail
= 0;
1857 /* Initialize the pattern buffer. */
1858 bufp
->syntax
= syntax
;
1859 bufp
->fastmap_accurate
= 0;
1860 bufp
->not_bol
= bufp
->not_eol
= 0;
1862 /* Set `used' to zero, so that if we return an error, the pattern
1863 printer (for debugging) will think there's no pattern. We reset it
1867 /* Always count groups, whether or not bufp->no_sub is set. */
1870 #if !defined emacs && !defined SYNTAX_TABLE
1871 /* Initialize the syntax table. */
1872 init_syntax_once ();
1875 if (bufp
->allocated
== 0)
1878 { /* If zero allocated, but buffer is non-null, try to realloc
1879 enough space. This loses if buffer's address is bogus, but
1880 that is the user's responsibility. */
1881 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1884 { /* Caller did not allocate a buffer. Do it for them. */
1885 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1887 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1889 bufp
->allocated
= INIT_BUF_SIZE
;
1892 begalt
= b
= bufp
->buffer
;
1894 /* Loop through the uncompiled pattern until we're at the end. */
1903 if ( /* If at start of pattern, it's an operator. */
1905 /* If context independent, it's an operator. */
1906 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1907 /* Otherwise, depends on what's come before. */
1908 || at_begline_loc_p (pattern
, p
, syntax
))
1918 if ( /* If at end of pattern, it's an operator. */
1920 /* If context independent, it's an operator. */
1921 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1922 /* Otherwise, depends on what's next. */
1923 || at_endline_loc_p (p
, pend
, syntax
))
1933 if ((syntax
& RE_BK_PLUS_QM
)
1934 || (syntax
& RE_LIMITED_OPS
))
1938 /* If there is no previous pattern... */
1941 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1942 FREE_STACK_RETURN (REG_BADRPT
);
1943 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1948 /* Are we optimizing this jump? */
1949 boolean keep_string_p
= false;
1951 /* 1 means zero (many) matches is allowed. */
1952 char zero_times_ok
= 0, many_times_ok
= 0;
1954 /* If there is a sequence of repetition chars, collapse it
1955 down to just one (the right one). We can't combine
1956 interval operators with these because of, e.g., `a{2}*',
1957 which should only match an even number of `a's. */
1961 zero_times_ok
|= c
!= '+';
1962 many_times_ok
|= c
!= '?';
1970 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1973 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1975 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
1978 if (!(c1
== '+' || c1
== '?'))
1993 /* If we get here, we found another repeat character. */
1996 /* Star, etc. applied to an empty pattern is equivalent
1997 to an empty pattern. */
2001 /* Now we know whether or not zero matches is allowed
2002 and also whether or not two or more matches is allowed. */
2004 { /* More than one repetition is allowed, so put in at the
2005 end a backward relative jump from `b' to before the next
2006 jump we're going to put in below (which jumps from
2007 laststart to after this jump).
2009 But if we are at the `*' in the exact sequence `.*\n',
2010 insert an unconditional jump backwards to the .,
2011 instead of the beginning of the loop. This way we only
2012 push a failure point once, instead of every time
2013 through the loop. */
2014 assert (p
- 1 > pattern
);
2016 /* Allocate the space for the jump. */
2017 GET_BUFFER_SPACE (3);
2019 /* We know we are not at the first character of the pattern,
2020 because laststart was nonzero. And we've already
2021 incremented `p', by the way, to be the character after
2022 the `*'. Do we have to do something analogous here
2023 for null bytes, because of RE_DOT_NOT_NULL? */
2024 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2026 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2027 && !(syntax
& RE_DOT_NEWLINE
))
2028 { /* We have .*\n. */
2029 STORE_JUMP (jump
, b
, laststart
);
2030 keep_string_p
= true;
2033 /* Anything else. */
2034 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
2036 /* We've added more stuff to the buffer. */
2040 /* On failure, jump from laststart to b + 3, which will be the
2041 end of the buffer after this jump is inserted. */
2042 GET_BUFFER_SPACE (3);
2043 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2051 /* At least one repetition is required, so insert a
2052 `dummy_failure_jump' before the initial
2053 `on_failure_jump' instruction of the loop. This
2054 effects a skip over that instruction the first time
2055 we hit that loop. */
2056 GET_BUFFER_SPACE (3);
2057 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
2072 boolean had_char_class
= false;
2074 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2076 /* Ensure that we have enough space to push a charset: the
2077 opcode, the length count, and the bitset; 34 bytes in all. */
2078 GET_BUFFER_SPACE (34);
2082 /* We test `*p == '^' twice, instead of using an if
2083 statement, so we only need one BUF_PUSH. */
2084 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2088 /* Remember the first position in the bracket expression. */
2091 /* Push the number of bytes in the bitmap. */
2092 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2094 /* Clear the whole map. */
2095 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2097 /* charset_not matches newline according to a syntax bit. */
2098 if ((re_opcode_t
) b
[-2] == charset_not
2099 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2100 SET_LIST_BIT ('\n');
2102 /* Read in characters and ranges, setting map bits. */
2105 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2109 /* \ might escape characters inside [...] and [^...]. */
2110 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2112 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2119 /* Could be the end of the bracket expression. If it's
2120 not (i.e., when the bracket expression is `[]' so
2121 far), the ']' character bit gets set way below. */
2122 if (c
== ']' && p
!= p1
+ 1)
2125 /* Look ahead to see if it's a range when the last thing
2126 was a character class. */
2127 if (had_char_class
&& c
== '-' && *p
!= ']')
2128 FREE_STACK_RETURN (REG_ERANGE
);
2130 /* Look ahead to see if it's a range when the last thing
2131 was a character: if this is a hyphen not at the
2132 beginning or the end of a list, then it's the range
2135 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2136 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2140 = compile_range (&p
, pend
, translate
, syntax
, b
);
2141 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2144 else if (p
[0] == '-' && p
[1] != ']')
2145 { /* This handles ranges made up of characters only. */
2148 /* Move past the `-'. */
2151 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2152 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2155 /* See if we're at the beginning of a possible character
2158 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2159 { /* Leave room for the null. */
2160 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2165 /* If pattern is `[[:'. */
2166 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2171 if (c
== ':' || c
== ']' || p
== pend
2172 || c1
== CHAR_CLASS_MAX_LENGTH
)
2178 /* If isn't a word bracketed by `[:' and:`]':
2179 undo the ending character, the letters, and leave
2180 the leading `:' and `[' (but set bits for them). */
2181 if (c
== ':' && *p
== ']')
2183 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2184 boolean is_lower
= STREQ (str
, "lower");
2185 boolean is_upper
= STREQ (str
, "upper");
2191 FREE_STACK_RETURN (REG_ECTYPE
);
2193 /* Throw away the ] at the end of the character
2197 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2199 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2201 if (iswctype (btowc (ch
), wt
))
2204 if (translate
&& (is_upper
|| is_lower
)
2205 && (ISUPPER (ch
) || ISLOWER (ch
)))
2209 had_char_class
= true;
2212 boolean is_alnum
= STREQ (str
, "alnum");
2213 boolean is_alpha
= STREQ (str
, "alpha");
2214 boolean is_blank
= STREQ (str
, "blank");
2215 boolean is_cntrl
= STREQ (str
, "cntrl");
2216 boolean is_digit
= STREQ (str
, "digit");
2217 boolean is_graph
= STREQ (str
, "graph");
2218 boolean is_lower
= STREQ (str
, "lower");
2219 boolean is_print
= STREQ (str
, "print");
2220 boolean is_punct
= STREQ (str
, "punct");
2221 boolean is_space
= STREQ (str
, "space");
2222 boolean is_upper
= STREQ (str
, "upper");
2223 boolean is_xdigit
= STREQ (str
, "xdigit");
2225 if (!IS_CHAR_CLASS (str
))
2226 FREE_STACK_RETURN (REG_ECTYPE
);
2228 /* Throw away the ] at the end of the character
2232 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2234 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2236 /* This was split into 3 if's to
2237 avoid an arbitrary limit in some compiler. */
2238 if ( (is_alnum
&& ISALNUM (ch
))
2239 || (is_alpha
&& ISALPHA (ch
))
2240 || (is_blank
&& ISBLANK (ch
))
2241 || (is_cntrl
&& ISCNTRL (ch
)))
2243 if ( (is_digit
&& ISDIGIT (ch
))
2244 || (is_graph
&& ISGRAPH (ch
))
2245 || (is_lower
&& ISLOWER (ch
))
2246 || (is_print
&& ISPRINT (ch
)))
2248 if ( (is_punct
&& ISPUNCT (ch
))
2249 || (is_space
&& ISSPACE (ch
))
2250 || (is_upper
&& ISUPPER (ch
))
2251 || (is_xdigit
&& ISXDIGIT (ch
)))
2253 if ( translate
&& (is_upper
|| is_lower
)
2254 && (ISUPPER (ch
) || ISLOWER (ch
)))
2257 had_char_class
= true;
2258 #endif /* libc || wctype.h */
2267 had_char_class
= false;
2272 had_char_class
= false;
2277 /* Discard any (non)matching list bytes that are all 0 at the
2278 end of the map. Decrease the map-length byte too. */
2279 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2287 if (syntax
& RE_NO_BK_PARENS
)
2294 if (syntax
& RE_NO_BK_PARENS
)
2301 if (syntax
& RE_NEWLINE_ALT
)
2308 if (syntax
& RE_NO_BK_VBAR
)
2315 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2316 goto handle_interval
;
2322 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2324 /* Do not translate the character after the \, so that we can
2325 distinguish, e.g., \B from \b, even if we normally would
2326 translate, e.g., B to b. */
2332 if (syntax
& RE_NO_BK_PARENS
)
2333 goto normal_backslash
;
2339 if (COMPILE_STACK_FULL
)
2341 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2342 compile_stack_elt_t
);
2343 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2345 compile_stack
.size
<<= 1;
2348 /* These are the values to restore when we hit end of this
2349 group. They are all relative offsets, so that if the
2350 whole pattern moves because of realloc, they will still
2352 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2353 COMPILE_STACK_TOP
.fixup_alt_jump
2354 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2355 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2356 COMPILE_STACK_TOP
.regnum
= regnum
;
2358 /* We will eventually replace the 0 with the number of
2359 groups inner to this one. But do not push a
2360 start_memory for groups beyond the last one we can
2361 represent in the compiled pattern. */
2362 if (regnum
<= MAX_REGNUM
)
2364 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2365 BUF_PUSH_3 (start_memory
, regnum
, 0);
2368 compile_stack
.avail
++;
2373 /* If we've reached MAX_REGNUM groups, then this open
2374 won't actually generate any code, so we'll have to
2375 clear pending_exact explicitly. */
2381 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2383 if (COMPILE_STACK_EMPTY
)
2385 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2386 goto normal_backslash
;
2388 FREE_STACK_RETURN (REG_ERPAREN
);
2393 { /* Push a dummy failure point at the end of the
2394 alternative for a possible future
2395 `pop_failure_jump' to pop. See comments at
2396 `push_dummy_failure' in `re_match_2'. */
2397 BUF_PUSH (push_dummy_failure
);
2399 /* We allocated space for this jump when we assigned
2400 to `fixup_alt_jump', in the `handle_alt' case below. */
2401 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2404 /* See similar code for backslashed left paren above. */
2405 if (COMPILE_STACK_EMPTY
)
2407 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2410 FREE_STACK_RETURN (REG_ERPAREN
);
2413 /* Since we just checked for an empty stack above, this
2414 ``can't happen''. */
2415 assert (compile_stack
.avail
!= 0);
2417 /* We don't just want to restore into `regnum', because
2418 later groups should continue to be numbered higher,
2419 as in `(ab)c(de)' -- the second group is #2. */
2420 regnum_t this_group_regnum
;
2422 compile_stack
.avail
--;
2423 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2425 = COMPILE_STACK_TOP
.fixup_alt_jump
2426 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2428 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2429 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2430 /* If we've reached MAX_REGNUM groups, then this open
2431 won't actually generate any code, so we'll have to
2432 clear pending_exact explicitly. */
2435 /* We're at the end of the group, so now we know how many
2436 groups were inside this one. */
2437 if (this_group_regnum
<= MAX_REGNUM
)
2439 unsigned char *inner_group_loc
2440 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2442 *inner_group_loc
= regnum
- this_group_regnum
;
2443 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2444 regnum
- this_group_regnum
);
2450 case '|': /* `\|'. */
2451 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2452 goto normal_backslash
;
2454 if (syntax
& RE_LIMITED_OPS
)
2457 /* Insert before the previous alternative a jump which
2458 jumps to this alternative if the former fails. */
2459 GET_BUFFER_SPACE (3);
2460 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2464 /* The alternative before this one has a jump after it
2465 which gets executed if it gets matched. Adjust that
2466 jump so it will jump to this alternative's analogous
2467 jump (put in below, which in turn will jump to the next
2468 (if any) alternative's such jump, etc.). The last such
2469 jump jumps to the correct final destination. A picture:
2475 If we are at `b', then fixup_alt_jump right now points to a
2476 three-byte space after `a'. We'll put in the jump, set
2477 fixup_alt_jump to right after `b', and leave behind three
2478 bytes which we'll fill in when we get to after `c'. */
2481 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2483 /* Mark and leave space for a jump after this alternative,
2484 to be filled in later either by next alternative or
2485 when know we're at the end of a series of alternatives. */
2487 GET_BUFFER_SPACE (3);
2496 /* If \{ is a literal. */
2497 if (!(syntax
& RE_INTERVALS
)
2498 /* If we're at `\{' and it's not the open-interval
2500 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2501 || (p
- 2 == pattern
&& p
== pend
))
2502 goto normal_backslash
;
2506 /* If got here, then the syntax allows intervals. */
2508 /* At least (most) this many matches must be made. */
2509 int lower_bound
= -1, upper_bound
= -1;
2511 beg_interval
= p
- 1;
2515 if (syntax
& RE_NO_BK_BRACES
)
2516 goto unfetch_interval
;
2518 FREE_STACK_RETURN (REG_EBRACE
);
2521 GET_UNSIGNED_NUMBER (lower_bound
);
2525 GET_UNSIGNED_NUMBER (upper_bound
);
2526 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2529 /* Interval such as `{1}' => match exactly once. */
2530 upper_bound
= lower_bound
;
2532 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2533 || lower_bound
> upper_bound
)
2535 if (syntax
& RE_NO_BK_BRACES
)
2536 goto unfetch_interval
;
2538 FREE_STACK_RETURN (REG_BADBR
);
2541 if (!(syntax
& RE_NO_BK_BRACES
))
2543 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2550 if (syntax
& RE_NO_BK_BRACES
)
2551 goto unfetch_interval
;
2553 FREE_STACK_RETURN (REG_BADBR
);
2556 /* We just parsed a valid interval. */
2558 /* If it's invalid to have no preceding re. */
2561 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2562 FREE_STACK_RETURN (REG_BADRPT
);
2563 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2566 goto unfetch_interval
;
2569 /* If the upper bound is zero, don't want to succeed at
2570 all; jump from `laststart' to `b + 3', which will be
2571 the end of the buffer after we insert the jump. */
2572 if (upper_bound
== 0)
2574 GET_BUFFER_SPACE (3);
2575 INSERT_JUMP (jump
, laststart
, b
+ 3);
2579 /* Otherwise, we have a nontrivial interval. When
2580 we're all done, the pattern will look like:
2581 set_number_at <jump count> <upper bound>
2582 set_number_at <succeed_n count> <lower bound>
2583 succeed_n <after jump addr> <succeed_n count>
2585 jump_n <succeed_n addr> <jump count>
2586 (The upper bound and `jump_n' are omitted if
2587 `upper_bound' is 1, though.) */
2589 { /* If the upper bound is > 1, we need to insert
2590 more at the end of the loop. */
2591 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2593 GET_BUFFER_SPACE (nbytes
);
2595 /* Initialize lower bound of the `succeed_n', even
2596 though it will be set during matching by its
2597 attendant `set_number_at' (inserted next),
2598 because `re_compile_fastmap' needs to know.
2599 Jump to the `jump_n' we might insert below. */
2600 INSERT_JUMP2 (succeed_n
, laststart
,
2601 b
+ 5 + (upper_bound
> 1) * 5,
2605 /* Code to initialize the lower bound. Insert
2606 before the `succeed_n'. The `5' is the last two
2607 bytes of this `set_number_at', plus 3 bytes of
2608 the following `succeed_n'. */
2609 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2612 if (upper_bound
> 1)
2613 { /* More than one repetition is allowed, so
2614 append a backward jump to the `succeed_n'
2615 that starts this interval.
2617 When we've reached this during matching,
2618 we'll have matched the interval once, so
2619 jump back only `upper_bound - 1' times. */
2620 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2624 /* The location we want to set is the second
2625 parameter of the `jump_n'; that is `b-2' as
2626 an absolute address. `laststart' will be
2627 the `set_number_at' we're about to insert;
2628 `laststart+3' the number to set, the source
2629 for the relative address. But we are
2630 inserting into the middle of the pattern --
2631 so everything is getting moved up by 5.
2632 Conclusion: (b - 2) - (laststart + 3) + 5,
2633 i.e., b - laststart.
2635 We insert this at the beginning of the loop
2636 so that if we fail during matching, we'll
2637 reinitialize the bounds. */
2638 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2639 upper_bound
- 1, b
);
2644 beg_interval
= NULL
;
2649 /* If an invalid interval, match the characters as literals. */
2650 assert (beg_interval
);
2652 beg_interval
= NULL
;
2654 /* normal_char and normal_backslash need `c'. */
2657 if (!(syntax
& RE_NO_BK_BRACES
))
2659 if (p
> pattern
&& p
[-1] == '\\')
2660 goto normal_backslash
;
2665 /* There is no way to specify the before_dot and after_dot
2666 operators. rms says this is ok. --karl */
2674 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2680 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2686 if (re_syntax_options
& RE_NO_GNU_OPS
)
2689 BUF_PUSH (wordchar
);
2694 if (re_syntax_options
& RE_NO_GNU_OPS
)
2697 BUF_PUSH (notwordchar
);
2702 if (re_syntax_options
& RE_NO_GNU_OPS
)
2708 if (re_syntax_options
& RE_NO_GNU_OPS
)
2714 if (re_syntax_options
& RE_NO_GNU_OPS
)
2716 BUF_PUSH (wordbound
);
2720 if (re_syntax_options
& RE_NO_GNU_OPS
)
2722 BUF_PUSH (notwordbound
);
2726 if (re_syntax_options
& RE_NO_GNU_OPS
)
2732 if (re_syntax_options
& RE_NO_GNU_OPS
)
2737 case '1': case '2': case '3': case '4': case '5':
2738 case '6': case '7': case '8': case '9':
2739 if (syntax
& RE_NO_BK_REFS
)
2745 FREE_STACK_RETURN (REG_ESUBREG
);
2747 /* Can't back reference to a subexpression if inside of it. */
2748 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
2752 BUF_PUSH_2 (duplicate
, c1
);
2758 if (syntax
& RE_BK_PLUS_QM
)
2761 goto normal_backslash
;
2765 /* You might think it would be useful for \ to mean
2766 not to translate; but if we don't translate it
2767 it will never match anything. */
2775 /* Expects the character in `c'. */
2777 /* If no exactn currently being built. */
2780 /* If last exactn not at current position. */
2781 || pending_exact
+ *pending_exact
+ 1 != b
2783 /* We have only one byte following the exactn for the count. */
2784 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2786 /* If followed by a repetition operator. */
2787 || *p
== '*' || *p
== '^'
2788 || ((syntax
& RE_BK_PLUS_QM
)
2789 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2790 : (*p
== '+' || *p
== '?'))
2791 || ((syntax
& RE_INTERVALS
)
2792 && ((syntax
& RE_NO_BK_BRACES
)
2794 : (p
[0] == '\\' && p
[1] == '{'))))
2796 /* Start building a new exactn. */
2800 BUF_PUSH_2 (exactn
, 0);
2801 pending_exact
= b
- 1;
2808 } /* while p != pend */
2811 /* Through the pattern now. */
2814 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2816 if (!COMPILE_STACK_EMPTY
)
2817 FREE_STACK_RETURN (REG_EPAREN
);
2819 /* If we don't want backtracking, force success
2820 the first time we reach the end of the compiled pattern. */
2821 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2824 free (compile_stack
.stack
);
2826 /* We have succeeded; set the length of the buffer. */
2827 bufp
->used
= b
- bufp
->buffer
;
2832 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2833 print_compiled_pattern (bufp
);
2837 #ifndef MATCH_MAY_ALLOCATE
2838 /* Initialize the failure stack to the largest possible stack. This
2839 isn't necessary unless we're trying to avoid calling alloca in
2840 the search and match routines. */
2842 int num_regs
= bufp
->re_nsub
+ 1;
2844 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2845 is strictly greater than re_max_failures, the largest possible stack
2846 is 2 * re_max_failures failure points. */
2847 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2849 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2852 if (! fail_stack
.stack
)
2854 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2855 * sizeof (fail_stack_elt_t
));
2858 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2860 * sizeof (fail_stack_elt_t
)));
2861 # else /* not emacs */
2862 if (! fail_stack
.stack
)
2864 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2865 * sizeof (fail_stack_elt_t
));
2868 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2870 * sizeof (fail_stack_elt_t
)));
2871 # endif /* not emacs */
2874 regex_grow_registers (num_regs
);
2876 #endif /* not MATCH_MAY_ALLOCATE */
2879 } /* regex_compile */
2881 /* Subroutines for `regex_compile'. */
2883 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2886 store_op1 (op
, loc
, arg
)
2891 *loc
= (unsigned char) op
;
2892 STORE_NUMBER (loc
+ 1, arg
);
2896 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2899 store_op2 (op
, loc
, arg1
, arg2
)
2904 *loc
= (unsigned char) op
;
2905 STORE_NUMBER (loc
+ 1, arg1
);
2906 STORE_NUMBER (loc
+ 3, arg2
);
2910 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2911 for OP followed by two-byte integer parameter ARG. */
2914 insert_op1 (op
, loc
, arg
, end
)
2920 register unsigned char *pfrom
= end
;
2921 register unsigned char *pto
= end
+ 3;
2923 while (pfrom
!= loc
)
2926 store_op1 (op
, loc
, arg
);
2930 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2933 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2939 register unsigned char *pfrom
= end
;
2940 register unsigned char *pto
= end
+ 5;
2942 while (pfrom
!= loc
)
2945 store_op2 (op
, loc
, arg1
, arg2
);
2949 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2950 after an alternative or a begin-subexpression. We assume there is at
2951 least one character before the ^. */
2954 at_begline_loc_p (pattern
, p
, syntax
)
2955 const char *pattern
, *p
;
2956 reg_syntax_t syntax
;
2958 const char *prev
= p
- 2;
2959 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2962 /* After a subexpression? */
2963 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2964 /* After an alternative? */
2965 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2969 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2970 at least one character after the $, i.e., `P < PEND'. */
2973 at_endline_loc_p (p
, pend
, syntax
)
2974 const char *p
, *pend
;
2975 reg_syntax_t syntax
;
2977 const char *next
= p
;
2978 boolean next_backslash
= *next
== '\\';
2979 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
2982 /* Before a subexpression? */
2983 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2984 : next_backslash
&& next_next
&& *next_next
== ')')
2985 /* Before an alternative? */
2986 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2987 : next_backslash
&& next_next
&& *next_next
== '|');
2991 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2992 false if it's not. */
2995 group_in_compile_stack (compile_stack
, regnum
)
2996 compile_stack_type compile_stack
;
3001 for (this_element
= compile_stack
.avail
- 1;
3004 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3011 /* Read the ending character of a range (in a bracket expression) from the
3012 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3013 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3014 Then we set the translation of all bits between the starting and
3015 ending characters (inclusive) in the compiled pattern B.
3017 Return an error code.
3019 We use these short variable names so we can use the same macros as
3020 `regex_compile' itself. */
3022 static reg_errcode_t
3023 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
3024 const char **p_ptr
, *pend
;
3025 RE_TRANSLATE_TYPE translate
;
3026 reg_syntax_t syntax
;
3031 const char *p
= *p_ptr
;
3032 unsigned int range_start
, range_end
;
3037 /* Even though the pattern is a signed `char *', we need to fetch
3038 with unsigned char *'s; if the high bit of the pattern character
3039 is set, the range endpoints will be negative if we fetch using a
3042 We also want to fetch the endpoints without translating them; the
3043 appropriate translation is done in the bit-setting loop below. */
3044 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3045 range_start
= ((const unsigned char *) p
)[-2];
3046 range_end
= ((const unsigned char *) p
)[0];
3048 /* Have to increment the pointer into the pattern string, so the
3049 caller isn't still at the ending character. */
3052 /* If the start is after the end, the range is empty. */
3053 if (range_start
> range_end
)
3054 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
3056 /* Here we see why `this_char' has to be larger than an `unsigned
3057 char' -- the range is inclusive, so if `range_end' == 0xff
3058 (assuming 8-bit characters), we would otherwise go into an infinite
3059 loop, since all characters <= 0xff. */
3060 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
3062 SET_LIST_BIT (TRANSLATE (this_char
));
3068 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3069 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3070 characters can start a string that matches the pattern. This fastmap
3071 is used by re_search to skip quickly over impossible starting points.
3073 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3074 area as BUFP->fastmap.
3076 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3079 Returns 0 if we succeed, -2 if an internal error. */
3082 re_compile_fastmap (bufp
)
3083 struct re_pattern_buffer
*bufp
;
3086 #ifdef MATCH_MAY_ALLOCATE
3087 fail_stack_type fail_stack
;
3089 #ifndef REGEX_MALLOC
3092 /* We don't push any register information onto the failure stack. */
3093 unsigned num_regs
= 0;
3095 register char *fastmap
= bufp
->fastmap
;
3096 unsigned char *pattern
= bufp
->buffer
;
3097 unsigned char *p
= pattern
;
3098 register unsigned char *pend
= pattern
+ bufp
->used
;
3101 /* This holds the pointer to the failure stack, when
3102 it is allocated relocatably. */
3103 fail_stack_elt_t
*failure_stack_ptr
;
3106 /* Assume that each path through the pattern can be null until
3107 proven otherwise. We set this false at the bottom of switch
3108 statement, to which we get only if a particular path doesn't
3109 match the empty string. */
3110 boolean path_can_be_null
= true;
3112 /* We aren't doing a `succeed_n' to begin with. */
3113 boolean succeed_n_p
= false;
3115 assert (fastmap
!= NULL
&& p
!= NULL
);
3118 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3119 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3120 bufp
->can_be_null
= 0;
3124 if (p
== pend
|| *p
== succeed
)
3126 /* We have reached the (effective) end of pattern. */
3127 if (!FAIL_STACK_EMPTY ())
3129 bufp
->can_be_null
|= path_can_be_null
;
3131 /* Reset for next path. */
3132 path_can_be_null
= true;
3134 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
3142 /* We should never be about to go beyond the end of the pattern. */
3145 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3148 /* I guess the idea here is to simply not bother with a fastmap
3149 if a backreference is used, since it's too hard to figure out
3150 the fastmap for the corresponding group. Setting
3151 `can_be_null' stops `re_search_2' from using the fastmap, so
3152 that is all we do. */
3154 bufp
->can_be_null
= 1;
3158 /* Following are the cases which match a character. These end
3167 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3168 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3174 /* Chars beyond end of map must be allowed. */
3175 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3178 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3179 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3185 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3186 if (SYNTAX (j
) == Sword
)
3192 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3193 if (SYNTAX (j
) != Sword
)
3200 int fastmap_newline
= fastmap
['\n'];
3202 /* `.' matches anything ... */
3203 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3206 /* ... except perhaps newline. */
3207 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3208 fastmap
['\n'] = fastmap_newline
;
3210 /* Return if we have already set `can_be_null'; if we have,
3211 then the fastmap is irrelevant. Something's wrong here. */
3212 else if (bufp
->can_be_null
)
3215 /* Otherwise, have to check alternative paths. */
3222 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3223 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3230 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3231 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3236 /* All cases after this match the empty string. These end with
3256 case push_dummy_failure
:
3261 case pop_failure_jump
:
3262 case maybe_pop_jump
:
3265 case dummy_failure_jump
:
3266 EXTRACT_NUMBER_AND_INCR (j
, p
);
3271 /* Jump backward implies we just went through the body of a
3272 loop and matched nothing. Opcode jumped to should be
3273 `on_failure_jump' or `succeed_n'. Just treat it like an
3274 ordinary jump. For a * loop, it has pushed its failure
3275 point already; if so, discard that as redundant. */
3276 if ((re_opcode_t
) *p
!= on_failure_jump
3277 && (re_opcode_t
) *p
!= succeed_n
)
3281 EXTRACT_NUMBER_AND_INCR (j
, p
);
3284 /* If what's on the stack is where we are now, pop it. */
3285 if (!FAIL_STACK_EMPTY ()
3286 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3292 case on_failure_jump
:
3293 case on_failure_keep_string_jump
:
3294 handle_on_failure_jump
:
3295 EXTRACT_NUMBER_AND_INCR (j
, p
);
3297 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3298 end of the pattern. We don't want to push such a point,
3299 since when we restore it above, entering the switch will
3300 increment `p' past the end of the pattern. We don't need
3301 to push such a point since we obviously won't find any more
3302 fastmap entries beyond `pend'. Such a pattern can match
3303 the null string, though. */
3306 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3308 RESET_FAIL_STACK ();
3313 bufp
->can_be_null
= 1;
3317 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3318 succeed_n_p
= false;
3325 /* Get to the number of times to succeed. */
3328 /* Increment p past the n for when k != 0. */
3329 EXTRACT_NUMBER_AND_INCR (k
, p
);
3333 succeed_n_p
= true; /* Spaghetti code alert. */
3334 goto handle_on_failure_jump
;
3351 abort (); /* We have listed all the cases. */
3354 /* Getting here means we have found the possible starting
3355 characters for one path of the pattern -- and that the empty
3356 string does not match. We need not follow this path further.
3357 Instead, look at the next alternative (remembered on the
3358 stack), or quit if no more. The test at the top of the loop
3359 does these things. */
3360 path_can_be_null
= false;
3364 /* Set `can_be_null' for the last path (also the first path, if the
3365 pattern is empty). */
3366 bufp
->can_be_null
|= path_can_be_null
;
3369 RESET_FAIL_STACK ();
3371 } /* re_compile_fastmap */
3373 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3374 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3375 this memory for recording register information. STARTS and ENDS
3376 must be allocated using the malloc library routine, and must each
3377 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3379 If NUM_REGS == 0, then subsequent matches should allocate their own
3382 Unless this function is called, the first search or match using
3383 PATTERN_BUFFER will allocate its own register data, without
3384 freeing the old data. */
3387 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3388 struct re_pattern_buffer
*bufp
;
3389 struct re_registers
*regs
;
3391 regoff_t
*starts
, *ends
;
3395 bufp
->regs_allocated
= REGS_REALLOCATE
;
3396 regs
->num_regs
= num_regs
;
3397 regs
->start
= starts
;
3402 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3404 regs
->start
= regs
->end
= (regoff_t
*) 0;
3408 /* Searching routines. */
3410 /* Like re_search_2, below, but only one string is specified, and
3411 doesn't let you say where to stop matching. */
3414 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3415 struct re_pattern_buffer
*bufp
;
3417 int size
, startpos
, range
;
3418 struct re_registers
*regs
;
3420 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3425 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3426 virtual concatenation of STRING1 and STRING2, starting first at index
3427 STARTPOS, then at STARTPOS + 1, and so on.
3429 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3431 RANGE is how far to scan while trying to match. RANGE = 0 means try
3432 only at STARTPOS; in general, the last start tried is STARTPOS +
3435 In REGS, return the indices of the virtual concatenation of STRING1
3436 and STRING2 that matched the entire BUFP->buffer and its contained
3439 Do not consider matching one past the index STOP in the virtual
3440 concatenation of STRING1 and STRING2.
3442 We return either the position in the strings at which the match was
3443 found, -1 if no match, or -2 if error (such as failure
3447 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3448 struct re_pattern_buffer
*bufp
;
3449 const char *string1
, *string2
;
3453 struct re_registers
*regs
;
3457 register char *fastmap
= bufp
->fastmap
;
3458 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3459 int total_size
= size1
+ size2
;
3460 int endpos
= startpos
+ range
;
3462 /* Check for out-of-range STARTPOS. */
3463 if (startpos
< 0 || startpos
> total_size
)
3466 /* Fix up RANGE if it might eventually take us outside
3467 the virtual concatenation of STRING1 and STRING2.
3468 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3470 range
= 0 - startpos
;
3471 else if (endpos
> total_size
)
3472 range
= total_size
- startpos
;
3474 /* If the search isn't to be a backwards one, don't waste time in a
3475 search for a pattern that must be anchored. */
3476 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3485 /* In a forward search for something that starts with \=.
3486 don't keep searching past point. */
3487 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3489 range
= PT
- startpos
;
3495 /* Update the fastmap now if not correct already. */
3496 if (fastmap
&& !bufp
->fastmap_accurate
)
3497 if (re_compile_fastmap (bufp
) == -2)
3500 /* Loop through the string, looking for a place to start matching. */
3503 /* If a fastmap is supplied, skip quickly over characters that
3504 cannot be the start of a match. If the pattern can match the
3505 null string, however, we don't need to skip characters; we want
3506 the first null string. */
3507 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3509 if (range
> 0) /* Searching forwards. */
3511 register const char *d
;
3512 register int lim
= 0;
3515 if (startpos
< size1
&& startpos
+ range
>= size1
)
3516 lim
= range
- (size1
- startpos
);
3518 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3520 /* Written out as an if-else to avoid testing `translate'
3524 && !fastmap
[(unsigned char)
3525 translate
[(unsigned char) *d
++]])
3528 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3531 startpos
+= irange
- range
;
3533 else /* Searching backwards. */
3535 register char c
= (size1
== 0 || startpos
>= size1
3536 ? string2
[startpos
- size1
]
3537 : string1
[startpos
]);
3539 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3544 /* If can't match the null string, and that's all we have left, fail. */
3545 if (range
>= 0 && startpos
== total_size
&& fastmap
3546 && !bufp
->can_be_null
)
3549 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3550 startpos
, regs
, stop
);
3551 #ifndef REGEX_MALLOC
3580 /* This converts PTR, a pointer into one of the search strings `string1'
3581 and `string2' into an offset from the beginning of that string. */
3582 #define POINTER_TO_OFFSET(ptr) \
3583 (FIRST_STRING_P (ptr) \
3584 ? ((regoff_t) ((ptr) - string1)) \
3585 : ((regoff_t) ((ptr) - string2 + size1)))
3587 /* Macros for dealing with the split strings in re_match_2. */
3589 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3591 /* Call before fetching a character with *d. This switches over to
3592 string2 if necessary. */
3593 #define PREFETCH() \
3596 /* End of string2 => fail. */ \
3597 if (dend == end_match_2) \
3599 /* End of string1 => advance to string2. */ \
3601 dend = end_match_2; \
3605 /* Test if at very beginning or at very end of the virtual concatenation
3606 of `string1' and `string2'. If only one string, it's `string2'. */
3607 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3608 #define AT_STRINGS_END(d) ((d) == end2)
3611 /* Test if D points to a character which is word-constituent. We have
3612 two special cases to check for: if past the end of string1, look at
3613 the first character in string2; and if before the beginning of
3614 string2, look at the last character in string1. */
3615 #define WORDCHAR_P(d) \
3616 (SYNTAX ((d) == end1 ? *string2 \
3617 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3620 /* Disabled due to a compiler bug -- see comment at case wordbound */
3622 /* Test if the character before D and the one at D differ with respect
3623 to being word-constituent. */
3624 #define AT_WORD_BOUNDARY(d) \
3625 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3626 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3629 /* Free everything we malloc. */
3630 #ifdef MATCH_MAY_ALLOCATE
3631 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3632 # define FREE_VARIABLES() \
3634 REGEX_FREE_STACK (fail_stack.stack); \
3635 FREE_VAR (regstart); \
3636 FREE_VAR (regend); \
3637 FREE_VAR (old_regstart); \
3638 FREE_VAR (old_regend); \
3639 FREE_VAR (best_regstart); \
3640 FREE_VAR (best_regend); \
3641 FREE_VAR (reg_info); \
3642 FREE_VAR (reg_dummy); \
3643 FREE_VAR (reg_info_dummy); \
3646 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3647 #endif /* not MATCH_MAY_ALLOCATE */
3649 /* These values must meet several constraints. They must not be valid
3650 register values; since we have a limit of 255 registers (because
3651 we use only one byte in the pattern for the register number), we can
3652 use numbers larger than 255. They must differ by 1, because of
3653 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3654 be larger than the value for the highest register, so we do not try
3655 to actually save any registers when none are active. */
3656 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3657 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3659 /* Matching routines. */
3661 #ifndef emacs /* Emacs never uses this. */
3662 /* re_match is like re_match_2 except it takes only a single string. */
3665 re_match (bufp
, string
, size
, pos
, regs
)
3666 struct re_pattern_buffer
*bufp
;
3669 struct re_registers
*regs
;
3671 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3673 # ifndef REGEX_MALLOC
3680 #endif /* not emacs */
3682 static boolean group_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3684 register_info_type
*reg_info
));
3685 static boolean alt_match_null_string_p
_RE_ARGS ((unsigned char *p
,
3687 register_info_type
*reg_info
));
3688 static boolean common_op_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3690 register_info_type
*reg_info
));
3691 static int bcmp_translate
_RE_ARGS ((const char *s1
, const char *s2
,
3692 int len
, char *translate
));
3694 /* re_match_2 matches the compiled pattern in BUFP against the
3695 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3696 and SIZE2, respectively). We start matching at POS, and stop
3699 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3700 store offsets for the substring each group matched in REGS. See the
3701 documentation for exactly how many groups we fill.
3703 We return -1 if no match, -2 if an internal error (such as the
3704 failure stack overflowing). Otherwise, we return the length of the
3705 matched substring. */
3708 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3709 struct re_pattern_buffer
*bufp
;
3710 const char *string1
, *string2
;
3713 struct re_registers
*regs
;
3716 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3718 #ifndef REGEX_MALLOC
3726 /* This is a separate function so that we can force an alloca cleanup
3729 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3730 struct re_pattern_buffer
*bufp
;
3731 const char *string1
, *string2
;
3734 struct re_registers
*regs
;
3737 /* General temporaries. */
3741 /* Just past the end of the corresponding string. */
3742 const char *end1
, *end2
;
3744 /* Pointers into string1 and string2, just past the last characters in
3745 each to consider matching. */
3746 const char *end_match_1
, *end_match_2
;
3748 /* Where we are in the data, and the end of the current string. */
3749 const char *d
, *dend
;
3751 /* Where we are in the pattern, and the end of the pattern. */
3752 unsigned char *p
= bufp
->buffer
;
3753 register unsigned char *pend
= p
+ bufp
->used
;
3755 /* Mark the opcode just after a start_memory, so we can test for an
3756 empty subpattern when we get to the stop_memory. */
3757 unsigned char *just_past_start_mem
= 0;
3759 /* We use this to map every character in the string. */
3760 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3762 /* Failure point stack. Each place that can handle a failure further
3763 down the line pushes a failure point on this stack. It consists of
3764 restart, regend, and reg_info for all registers corresponding to
3765 the subexpressions we're currently inside, plus the number of such
3766 registers, and, finally, two char *'s. The first char * is where
3767 to resume scanning the pattern; the second one is where to resume
3768 scanning the strings. If the latter is zero, the failure point is
3769 a ``dummy''; if a failure happens and the failure point is a dummy,
3770 it gets discarded and the next next one is tried. */
3771 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3772 fail_stack_type fail_stack
;
3775 static unsigned failure_id
= 0;
3776 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3780 /* This holds the pointer to the failure stack, when
3781 it is allocated relocatably. */
3782 fail_stack_elt_t
*failure_stack_ptr
;
3785 /* We fill all the registers internally, independent of what we
3786 return, for use in backreferences. The number here includes
3787 an element for register zero. */
3788 size_t num_regs
= bufp
->re_nsub
+ 1;
3790 /* The currently active registers. */
3791 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3792 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3794 /* Information on the contents of registers. These are pointers into
3795 the input strings; they record just what was matched (on this
3796 attempt) by a subexpression part of the pattern, that is, the
3797 regnum-th regstart pointer points to where in the pattern we began
3798 matching and the regnum-th regend points to right after where we
3799 stopped matching the regnum-th subexpression. (The zeroth register
3800 keeps track of what the whole pattern matches.) */
3801 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3802 const char **regstart
, **regend
;
3805 /* If a group that's operated upon by a repetition operator fails to
3806 match anything, then the register for its start will need to be
3807 restored because it will have been set to wherever in the string we
3808 are when we last see its open-group operator. Similarly for a
3810 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3811 const char **old_regstart
, **old_regend
;
3814 /* The is_active field of reg_info helps us keep track of which (possibly
3815 nested) subexpressions we are currently in. The matched_something
3816 field of reg_info[reg_num] helps us tell whether or not we have
3817 matched any of the pattern so far this time through the reg_num-th
3818 subexpression. These two fields get reset each time through any
3819 loop their register is in. */
3820 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3821 register_info_type
*reg_info
;
3824 /* The following record the register info as found in the above
3825 variables when we find a match better than any we've seen before.
3826 This happens as we backtrack through the failure points, which in
3827 turn happens only if we have not yet matched the entire string. */
3828 unsigned best_regs_set
= false;
3829 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3830 const char **best_regstart
, **best_regend
;
3833 /* Logically, this is `best_regend[0]'. But we don't want to have to
3834 allocate space for that if we're not allocating space for anything
3835 else (see below). Also, we never need info about register 0 for
3836 any of the other register vectors, and it seems rather a kludge to
3837 treat `best_regend' differently than the rest. So we keep track of
3838 the end of the best match so far in a separate variable. We
3839 initialize this to NULL so that when we backtrack the first time
3840 and need to test it, it's not garbage. */
3841 const char *match_end
= NULL
;
3843 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3844 int set_regs_matched_done
= 0;
3846 /* Used when we pop values we don't care about. */
3847 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3848 const char **reg_dummy
;
3849 register_info_type
*reg_info_dummy
;
3853 /* Counts the total number of registers pushed. */
3854 unsigned num_regs_pushed
= 0;
3857 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3861 #ifdef MATCH_MAY_ALLOCATE
3862 /* Do not bother to initialize all the register variables if there are
3863 no groups in the pattern, as it takes a fair amount of time. If
3864 there are groups, we include space for register 0 (the whole
3865 pattern), even though we never use it, since it simplifies the
3866 array indexing. We should fix this. */
3869 regstart
= REGEX_TALLOC (num_regs
, const char *);
3870 regend
= REGEX_TALLOC (num_regs
, const char *);
3871 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3872 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3873 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3874 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3875 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3876 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3877 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3879 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3880 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3888 /* We must initialize all our variables to NULL, so that
3889 `FREE_VARIABLES' doesn't try to free them. */
3890 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3891 = best_regend
= reg_dummy
= NULL
;
3892 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3894 #endif /* MATCH_MAY_ALLOCATE */
3896 /* The starting position is bogus. */
3897 if (pos
< 0 || pos
> size1
+ size2
)
3903 /* Initialize subexpression text positions to -1 to mark ones that no
3904 start_memory/stop_memory has been seen for. Also initialize the
3905 register information struct. */
3906 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
3908 regstart
[mcnt
] = regend
[mcnt
]
3909 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3911 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3912 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3913 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3914 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3917 /* We move `string1' into `string2' if the latter's empty -- but not if
3918 `string1' is null. */
3919 if (size2
== 0 && string1
!= NULL
)
3926 end1
= string1
+ size1
;
3927 end2
= string2
+ size2
;
3929 /* Compute where to stop matching, within the two strings. */
3932 end_match_1
= string1
+ stop
;
3933 end_match_2
= string2
;
3938 end_match_2
= string2
+ stop
- size1
;
3941 /* `p' scans through the pattern as `d' scans through the data.
3942 `dend' is the end of the input string that `d' points within. `d'
3943 is advanced into the following input string whenever necessary, but
3944 this happens before fetching; therefore, at the beginning of the
3945 loop, `d' can be pointing at the end of a string, but it cannot
3947 if (size1
> 0 && pos
<= size1
)
3954 d
= string2
+ pos
- size1
;
3958 DEBUG_PRINT1 ("The compiled pattern is:\n");
3959 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3960 DEBUG_PRINT1 ("The string to match is: `");
3961 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3962 DEBUG_PRINT1 ("'\n");
3964 /* This loops over pattern commands. It exits by returning from the
3965 function if the match is complete, or it drops through if the match
3966 fails at this starting point in the input data. */
3970 DEBUG_PRINT2 ("\n%p: ", p
);
3972 DEBUG_PRINT2 ("\n0x%x: ", p
);
3976 { /* End of pattern means we might have succeeded. */
3977 DEBUG_PRINT1 ("end of pattern ... ");
3979 /* If we haven't matched the entire string, and we want the
3980 longest match, try backtracking. */
3981 if (d
!= end_match_2
)
3983 /* 1 if this match ends in the same string (string1 or string2)
3984 as the best previous match. */
3985 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3986 == MATCHING_IN_FIRST_STRING
);
3987 /* 1 if this match is the best seen so far. */
3988 boolean best_match_p
;
3990 /* AIX compiler got confused when this was combined
3991 with the previous declaration. */
3993 best_match_p
= d
> match_end
;
3995 best_match_p
= !MATCHING_IN_FIRST_STRING
;
3997 DEBUG_PRINT1 ("backtracking.\n");
3999 if (!FAIL_STACK_EMPTY ())
4000 { /* More failure points to try. */
4002 /* If exceeds best match so far, save it. */
4003 if (!best_regs_set
|| best_match_p
)
4005 best_regs_set
= true;
4008 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4010 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4012 best_regstart
[mcnt
] = regstart
[mcnt
];
4013 best_regend
[mcnt
] = regend
[mcnt
];
4019 /* If no failure points, don't restore garbage. And if
4020 last match is real best match, don't restore second
4022 else if (best_regs_set
&& !best_match_p
)
4025 /* Restore best match. It may happen that `dend ==
4026 end_match_1' while the restored d is in string2.
4027 For example, the pattern `x.*y.*z' against the
4028 strings `x-' and `y-z-', if the two strings are
4029 not consecutive in memory. */
4030 DEBUG_PRINT1 ("Restoring best registers.\n");
4033 dend
= ((d
>= string1
&& d
<= end1
)
4034 ? end_match_1
: end_match_2
);
4036 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4038 regstart
[mcnt
] = best_regstart
[mcnt
];
4039 regend
[mcnt
] = best_regend
[mcnt
];
4042 } /* d != end_match_2 */
4045 DEBUG_PRINT1 ("Accepting match.\n");
4047 /* If caller wants register contents data back, do it. */
4048 if (regs
&& !bufp
->no_sub
)
4050 /* Have the register data arrays been allocated? */
4051 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4052 { /* No. So allocate them with malloc. We need one
4053 extra element beyond `num_regs' for the `-1' marker
4055 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4056 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4057 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4058 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4063 bufp
->regs_allocated
= REGS_REALLOCATE
;
4065 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4066 { /* Yes. If we need more elements than were already
4067 allocated, reallocate them. If we need fewer, just
4069 if (regs
->num_regs
< num_regs
+ 1)
4071 regs
->num_regs
= num_regs
+ 1;
4072 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4073 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4074 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4083 /* These braces fend off a "empty body in an else-statement"
4084 warning under GCC when assert expands to nothing. */
4085 assert (bufp
->regs_allocated
== REGS_FIXED
);
4088 /* Convert the pointer data in `regstart' and `regend' to
4089 indices. Register zero has to be set differently,
4090 since we haven't kept track of any info for it. */
4091 if (regs
->num_regs
> 0)
4093 regs
->start
[0] = pos
;
4094 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
4095 ? ((regoff_t
) (d
- string1
))
4096 : ((regoff_t
) (d
- string2
+ size1
)));
4099 /* Go through the first `min (num_regs, regs->num_regs)'
4100 registers, since that is all we initialized. */
4101 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
4104 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4105 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4109 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4111 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4115 /* If the regs structure we return has more elements than
4116 were in the pattern, set the extra elements to -1. If
4117 we (re)allocated the registers, this is the case,
4118 because we always allocate enough to have at least one
4120 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
4121 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4122 } /* regs && !bufp->no_sub */
4124 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4125 nfailure_points_pushed
, nfailure_points_popped
,
4126 nfailure_points_pushed
- nfailure_points_popped
);
4127 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4129 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
4133 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4139 /* Otherwise match next pattern command. */
4140 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4142 /* Ignore these. Used to ignore the n of succeed_n's which
4143 currently have n == 0. */
4145 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4149 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4152 /* Match the next n pattern characters exactly. The following
4153 byte in the pattern defines n, and the n bytes after that
4154 are the characters to match. */
4157 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4159 /* This is written out as an if-else so we don't waste time
4160 testing `translate' inside the loop. */
4166 if ((unsigned char) translate
[(unsigned char) *d
++]
4167 != (unsigned char) *p
++)
4177 if (*d
++ != (char) *p
++) goto fail
;
4181 SET_REGS_MATCHED ();
4185 /* Match any character except possibly a newline or a null. */
4187 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4191 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4192 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4195 SET_REGS_MATCHED ();
4196 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4204 register unsigned char c
;
4205 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4207 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4210 c
= TRANSLATE (*d
); /* The character to match. */
4212 /* Cast to `unsigned' instead of `unsigned char' in case the
4213 bit list is a full 32 bytes long. */
4214 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4215 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4220 if (!not) goto fail
;
4222 SET_REGS_MATCHED ();
4228 /* The beginning of a group is represented by start_memory.
4229 The arguments are the register number in the next byte, and the
4230 number of groups inner to this one in the next. The text
4231 matched within the group is recorded (in the internal
4232 registers data structure) under the register number. */
4234 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4236 /* Find out if this group can match the empty string. */
4237 p1
= p
; /* To send to group_match_null_string_p. */
4239 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4240 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4241 = group_match_null_string_p (&p1
, pend
, reg_info
);
4243 /* Save the position in the string where we were the last time
4244 we were at this open-group operator in case the group is
4245 operated upon by a repetition operator, e.g., with `(a*)*b'
4246 against `ab'; then we want to ignore where we are now in
4247 the string in case this attempt to match fails. */
4248 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4249 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4251 DEBUG_PRINT2 (" old_regstart: %d\n",
4252 POINTER_TO_OFFSET (old_regstart
[*p
]));
4255 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4257 IS_ACTIVE (reg_info
[*p
]) = 1;
4258 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4260 /* Clear this whenever we change the register activity status. */
4261 set_regs_matched_done
= 0;
4263 /* This is the new highest active register. */
4264 highest_active_reg
= *p
;
4266 /* If nothing was active before, this is the new lowest active
4268 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4269 lowest_active_reg
= *p
;
4271 /* Move past the register number and inner group count. */
4273 just_past_start_mem
= p
;
4278 /* The stop_memory opcode represents the end of a group. Its
4279 arguments are the same as start_memory's: the register
4280 number, and the number of inner groups. */
4282 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4284 /* We need to save the string position the last time we were at
4285 this close-group operator in case the group is operated
4286 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4287 against `aba'; then we want to ignore where we are now in
4288 the string in case this attempt to match fails. */
4289 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4290 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4292 DEBUG_PRINT2 (" old_regend: %d\n",
4293 POINTER_TO_OFFSET (old_regend
[*p
]));
4296 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4298 /* This register isn't active anymore. */
4299 IS_ACTIVE (reg_info
[*p
]) = 0;
4301 /* Clear this whenever we change the register activity status. */
4302 set_regs_matched_done
= 0;
4304 /* If this was the only register active, nothing is active
4306 if (lowest_active_reg
== highest_active_reg
)
4308 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4309 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4312 { /* We must scan for the new highest active register, since
4313 it isn't necessarily one less than now: consider
4314 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4315 new highest active register is 1. */
4316 unsigned char r
= *p
- 1;
4317 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4320 /* If we end up at register zero, that means that we saved
4321 the registers as the result of an `on_failure_jump', not
4322 a `start_memory', and we jumped to past the innermost
4323 `stop_memory'. For example, in ((.)*) we save
4324 registers 1 and 2 as a result of the *, but when we pop
4325 back to the second ), we are at the stop_memory 1.
4326 Thus, nothing is active. */
4329 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4330 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4333 highest_active_reg
= r
;
4336 /* If just failed to match something this time around with a
4337 group that's operated on by a repetition operator, try to
4338 force exit from the ``loop'', and restore the register
4339 information for this group that we had before trying this
4341 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4342 || just_past_start_mem
== p
- 1)
4345 boolean is_a_jump_n
= false;
4349 switch ((re_opcode_t
) *p1
++)
4353 case pop_failure_jump
:
4354 case maybe_pop_jump
:
4356 case dummy_failure_jump
:
4357 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4367 /* If the next operation is a jump backwards in the pattern
4368 to an on_failure_jump right before the start_memory
4369 corresponding to this stop_memory, exit from the loop
4370 by forcing a failure after pushing on the stack the
4371 on_failure_jump's jump in the pattern, and d. */
4372 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4373 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4375 /* If this group ever matched anything, then restore
4376 what its registers were before trying this last
4377 failed match, e.g., with `(a*)*b' against `ab' for
4378 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4379 against `aba' for regend[3].
4381 Also restore the registers for inner groups for,
4382 e.g., `((a*)(b*))*' against `aba' (register 3 would
4383 otherwise get trashed). */
4385 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4389 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4391 /* Restore this and inner groups' (if any) registers. */
4392 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
4395 regstart
[r
] = old_regstart
[r
];
4397 /* xx why this test? */
4398 if (old_regend
[r
] >= regstart
[r
])
4399 regend
[r
] = old_regend
[r
];
4403 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4404 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4410 /* Move past the register number and the inner group count. */
4415 /* \<digit> has been turned into a `duplicate' command which is
4416 followed by the numeric value of <digit> as the register number. */
4419 register const char *d2
, *dend2
;
4420 int regno
= *p
++; /* Get which register to match against. */
4421 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4423 /* Can't back reference a group which we've never matched. */
4424 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4427 /* Where in input to try to start matching. */
4428 d2
= regstart
[regno
];
4430 /* Where to stop matching; if both the place to start and
4431 the place to stop matching are in the same string, then
4432 set to the place to stop, otherwise, for now have to use
4433 the end of the first string. */
4435 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4436 == FIRST_STRING_P (regend
[regno
]))
4437 ? regend
[regno
] : end_match_1
);
4440 /* If necessary, advance to next segment in register
4444 if (dend2
== end_match_2
) break;
4445 if (dend2
== regend
[regno
]) break;
4447 /* End of string1 => advance to string2. */
4449 dend2
= regend
[regno
];
4451 /* At end of register contents => success */
4452 if (d2
== dend2
) break;
4454 /* If necessary, advance to next segment in data. */
4457 /* How many characters left in this segment to match. */
4460 /* Want how many consecutive characters we can match in
4461 one shot, so, if necessary, adjust the count. */
4462 if (mcnt
> dend2
- d2
)
4465 /* Compare that many; failure if mismatch, else move
4468 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4469 : memcmp (d
, d2
, mcnt
))
4471 d
+= mcnt
, d2
+= mcnt
;
4473 /* Do this because we've match some characters. */
4474 SET_REGS_MATCHED ();
4480 /* begline matches the empty string at the beginning of the string
4481 (unless `not_bol' is set in `bufp'), and, if
4482 `newline_anchor' is set, after newlines. */
4484 DEBUG_PRINT1 ("EXECUTING begline.\n");
4486 if (AT_STRINGS_BEG (d
))
4488 if (!bufp
->not_bol
) break;
4490 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4494 /* In all other cases, we fail. */
4498 /* endline is the dual of begline. */
4500 DEBUG_PRINT1 ("EXECUTING endline.\n");
4502 if (AT_STRINGS_END (d
))
4504 if (!bufp
->not_eol
) break;
4507 /* We have to ``prefetch'' the next character. */
4508 else if ((d
== end1
? *string2
: *d
) == '\n'
4509 && bufp
->newline_anchor
)
4516 /* Match at the very beginning of the data. */
4518 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4519 if (AT_STRINGS_BEG (d
))
4524 /* Match at the very end of the data. */
4526 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4527 if (AT_STRINGS_END (d
))
4532 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4533 pushes NULL as the value for the string on the stack. Then
4534 `pop_failure_point' will keep the current value for the
4535 string, instead of restoring it. To see why, consider
4536 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4537 then the . fails against the \n. But the next thing we want
4538 to do is match the \n against the \n; if we restored the
4539 string value, we would be back at the foo.
4541 Because this is used only in specific cases, we don't need to
4542 check all the things that `on_failure_jump' does, to make
4543 sure the right things get saved on the stack. Hence we don't
4544 share its code. The only reason to push anything on the
4545 stack at all is that otherwise we would have to change
4546 `anychar's code to do something besides goto fail in this
4547 case; that seems worse than this. */
4548 case on_failure_keep_string_jump
:
4549 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4551 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4553 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
4555 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4558 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4562 /* Uses of on_failure_jump:
4564 Each alternative starts with an on_failure_jump that points
4565 to the beginning of the next alternative. Each alternative
4566 except the last ends with a jump that in effect jumps past
4567 the rest of the alternatives. (They really jump to the
4568 ending jump of the following alternative, because tensioning
4569 these jumps is a hassle.)
4571 Repeats start with an on_failure_jump that points past both
4572 the repetition text and either the following jump or
4573 pop_failure_jump back to this on_failure_jump. */
4574 case on_failure_jump
:
4576 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4578 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4580 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
4582 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4585 /* If this on_failure_jump comes right before a group (i.e.,
4586 the original * applied to a group), save the information
4587 for that group and all inner ones, so that if we fail back
4588 to this point, the group's information will be correct.
4589 For example, in \(a*\)*\1, we need the preceding group,
4590 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4592 /* We can't use `p' to check ahead because we push
4593 a failure point to `p + mcnt' after we do this. */
4596 /* We need to skip no_op's before we look for the
4597 start_memory in case this on_failure_jump is happening as
4598 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4600 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4603 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4605 /* We have a new highest active register now. This will
4606 get reset at the start_memory we are about to get to,
4607 but we will have saved all the registers relevant to
4608 this repetition op, as described above. */
4609 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4610 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4611 lowest_active_reg
= *(p1
+ 1);
4614 DEBUG_PRINT1 (":\n");
4615 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4619 /* A smart repeat ends with `maybe_pop_jump'.
4620 We change it to either `pop_failure_jump' or `jump'. */
4621 case maybe_pop_jump
:
4622 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4623 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4625 register unsigned char *p2
= p
;
4627 /* Compare the beginning of the repeat with what in the
4628 pattern follows its end. If we can establish that there
4629 is nothing that they would both match, i.e., that we
4630 would have to backtrack because of (as in, e.g., `a*a')
4631 then we can change to pop_failure_jump, because we'll
4632 never have to backtrack.
4634 This is not true in the case of alternatives: in
4635 `(a|ab)*' we do need to backtrack to the `ab' alternative
4636 (e.g., if the string was `ab'). But instead of trying to
4637 detect that here, the alternative has put on a dummy
4638 failure point which is what we will end up popping. */
4640 /* Skip over open/close-group commands.
4641 If what follows this loop is a ...+ construct,
4642 look at what begins its body, since we will have to
4643 match at least one of that. */
4647 && ((re_opcode_t
) *p2
== stop_memory
4648 || (re_opcode_t
) *p2
== start_memory
))
4650 else if (p2
+ 6 < pend
4651 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4658 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4659 to the `maybe_finalize_jump' of this case. Examine what
4662 /* If we're at the end of the pattern, we can change. */
4665 /* Consider what happens when matching ":\(.*\)"
4666 against ":/". I don't really understand this code
4668 p
[-3] = (unsigned char) pop_failure_jump
;
4670 (" End of pattern: change to `pop_failure_jump'.\n");
4673 else if ((re_opcode_t
) *p2
== exactn
4674 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4676 register unsigned char c
4677 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4679 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4681 p
[-3] = (unsigned char) pop_failure_jump
;
4682 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4686 else if ((re_opcode_t
) p1
[3] == charset
4687 || (re_opcode_t
) p1
[3] == charset_not
)
4689 int not = (re_opcode_t
) p1
[3] == charset_not
;
4691 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4692 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4695 /* `not' is equal to 1 if c would match, which means
4696 that we can't change to pop_failure_jump. */
4699 p
[-3] = (unsigned char) pop_failure_jump
;
4700 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4704 else if ((re_opcode_t
) *p2
== charset
)
4707 register unsigned char c
4708 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4712 if ((re_opcode_t
) p1
[3] == exactn
4713 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4714 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4715 & (1 << (p1
[5] % BYTEWIDTH
)))))
4717 if ((re_opcode_t
) p1
[3] == exactn
4718 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[4]
4719 && (p2
[2 + p1
[4] / BYTEWIDTH
]
4720 & (1 << (p1
[4] % BYTEWIDTH
)))))
4723 p
[-3] = (unsigned char) pop_failure_jump
;
4724 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4728 else if ((re_opcode_t
) p1
[3] == charset_not
)
4731 /* We win if the charset_not inside the loop
4732 lists every character listed in the charset after. */
4733 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4734 if (! (p2
[2 + idx
] == 0
4735 || (idx
< (int) p1
[4]
4736 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4741 p
[-3] = (unsigned char) pop_failure_jump
;
4742 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4745 else if ((re_opcode_t
) p1
[3] == charset
)
4748 /* We win if the charset inside the loop
4749 has no overlap with the one after the loop. */
4751 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4753 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4756 if (idx
== p2
[1] || idx
== p1
[4])
4758 p
[-3] = (unsigned char) pop_failure_jump
;
4759 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4764 p
-= 2; /* Point at relative address again. */
4765 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4767 p
[-1] = (unsigned char) jump
;
4768 DEBUG_PRINT1 (" Match => jump.\n");
4769 goto unconditional_jump
;
4771 /* Note fall through. */
4774 /* The end of a simple repeat has a pop_failure_jump back to
4775 its matching on_failure_jump, where the latter will push a
4776 failure point. The pop_failure_jump takes off failure
4777 points put on by this pop_failure_jump's matching
4778 on_failure_jump; we got through the pattern to here from the
4779 matching on_failure_jump, so didn't fail. */
4780 case pop_failure_jump
:
4782 /* We need to pass separate storage for the lowest and
4783 highest registers, even though we don't care about the
4784 actual values. Otherwise, we will restore only one
4785 register from the stack, since lowest will == highest in
4786 `pop_failure_point'. */
4787 active_reg_t dummy_low_reg
, dummy_high_reg
;
4788 unsigned char *pdummy
;
4791 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4792 POP_FAILURE_POINT (sdummy
, pdummy
,
4793 dummy_low_reg
, dummy_high_reg
,
4794 reg_dummy
, reg_dummy
, reg_info_dummy
);
4796 /* Note fall through. */
4800 DEBUG_PRINT2 ("\n%p: ", p
);
4802 DEBUG_PRINT2 ("\n0x%x: ", p
);
4804 /* Note fall through. */
4806 /* Unconditionally jump (without popping any failure points). */
4808 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4809 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4810 p
+= mcnt
; /* Do the jump. */
4812 DEBUG_PRINT2 ("(to %p).\n", p
);
4814 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4819 /* We need this opcode so we can detect where alternatives end
4820 in `group_match_null_string_p' et al. */
4822 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4823 goto unconditional_jump
;
4826 /* Normally, the on_failure_jump pushes a failure point, which
4827 then gets popped at pop_failure_jump. We will end up at
4828 pop_failure_jump, also, and with a pattern of, say, `a+', we
4829 are skipping over the on_failure_jump, so we have to push
4830 something meaningless for pop_failure_jump to pop. */
4831 case dummy_failure_jump
:
4832 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4833 /* It doesn't matter what we push for the string here. What
4834 the code at `fail' tests is the value for the pattern. */
4835 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4836 goto unconditional_jump
;
4839 /* At the end of an alternative, we need to push a dummy failure
4840 point in case we are followed by a `pop_failure_jump', because
4841 we don't want the failure point for the alternative to be
4842 popped. For example, matching `(a|ab)*' against `aab'
4843 requires that we match the `ab' alternative. */
4844 case push_dummy_failure
:
4845 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4846 /* See comments just above at `dummy_failure_jump' about the
4848 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4851 /* Have to succeed matching what follows at least n times.
4852 After that, handle like `on_failure_jump'. */
4854 EXTRACT_NUMBER (mcnt
, p
+ 2);
4855 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4858 /* Originally, this is how many times we HAVE to succeed. */
4863 STORE_NUMBER_AND_INCR (p
, mcnt
);
4865 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- 2, mcnt
);
4867 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- 2, mcnt
);
4873 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
4875 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4877 p
[2] = (unsigned char) no_op
;
4878 p
[3] = (unsigned char) no_op
;
4884 EXTRACT_NUMBER (mcnt
, p
+ 2);
4885 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4887 /* Originally, this is how many times we CAN jump. */
4891 STORE_NUMBER (p
+ 2, mcnt
);
4893 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ 2, mcnt
);
4895 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ 2, mcnt
);
4897 goto unconditional_jump
;
4899 /* If don't have to jump any more, skip over the rest of command. */
4906 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4908 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4910 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4912 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
4914 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4916 STORE_NUMBER (p1
, mcnt
);
4921 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4922 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4923 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4924 macro and introducing temporary variables works around the bug. */
4927 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4928 if (AT_WORD_BOUNDARY (d
))
4933 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4934 if (AT_WORD_BOUNDARY (d
))
4940 boolean prevchar
, thischar
;
4942 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4943 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
4946 prevchar
= WORDCHAR_P (d
- 1);
4947 thischar
= WORDCHAR_P (d
);
4948 if (prevchar
!= thischar
)
4955 boolean prevchar
, thischar
;
4957 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4958 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
4961 prevchar
= WORDCHAR_P (d
- 1);
4962 thischar
= WORDCHAR_P (d
);
4963 if (prevchar
!= thischar
)
4970 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4971 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4976 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4977 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4978 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4984 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4985 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4990 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4991 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4996 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4997 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
5002 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
5007 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5011 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5013 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
5015 SET_REGS_MATCHED ();
5019 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
5021 goto matchnotsyntax
;
5024 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5028 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5030 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
5032 SET_REGS_MATCHED ();
5035 #else /* not emacs */
5037 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5039 if (!WORDCHAR_P (d
))
5041 SET_REGS_MATCHED ();
5046 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5050 SET_REGS_MATCHED ();
5053 #endif /* not emacs */
5058 continue; /* Successfully executed one pattern command; keep going. */
5061 /* We goto here if a matching operation fails. */
5063 if (!FAIL_STACK_EMPTY ())
5064 { /* A restart point is known. Restore to that state. */
5065 DEBUG_PRINT1 ("\nFAIL:\n");
5066 POP_FAILURE_POINT (d
, p
,
5067 lowest_active_reg
, highest_active_reg
,
5068 regstart
, regend
, reg_info
);
5070 /* If this failure point is a dummy, try the next one. */
5074 /* If we failed to the end of the pattern, don't examine *p. */
5078 boolean is_a_jump_n
= false;
5080 /* If failed to a backwards jump that's part of a repetition
5081 loop, need to pop this failure point and use the next one. */
5082 switch ((re_opcode_t
) *p
)
5086 case maybe_pop_jump
:
5087 case pop_failure_jump
:
5090 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5093 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
5095 && (re_opcode_t
) *p1
== on_failure_jump
))
5103 if (d
>= string1
&& d
<= end1
)
5107 break; /* Matching at this starting point really fails. */
5111 goto restore_best_regs
;
5115 return -1; /* Failure to match. */
5118 /* Subroutine definitions for re_match_2. */
5121 /* We are passed P pointing to a register number after a start_memory.
5123 Return true if the pattern up to the corresponding stop_memory can
5124 match the empty string, and false otherwise.
5126 If we find the matching stop_memory, sets P to point to one past its number.
5127 Otherwise, sets P to an undefined byte less than or equal to END.
5129 We don't handle duplicates properly (yet). */
5132 group_match_null_string_p (p
, end
, reg_info
)
5133 unsigned char **p
, *end
;
5134 register_info_type
*reg_info
;
5137 /* Point to after the args to the start_memory. */
5138 unsigned char *p1
= *p
+ 2;
5142 /* Skip over opcodes that can match nothing, and return true or
5143 false, as appropriate, when we get to one that can't, or to the
5144 matching stop_memory. */
5146 switch ((re_opcode_t
) *p1
)
5148 /* Could be either a loop or a series of alternatives. */
5149 case on_failure_jump
:
5151 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5153 /* If the next operation is not a jump backwards in the
5158 /* Go through the on_failure_jumps of the alternatives,
5159 seeing if any of the alternatives cannot match nothing.
5160 The last alternative starts with only a jump,
5161 whereas the rest start with on_failure_jump and end
5162 with a jump, e.g., here is the pattern for `a|b|c':
5164 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5165 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5168 So, we have to first go through the first (n-1)
5169 alternatives and then deal with the last one separately. */
5172 /* Deal with the first (n-1) alternatives, which start
5173 with an on_failure_jump (see above) that jumps to right
5174 past a jump_past_alt. */
5176 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
5178 /* `mcnt' holds how many bytes long the alternative
5179 is, including the ending `jump_past_alt' and
5182 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
5186 /* Move to right after this alternative, including the
5190 /* Break if it's the beginning of an n-th alternative
5191 that doesn't begin with an on_failure_jump. */
5192 if ((re_opcode_t
) *p1
!= on_failure_jump
)
5195 /* Still have to check that it's not an n-th
5196 alternative that starts with an on_failure_jump. */
5198 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5199 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
5201 /* Get to the beginning of the n-th alternative. */
5207 /* Deal with the last alternative: go back and get number
5208 of the `jump_past_alt' just before it. `mcnt' contains
5209 the length of the alternative. */
5210 EXTRACT_NUMBER (mcnt
, p1
- 2);
5212 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5215 p1
+= mcnt
; /* Get past the n-th alternative. */
5221 assert (p1
[1] == **p
);
5227 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5230 } /* while p1 < end */
5233 } /* group_match_null_string_p */
5236 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5237 It expects P to be the first byte of a single alternative and END one
5238 byte past the last. The alternative can contain groups. */
5241 alt_match_null_string_p (p
, end
, reg_info
)
5242 unsigned char *p
, *end
;
5243 register_info_type
*reg_info
;
5246 unsigned char *p1
= p
;
5250 /* Skip over opcodes that can match nothing, and break when we get
5251 to one that can't. */
5253 switch ((re_opcode_t
) *p1
)
5256 case on_failure_jump
:
5258 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5263 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5266 } /* while p1 < end */
5269 } /* alt_match_null_string_p */
5272 /* Deals with the ops common to group_match_null_string_p and
5273 alt_match_null_string_p.
5275 Sets P to one after the op and its arguments, if any. */
5278 common_op_match_null_string_p (p
, end
, reg_info
)
5279 unsigned char **p
, *end
;
5280 register_info_type
*reg_info
;
5285 unsigned char *p1
= *p
;
5287 switch ((re_opcode_t
) *p1
++)
5307 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5308 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5310 /* Have to set this here in case we're checking a group which
5311 contains a group and a back reference to it. */
5313 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5314 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5320 /* If this is an optimized succeed_n for zero times, make the jump. */
5322 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5330 /* Get to the number of times to succeed. */
5332 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5337 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5345 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5353 /* All other opcodes mean we cannot match the empty string. */
5359 } /* common_op_match_null_string_p */
5362 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5363 bytes; nonzero otherwise. */
5366 bcmp_translate (s1
, s2
, len
, translate
)
5367 const char *s1
, *s2
;
5369 RE_TRANSLATE_TYPE translate
;
5371 register const unsigned char *p1
= (const unsigned char *) s1
;
5372 register const unsigned char *p2
= (const unsigned char *) s2
;
5375 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5381 /* Entry points for GNU code. */
5383 /* re_compile_pattern is the GNU regular expression compiler: it
5384 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5385 Returns 0 if the pattern was valid, otherwise an error string.
5387 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5388 are set in BUFP on entry.
5390 We call regex_compile to do the actual compilation. */
5393 re_compile_pattern (pattern
, length
, bufp
)
5394 const char *pattern
;
5396 struct re_pattern_buffer
*bufp
;
5400 /* GNU code is written to assume at least RE_NREGS registers will be set
5401 (and at least one extra will be -1). */
5402 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5404 /* And GNU code determines whether or not to get register information
5405 by passing null for the REGS argument to re_match, etc., not by
5409 /* Match anchors at newline. */
5410 bufp
->newline_anchor
= 1;
5412 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5416 return gettext (re_error_msgid
[(int) ret
]);
5419 /* Entry points compatible with 4.2 BSD regex library. We don't define
5420 them unless specifically requested. */
5422 #if defined _REGEX_RE_COMP || defined _LIBC
5424 /* BSD has one and only one pattern buffer. */
5425 static struct re_pattern_buffer re_comp_buf
;
5429 /* Make these definitions weak in libc, so POSIX programs can redefine
5430 these names if they don't use our functions, and still use
5431 regcomp/regexec below without link errors. */
5441 if (!re_comp_buf
.buffer
)
5442 return gettext ("No previous regular expression");
5446 if (!re_comp_buf
.buffer
)
5448 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5449 if (re_comp_buf
.buffer
== NULL
)
5450 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5451 re_comp_buf
.allocated
= 200;
5453 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5454 if (re_comp_buf
.fastmap
== NULL
)
5455 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5458 /* Since `re_exec' always passes NULL for the `regs' argument, we
5459 don't need to initialize the pattern buffer fields which affect it. */
5461 /* Match anchors at newlines. */
5462 re_comp_buf
.newline_anchor
= 1;
5464 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5469 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5470 return (char *) gettext (re_error_msgid
[(int) ret
]);
5481 const int len
= strlen (s
);
5483 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5486 #endif /* _REGEX_RE_COMP */
5488 /* POSIX.2 functions. Don't define these for Emacs. */
5492 /* regcomp takes a regular expression as a string and compiles it.
5494 PREG is a regex_t *. We do not expect any fields to be initialized,
5495 since POSIX says we shouldn't. Thus, we set
5497 `buffer' to the compiled pattern;
5498 `used' to the length of the compiled pattern;
5499 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5500 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5501 RE_SYNTAX_POSIX_BASIC;
5502 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5503 `fastmap' and `fastmap_accurate' to zero;
5504 `re_nsub' to the number of subexpressions in PATTERN.
5506 PATTERN is the address of the pattern string.
5508 CFLAGS is a series of bits which affect compilation.
5510 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5511 use POSIX basic syntax.
5513 If REG_NEWLINE is set, then . and [^...] don't match newline.
5514 Also, regexec will try a match beginning after every newline.
5516 If REG_ICASE is set, then we considers upper- and lowercase
5517 versions of letters to be equivalent when matching.
5519 If REG_NOSUB is set, then when PREG is passed to regexec, that
5520 routine will report only success or failure, and nothing about the
5523 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5524 the return codes and their meanings.) */
5527 regcomp (preg
, pattern
, cflags
)
5529 const char *pattern
;
5534 = (cflags
& REG_EXTENDED
) ?
5535 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5537 /* regex_compile will allocate the space for the compiled pattern. */
5539 preg
->allocated
= 0;
5542 /* Don't bother to use a fastmap when searching. This simplifies the
5543 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5544 characters after newlines into the fastmap. This way, we just try
5548 if (cflags
& REG_ICASE
)
5553 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5554 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5555 if (preg
->translate
== NULL
)
5556 return (int) REG_ESPACE
;
5558 /* Map uppercase characters to corresponding lowercase ones. */
5559 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5560 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5563 preg
->translate
= NULL
;
5565 /* If REG_NEWLINE is set, newlines are treated differently. */
5566 if (cflags
& REG_NEWLINE
)
5567 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5568 syntax
&= ~RE_DOT_NEWLINE
;
5569 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5570 /* It also changes the matching behavior. */
5571 preg
->newline_anchor
= 1;
5574 preg
->newline_anchor
= 0;
5576 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5578 /* POSIX says a null character in the pattern terminates it, so we
5579 can use strlen here in compiling the pattern. */
5580 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5582 /* POSIX doesn't distinguish between an unmatched open-group and an
5583 unmatched close-group: both are REG_EPAREN. */
5584 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5590 /* regexec searches for a given pattern, specified by PREG, in the
5593 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5594 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5595 least NMATCH elements, and we set them to the offsets of the
5596 corresponding matched substrings.
5598 EFLAGS specifies `execution flags' which affect matching: if
5599 REG_NOTBOL is set, then ^ does not match at the beginning of the
5600 string; if REG_NOTEOL is set, then $ does not match at the end.
5602 We return 0 if we find a match and REG_NOMATCH if not. */
5605 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5606 const regex_t
*preg
;
5609 regmatch_t pmatch
[];
5613 struct re_registers regs
;
5614 regex_t private_preg
;
5615 int len
= strlen (string
);
5616 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5618 private_preg
= *preg
;
5620 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5621 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5623 /* The user has told us exactly how many registers to return
5624 information about, via `nmatch'. We have to pass that on to the
5625 matching routines. */
5626 private_preg
.regs_allocated
= REGS_FIXED
;
5630 regs
.num_regs
= nmatch
;
5631 regs
.start
= TALLOC (nmatch
, regoff_t
);
5632 regs
.end
= TALLOC (nmatch
, regoff_t
);
5633 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5634 return (int) REG_NOMATCH
;
5637 /* Perform the searching operation. */
5638 ret
= re_search (&private_preg
, string
, len
,
5639 /* start: */ 0, /* range: */ len
,
5640 want_reg_info
? ®s
: (struct re_registers
*) 0);
5642 /* Copy the register information to the POSIX structure. */
5649 for (r
= 0; r
< nmatch
; r
++)
5651 pmatch
[r
].rm_so
= regs
.start
[r
];
5652 pmatch
[r
].rm_eo
= regs
.end
[r
];
5656 /* If we needed the temporary register info, free the space now. */
5661 /* We want zero return to mean success, unlike `re_search'. */
5662 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5666 /* Returns a message corresponding to an error code, ERRCODE, returned
5667 from either regcomp or regexec. We don't use PREG here. */
5670 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5672 const regex_t
*preg
;
5680 || errcode
>= (int) (sizeof (re_error_msgid
)
5681 / sizeof (re_error_msgid
[0])))
5682 /* Only error codes returned by the rest of the code should be passed
5683 to this routine. If we are given anything else, or if other regex
5684 code generates an invalid error code, then the program has a bug.
5685 Dump core so we can fix it. */
5688 msg
= gettext (re_error_msgid
[errcode
]);
5690 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5692 if (errbuf_size
!= 0)
5694 if (msg_size
> errbuf_size
)
5696 #if defined HAVE_MEMPCPY || defined _LIBC
5697 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
5699 memcpy (errbuf
, msg
, errbuf_size
- 1);
5700 errbuf
[errbuf_size
- 1] = 0;
5704 memcpy (errbuf
, msg
, msg_size
);
5711 /* Free dynamically allocated space used by PREG. */
5717 if (preg
->buffer
!= NULL
)
5718 free (preg
->buffer
);
5719 preg
->buffer
= NULL
;
5721 preg
->allocated
= 0;
5724 if (preg
->fastmap
!= NULL
)
5725 free (preg
->fastmap
);
5726 preg
->fastmap
= NULL
;
5727 preg
->fastmap_accurate
= 0;
5729 if (preg
->translate
!= NULL
)
5730 free (preg
->translate
);
5731 preg
->translate
= NULL
;
5734 #endif /* not emacs */