Fix tan missing underflows (bug 16517).
[glibc.git] / sysdeps / ieee754 / ldbl-96 / k_tanl.c
blobae6821d9844fd134c576068bd94b0acecadbe290
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under
18 the following terms:
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, see
32 <http://www.gnu.org/licenses/>. */
34 /* __kernel_tanl( x, y, k )
35 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37 * Input y is the tail of x.
38 * Input k indicates whether tan (if k=1) or
39 * -1/tan (if k= -1) is returned.
41 * Algorithm
42 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43 * 2. if x < 2^-33, return x with inexact if x!=0.
44 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45 * on [0,0.67433].
47 * Note: tan(x+y) = tan(x) + tan'(x)*y
48 * ~ tan(x) + (1+x*x)*y
49 * Therefore, for better accuracy in computing tan(x+y), let
50 * r = x^3 * R(x^2)
51 * then
52 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
54 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
59 #include <float.h>
60 #include <math.h>
61 #include <math_private.h>
62 static const long double
63 one = 1.0L,
64 pio4hi = 0xc.90fdaa22168c235p-4L,
65 pio4lo = -0x3.b399d747f23e32ecp-68L,
67 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
68 0 <= x <= 0.6743316650390625
69 Peak relative error 8.0e-36 */
70 TH = 3.333333333333333333333333333333333333333E-1L,
71 T0 = -1.813014711743583437742363284336855889393E7L,
72 T1 = 1.320767960008972224312740075083259247618E6L,
73 T2 = -2.626775478255838182468651821863299023956E4L,
74 T3 = 1.764573356488504935415411383687150199315E2L,
75 T4 = -3.333267763822178690794678978979803526092E-1L,
77 U0 = -1.359761033807687578306772463253710042010E8L,
78 U1 = 6.494370630656893175666729313065113194784E7L,
79 U2 = -4.180787672237927475505536849168729386782E6L,
80 U3 = 8.031643765106170040139966622980914621521E4L,
81 U4 = -5.323131271912475695157127875560667378597E2L;
82 /* 1.000000000000000000000000000000000000000E0 */
85 long double
86 __kernel_tanl (long double x, long double y, int iy)
88 long double z, r, v, w, s;
89 long double absx = fabsl (x);
90 int sign;
92 if (absx < 0x1p-33)
94 if ((int) x == 0)
95 { /* generate inexact */
96 if (x == 0 && iy == -1)
97 return one / fabsl (x);
98 else if (iy == 1)
100 if (absx < LDBL_MIN)
102 long double force_underflow = x * x;
103 math_force_eval (force_underflow);
105 return x;
107 else
108 return -one / x;
111 if (absx >= 0.6743316650390625L)
113 if (signbit (x))
115 x = -x;
116 y = -y;
117 sign = -1;
119 else
120 sign = 1;
121 z = pio4hi - x;
122 w = pio4lo - y;
123 x = z + w;
124 y = 0.0;
126 z = x * x;
127 r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
128 v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
129 r = r / v;
131 s = z * x;
132 r = y + z * (s * r + y);
133 r += TH * s;
134 w = x + r;
135 if (absx >= 0.6743316650390625L)
137 v = (long double) iy;
138 w = (v - 2.0 * (x - (w * w / (w + v) - r)));
139 if (sign < 0)
140 w = -w;
141 return w;
143 if (iy == 1)
144 return w;
145 else
146 return -1.0 / (x + r);