arm: handle unaligned ABS relocs
[glibc.git] / malloc / malloc.c
blob373e063fc3814ca9a69f117f81ef7370a6403ddd
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2009, 2010, 2011, 2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, see <http://www.gnu.org/licenses/>. */
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
25 There have been substantial changesmade after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
29 * Version ptmalloc2-20011215
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
33 * Quickstart
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
44 * Why use this malloc?
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
50 allocator for malloc-intensive programs.
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
71 * Contents, described in more detail in "description of public routines" below.
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
76 free(void* p);
77 realloc(void* p, size_t n);
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
83 Additional functions:
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
86 pvalloc(size_t n);
87 cfree(void* p);
88 malloc_trim(size_t pad);
89 malloc_usable_size(void* p);
90 malloc_stats();
92 * Vital statistics:
94 Supported pointer representation: 4 or 8 bytes
95 Supported size_t representation: 4 or 8 bytes
96 Note that size_t is allowed to be 4 bytes even if pointers are 8.
97 You can adjust this by defining INTERNAL_SIZE_T
99 Alignment: 2 * sizeof(size_t) (default)
100 (i.e., 8 byte alignment with 4byte size_t). This suffices for
101 nearly all current machines and C compilers. However, you can
102 define MALLOC_ALIGNMENT to be wider than this if necessary.
104 Minimum overhead per allocated chunk: 4 or 8 bytes
105 Each malloced chunk has a hidden word of overhead holding size
106 and status information.
108 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
109 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
111 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
112 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
113 needed; 4 (8) for a trailing size field and 8 (16) bytes for
114 free list pointers. Thus, the minimum allocatable size is
115 16/24/32 bytes.
117 Even a request for zero bytes (i.e., malloc(0)) returns a
118 pointer to something of the minimum allocatable size.
120 The maximum overhead wastage (i.e., number of extra bytes
121 allocated than were requested in malloc) is less than or equal
122 to the minimum size, except for requests >= mmap_threshold that
123 are serviced via mmap(), where the worst case wastage is 2 *
124 sizeof(size_t) bytes plus the remainder from a system page (the
125 minimal mmap unit); typically 4096 or 8192 bytes.
127 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
128 8-byte size_t: 2^64 minus about two pages
130 It is assumed that (possibly signed) size_t values suffice to
131 represent chunk sizes. `Possibly signed' is due to the fact
132 that `size_t' may be defined on a system as either a signed or
133 an unsigned type. The ISO C standard says that it must be
134 unsigned, but a few systems are known not to adhere to this.
135 Additionally, even when size_t is unsigned, sbrk (which is by
136 default used to obtain memory from system) accepts signed
137 arguments, and may not be able to handle size_t-wide arguments
138 with negative sign bit. Generally, values that would
139 appear as negative after accounting for overhead and alignment
140 are supported only via mmap(), which does not have this
141 limitation.
143 Requests for sizes outside the allowed range will perform an optional
144 failure action and then return null. (Requests may also
145 also fail because a system is out of memory.)
147 Thread-safety: thread-safe
149 Compliance: I believe it is compliant with the 1997 Single Unix Specification
150 Also SVID/XPG, ANSI C, and probably others as well.
152 * Synopsis of compile-time options:
154 People have reported using previous versions of this malloc on all
155 versions of Unix, sometimes by tweaking some of the defines
156 below. It has been tested most extensively on Solaris and Linux.
157 People also report using it in stand-alone embedded systems.
159 The implementation is in straight, hand-tuned ANSI C. It is not
160 at all modular. (Sorry!) It uses a lot of macros. To be at all
161 usable, this code should be compiled using an optimizing compiler
162 (for example gcc -O3) that can simplify expressions and control
163 paths. (FAQ: some macros import variables as arguments rather than
164 declare locals because people reported that some debuggers
165 otherwise get confused.)
167 OPTION DEFAULT VALUE
169 Compilation Environment options:
171 HAVE_MREMAP 0 unless linux defined
173 Changing default word sizes:
175 INTERNAL_SIZE_T size_t
176 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
177 __alignof__ (long double))
179 Configuration and functionality options:
181 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
182 USE_MALLOC_LOCK NOT defined
183 MALLOC_DEBUG NOT defined
184 REALLOC_ZERO_BYTES_FREES 1
185 TRIM_FASTBINS 0
187 Options for customizing MORECORE:
189 MORECORE sbrk
190 MORECORE_FAILURE -1
191 MORECORE_CONTIGUOUS 1
192 MORECORE_CANNOT_TRIM NOT defined
193 MORECORE_CLEARS 1
194 MMAP_AS_MORECORE_SIZE (1024 * 1024)
196 Tuning options that are also dynamically changeable via mallopt:
198 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
199 DEFAULT_TRIM_THRESHOLD 128 * 1024
200 DEFAULT_TOP_PAD 0
201 DEFAULT_MMAP_THRESHOLD 128 * 1024
202 DEFAULT_MMAP_MAX 65536
204 There are several other #defined constants and macros that you
205 probably don't want to touch unless you are extending or adapting malloc. */
208 void* is the pointer type that malloc should say it returns
211 #ifndef void
212 #define void void
213 #endif /*void*/
215 #include <stddef.h> /* for size_t */
216 #include <stdlib.h> /* for getenv(), abort() */
218 #include <malloc-machine.h>
220 #include <atomic.h>
221 #include <_itoa.h>
222 #include <bits/wordsize.h>
223 #include <sys/sysinfo.h>
225 #include <ldsodefs.h>
227 #include <unistd.h>
228 #include <stdio.h> /* needed for malloc_stats */
229 #include <errno.h>
231 #include <shlib-compat.h>
233 /* For uintptr_t. */
234 #include <stdint.h>
236 /* For va_arg, va_start, va_end. */
237 #include <stdarg.h>
241 Debugging:
243 Because freed chunks may be overwritten with bookkeeping fields, this
244 malloc will often die when freed memory is overwritten by user
245 programs. This can be very effective (albeit in an annoying way)
246 in helping track down dangling pointers.
248 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
249 enabled that will catch more memory errors. You probably won't be
250 able to make much sense of the actual assertion errors, but they
251 should help you locate incorrectly overwritten memory. The checking
252 is fairly extensive, and will slow down execution
253 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
254 will attempt to check every non-mmapped allocated and free chunk in
255 the course of computing the summmaries. (By nature, mmapped regions
256 cannot be checked very much automatically.)
258 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
259 this code. The assertions in the check routines spell out in more
260 detail the assumptions and invariants underlying the algorithms.
262 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
263 checking that all accesses to malloced memory stay within their
264 bounds. However, there are several add-ons and adaptations of this
265 or other mallocs available that do this.
268 #ifdef NDEBUG
269 # define assert(expr) ((void) 0)
270 #else
271 # define assert(expr) \
272 ((expr) \
273 ? ((void) 0) \
274 : __malloc_assert (__STRING (expr), __FILE__, __LINE__, __func__))
276 extern const char *__progname;
278 static void
279 __malloc_assert (const char *assertion, const char *file, unsigned int line,
280 const char *function)
282 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
283 __progname, __progname[0] ? ": " : "",
284 file, line,
285 function ? function : "", function ? ": " : "",
286 assertion);
287 fflush (stderr);
288 abort ();
290 #endif
294 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
295 of chunk sizes.
297 The default version is the same as size_t.
299 While not strictly necessary, it is best to define this as an
300 unsigned type, even if size_t is a signed type. This may avoid some
301 artificial size limitations on some systems.
303 On a 64-bit machine, you may be able to reduce malloc overhead by
304 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
305 expense of not being able to handle more than 2^32 of malloced
306 space. If this limitation is acceptable, you are encouraged to set
307 this unless you are on a platform requiring 16byte alignments. In
308 this case the alignment requirements turn out to negate any
309 potential advantages of decreasing size_t word size.
311 Implementors: Beware of the possible combinations of:
312 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
313 and might be the same width as int or as long
314 - size_t might have different width and signedness as INTERNAL_SIZE_T
315 - int and long might be 32 or 64 bits, and might be the same width
316 To deal with this, most comparisons and difference computations
317 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
318 aware of the fact that casting an unsigned int to a wider long does
319 not sign-extend. (This also makes checking for negative numbers
320 awkward.) Some of these casts result in harmless compiler warnings
321 on some systems.
324 #ifndef INTERNAL_SIZE_T
325 #define INTERNAL_SIZE_T size_t
326 #endif
328 /* The corresponding word size */
329 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
333 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
334 It must be a power of two at least 2 * SIZE_SZ, even on machines
335 for which smaller alignments would suffice. It may be defined as
336 larger than this though. Note however that code and data structures
337 are optimized for the case of 8-byte alignment.
341 #ifndef MALLOC_ALIGNMENT
342 # if !SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_16)
343 /* This is the correct definition when there is no past ABI to constrain it.
345 Among configurations with a past ABI constraint, it differs from
346 2*SIZE_SZ only on powerpc32. For the time being, changing this is
347 causing more compatibility problems due to malloc_get_state and
348 malloc_set_state than will returning blocks not adequately aligned for
349 long double objects under -mlong-double-128. */
351 # define MALLOC_ALIGNMENT (2 * SIZE_SZ < __alignof__ (long double) \
352 ? __alignof__ (long double) : 2 * SIZE_SZ)
353 # else
354 # define MALLOC_ALIGNMENT (2 * SIZE_SZ)
355 # endif
356 #endif
358 /* The corresponding bit mask value */
359 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
364 REALLOC_ZERO_BYTES_FREES should be set if a call to
365 realloc with zero bytes should be the same as a call to free.
366 This is required by the C standard. Otherwise, since this malloc
367 returns a unique pointer for malloc(0), so does realloc(p, 0).
370 #ifndef REALLOC_ZERO_BYTES_FREES
371 #define REALLOC_ZERO_BYTES_FREES 1
372 #endif
375 TRIM_FASTBINS controls whether free() of a very small chunk can
376 immediately lead to trimming. Setting to true (1) can reduce memory
377 footprint, but will almost always slow down programs that use a lot
378 of small chunks.
380 Define this only if you are willing to give up some speed to more
381 aggressively reduce system-level memory footprint when releasing
382 memory in programs that use many small chunks. You can get
383 essentially the same effect by setting MXFAST to 0, but this can
384 lead to even greater slowdowns in programs using many small chunks.
385 TRIM_FASTBINS is an in-between compile-time option, that disables
386 only those chunks bordering topmost memory from being placed in
387 fastbins.
390 #ifndef TRIM_FASTBINS
391 #define TRIM_FASTBINS 0
392 #endif
395 /* Definition for getting more memory from the OS. */
396 #define MORECORE (*__morecore)
397 #define MORECORE_FAILURE 0
398 void * __default_morecore (ptrdiff_t);
399 void *(*__morecore)(ptrdiff_t) = __default_morecore;
402 #include <string.h>
405 /* Force a value to be in a register and stop the compiler referring
406 to the source (mostly memory location) again. */
407 #define force_reg(val) \
408 ({ __typeof (val) _v; asm ("" : "=r" (_v) : "0" (val)); _v; })
412 MORECORE-related declarations. By default, rely on sbrk
417 MORECORE is the name of the routine to call to obtain more memory
418 from the system. See below for general guidance on writing
419 alternative MORECORE functions, as well as a version for WIN32 and a
420 sample version for pre-OSX macos.
423 #ifndef MORECORE
424 #define MORECORE sbrk
425 #endif
428 MORECORE_FAILURE is the value returned upon failure of MORECORE
429 as well as mmap. Since it cannot be an otherwise valid memory address,
430 and must reflect values of standard sys calls, you probably ought not
431 try to redefine it.
434 #ifndef MORECORE_FAILURE
435 #define MORECORE_FAILURE (-1)
436 #endif
439 If MORECORE_CONTIGUOUS is true, take advantage of fact that
440 consecutive calls to MORECORE with positive arguments always return
441 contiguous increasing addresses. This is true of unix sbrk. Even
442 if not defined, when regions happen to be contiguous, malloc will
443 permit allocations spanning regions obtained from different
444 calls. But defining this when applicable enables some stronger
445 consistency checks and space efficiencies.
448 #ifndef MORECORE_CONTIGUOUS
449 #define MORECORE_CONTIGUOUS 1
450 #endif
453 Define MORECORE_CANNOT_TRIM if your version of MORECORE
454 cannot release space back to the system when given negative
455 arguments. This is generally necessary only if you are using
456 a hand-crafted MORECORE function that cannot handle negative arguments.
459 /* #define MORECORE_CANNOT_TRIM */
461 /* MORECORE_CLEARS (default 1)
462 The degree to which the routine mapped to MORECORE zeroes out
463 memory: never (0), only for newly allocated space (1) or always
464 (2). The distinction between (1) and (2) is necessary because on
465 some systems, if the application first decrements and then
466 increments the break value, the contents of the reallocated space
467 are unspecified.
470 #ifndef MORECORE_CLEARS
471 #define MORECORE_CLEARS 1
472 #endif
476 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
477 sbrk fails, and mmap is used as a backup. The value must be a
478 multiple of page size. This backup strategy generally applies only
479 when systems have "holes" in address space, so sbrk cannot perform
480 contiguous expansion, but there is still space available on system.
481 On systems for which this is known to be useful (i.e. most linux
482 kernels), this occurs only when programs allocate huge amounts of
483 memory. Between this, and the fact that mmap regions tend to be
484 limited, the size should be large, to avoid too many mmap calls and
485 thus avoid running out of kernel resources. */
487 #ifndef MMAP_AS_MORECORE_SIZE
488 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
489 #endif
492 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
493 large blocks. This is currently only possible on Linux with
494 kernel versions newer than 1.3.77.
497 #ifndef HAVE_MREMAP
498 #ifdef linux
499 #define HAVE_MREMAP 1
500 #else
501 #define HAVE_MREMAP 0
502 #endif
504 #endif /* HAVE_MREMAP */
508 This version of malloc supports the standard SVID/XPG mallinfo
509 routine that returns a struct containing usage properties and
510 statistics. It should work on any SVID/XPG compliant system that has
511 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
512 install such a thing yourself, cut out the preliminary declarations
513 as described above and below and save them in a malloc.h file. But
514 there's no compelling reason to bother to do this.)
516 The main declaration needed is the mallinfo struct that is returned
517 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
518 bunch of fields that are not even meaningful in this version of
519 malloc. These fields are are instead filled by mallinfo() with
520 other numbers that might be of interest.
524 /* ---------- description of public routines ------------ */
527 malloc(size_t n)
528 Returns a pointer to a newly allocated chunk of at least n bytes, or null
529 if no space is available. Additionally, on failure, errno is
530 set to ENOMEM on ANSI C systems.
532 If n is zero, malloc returns a minumum-sized chunk. (The minimum
533 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
534 systems.) On most systems, size_t is an unsigned type, so calls
535 with negative arguments are interpreted as requests for huge amounts
536 of space, which will often fail. The maximum supported value of n
537 differs across systems, but is in all cases less than the maximum
538 representable value of a size_t.
540 void* __libc_malloc(size_t);
541 libc_hidden_proto (__libc_malloc)
544 free(void* p)
545 Releases the chunk of memory pointed to by p, that had been previously
546 allocated using malloc or a related routine such as realloc.
547 It has no effect if p is null. It can have arbitrary (i.e., bad!)
548 effects if p has already been freed.
550 Unless disabled (using mallopt), freeing very large spaces will
551 when possible, automatically trigger operations that give
552 back unused memory to the system, thus reducing program footprint.
554 void __libc_free(void*);
555 libc_hidden_proto (__libc_free)
558 calloc(size_t n_elements, size_t element_size);
559 Returns a pointer to n_elements * element_size bytes, with all locations
560 set to zero.
562 void* __libc_calloc(size_t, size_t);
565 realloc(void* p, size_t n)
566 Returns a pointer to a chunk of size n that contains the same data
567 as does chunk p up to the minimum of (n, p's size) bytes, or null
568 if no space is available.
570 The returned pointer may or may not be the same as p. The algorithm
571 prefers extending p when possible, otherwise it employs the
572 equivalent of a malloc-copy-free sequence.
574 If p is null, realloc is equivalent to malloc.
576 If space is not available, realloc returns null, errno is set (if on
577 ANSI) and p is NOT freed.
579 if n is for fewer bytes than already held by p, the newly unused
580 space is lopped off and freed if possible. Unless the #define
581 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
582 zero (re)allocates a minimum-sized chunk.
584 Large chunks that were internally obtained via mmap will always
585 be reallocated using malloc-copy-free sequences unless
586 the system supports MREMAP (currently only linux).
588 The old unix realloc convention of allowing the last-free'd chunk
589 to be used as an argument to realloc is not supported.
591 void* __libc_realloc(void*, size_t);
592 libc_hidden_proto (__libc_realloc)
595 memalign(size_t alignment, size_t n);
596 Returns a pointer to a newly allocated chunk of n bytes, aligned
597 in accord with the alignment argument.
599 The alignment argument should be a power of two. If the argument is
600 not a power of two, the nearest greater power is used.
601 8-byte alignment is guaranteed by normal malloc calls, so don't
602 bother calling memalign with an argument of 8 or less.
604 Overreliance on memalign is a sure way to fragment space.
606 void* __libc_memalign(size_t, size_t);
607 libc_hidden_proto (__libc_memalign)
610 valloc(size_t n);
611 Equivalent to memalign(pagesize, n), where pagesize is the page
612 size of the system. If the pagesize is unknown, 4096 is used.
614 void* __libc_valloc(size_t);
619 mallopt(int parameter_number, int parameter_value)
620 Sets tunable parameters The format is to provide a
621 (parameter-number, parameter-value) pair. mallopt then sets the
622 corresponding parameter to the argument value if it can (i.e., so
623 long as the value is meaningful), and returns 1 if successful else
624 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
625 normally defined in malloc.h. Only one of these (M_MXFAST) is used
626 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
627 so setting them has no effect. But this malloc also supports four
628 other options in mallopt. See below for details. Briefly, supported
629 parameters are as follows (listed defaults are for "typical"
630 configurations).
632 Symbol param # default allowed param values
633 M_MXFAST 1 64 0-80 (0 disables fastbins)
634 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
635 M_TOP_PAD -2 0 any
636 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
637 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
639 int __libc_mallopt(int, int);
640 libc_hidden_proto (__libc_mallopt)
644 mallinfo()
645 Returns (by copy) a struct containing various summary statistics:
647 arena: current total non-mmapped bytes allocated from system
648 ordblks: the number of free chunks
649 smblks: the number of fastbin blocks (i.e., small chunks that
650 have been freed but not use resused or consolidated)
651 hblks: current number of mmapped regions
652 hblkhd: total bytes held in mmapped regions
653 usmblks: the maximum total allocated space. This will be greater
654 than current total if trimming has occurred.
655 fsmblks: total bytes held in fastbin blocks
656 uordblks: current total allocated space (normal or mmapped)
657 fordblks: total free space
658 keepcost: the maximum number of bytes that could ideally be released
659 back to system via malloc_trim. ("ideally" means that
660 it ignores page restrictions etc.)
662 Because these fields are ints, but internal bookkeeping may
663 be kept as longs, the reported values may wrap around zero and
664 thus be inaccurate.
666 struct mallinfo __libc_mallinfo(void);
670 pvalloc(size_t n);
671 Equivalent to valloc(minimum-page-that-holds(n)), that is,
672 round up n to nearest pagesize.
674 void* __libc_pvalloc(size_t);
677 malloc_trim(size_t pad);
679 If possible, gives memory back to the system (via negative
680 arguments to sbrk) if there is unused memory at the `high' end of
681 the malloc pool. You can call this after freeing large blocks of
682 memory to potentially reduce the system-level memory requirements
683 of a program. However, it cannot guarantee to reduce memory. Under
684 some allocation patterns, some large free blocks of memory will be
685 locked between two used chunks, so they cannot be given back to
686 the system.
688 The `pad' argument to malloc_trim represents the amount of free
689 trailing space to leave untrimmed. If this argument is zero,
690 only the minimum amount of memory to maintain internal data
691 structures will be left (one page or less). Non-zero arguments
692 can be supplied to maintain enough trailing space to service
693 future expected allocations without having to re-obtain memory
694 from the system.
696 Malloc_trim returns 1 if it actually released any memory, else 0.
697 On systems that do not support "negative sbrks", it will always
698 return 0.
700 int __malloc_trim(size_t);
703 malloc_usable_size(void* p);
705 Returns the number of bytes you can actually use in
706 an allocated chunk, which may be more than you requested (although
707 often not) due to alignment and minimum size constraints.
708 You can use this many bytes without worrying about
709 overwriting other allocated objects. This is not a particularly great
710 programming practice. malloc_usable_size can be more useful in
711 debugging and assertions, for example:
713 p = malloc(n);
714 assert(malloc_usable_size(p) >= 256);
717 size_t __malloc_usable_size(void*);
720 malloc_stats();
721 Prints on stderr the amount of space obtained from the system (both
722 via sbrk and mmap), the maximum amount (which may be more than
723 current if malloc_trim and/or munmap got called), and the current
724 number of bytes allocated via malloc (or realloc, etc) but not yet
725 freed. Note that this is the number of bytes allocated, not the
726 number requested. It will be larger than the number requested
727 because of alignment and bookkeeping overhead. Because it includes
728 alignment wastage as being in use, this figure may be greater than
729 zero even when no user-level chunks are allocated.
731 The reported current and maximum system memory can be inaccurate if
732 a program makes other calls to system memory allocation functions
733 (normally sbrk) outside of malloc.
735 malloc_stats prints only the most commonly interesting statistics.
736 More information can be obtained by calling mallinfo.
739 void __malloc_stats(void);
742 malloc_get_state(void);
744 Returns the state of all malloc variables in an opaque data
745 structure.
747 void* __malloc_get_state(void);
750 malloc_set_state(void* state);
752 Restore the state of all malloc variables from data obtained with
753 malloc_get_state().
755 int __malloc_set_state(void*);
758 posix_memalign(void **memptr, size_t alignment, size_t size);
760 POSIX wrapper like memalign(), checking for validity of size.
762 int __posix_memalign(void **, size_t, size_t);
764 /* mallopt tuning options */
767 M_MXFAST is the maximum request size used for "fastbins", special bins
768 that hold returned chunks without consolidating their spaces. This
769 enables future requests for chunks of the same size to be handled
770 very quickly, but can increase fragmentation, and thus increase the
771 overall memory footprint of a program.
773 This malloc manages fastbins very conservatively yet still
774 efficiently, so fragmentation is rarely a problem for values less
775 than or equal to the default. The maximum supported value of MXFAST
776 is 80. You wouldn't want it any higher than this anyway. Fastbins
777 are designed especially for use with many small structs, objects or
778 strings -- the default handles structs/objects/arrays with sizes up
779 to 8 4byte fields, or small strings representing words, tokens,
780 etc. Using fastbins for larger objects normally worsens
781 fragmentation without improving speed.
783 M_MXFAST is set in REQUEST size units. It is internally used in
784 chunksize units, which adds padding and alignment. You can reduce
785 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
786 algorithm to be a closer approximation of fifo-best-fit in all cases,
787 not just for larger requests, but will generally cause it to be
788 slower.
792 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
793 #ifndef M_MXFAST
794 #define M_MXFAST 1
795 #endif
797 #ifndef DEFAULT_MXFAST
798 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
799 #endif
803 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
804 to keep before releasing via malloc_trim in free().
806 Automatic trimming is mainly useful in long-lived programs.
807 Because trimming via sbrk can be slow on some systems, and can
808 sometimes be wasteful (in cases where programs immediately
809 afterward allocate more large chunks) the value should be high
810 enough so that your overall system performance would improve by
811 releasing this much memory.
813 The trim threshold and the mmap control parameters (see below)
814 can be traded off with one another. Trimming and mmapping are
815 two different ways of releasing unused memory back to the
816 system. Between these two, it is often possible to keep
817 system-level demands of a long-lived program down to a bare
818 minimum. For example, in one test suite of sessions measuring
819 the XF86 X server on Linux, using a trim threshold of 128K and a
820 mmap threshold of 192K led to near-minimal long term resource
821 consumption.
823 If you are using this malloc in a long-lived program, it should
824 pay to experiment with these values. As a rough guide, you
825 might set to a value close to the average size of a process
826 (program) running on your system. Releasing this much memory
827 would allow such a process to run in memory. Generally, it's
828 worth it to tune for trimming rather tham memory mapping when a
829 program undergoes phases where several large chunks are
830 allocated and released in ways that can reuse each other's
831 storage, perhaps mixed with phases where there are no such
832 chunks at all. And in well-behaved long-lived programs,
833 controlling release of large blocks via trimming versus mapping
834 is usually faster.
836 However, in most programs, these parameters serve mainly as
837 protection against the system-level effects of carrying around
838 massive amounts of unneeded memory. Since frequent calls to
839 sbrk, mmap, and munmap otherwise degrade performance, the default
840 parameters are set to relatively high values that serve only as
841 safeguards.
843 The trim value It must be greater than page size to have any useful
844 effect. To disable trimming completely, you can set to
845 (unsigned long)(-1)
847 Trim settings interact with fastbin (MXFAST) settings: Unless
848 TRIM_FASTBINS is defined, automatic trimming never takes place upon
849 freeing a chunk with size less than or equal to MXFAST. Trimming is
850 instead delayed until subsequent freeing of larger chunks. However,
851 you can still force an attempted trim by calling malloc_trim.
853 Also, trimming is not generally possible in cases where
854 the main arena is obtained via mmap.
856 Note that the trick some people use of mallocing a huge space and
857 then freeing it at program startup, in an attempt to reserve system
858 memory, doesn't have the intended effect under automatic trimming,
859 since that memory will immediately be returned to the system.
862 #define M_TRIM_THRESHOLD -1
864 #ifndef DEFAULT_TRIM_THRESHOLD
865 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
866 #endif
869 M_TOP_PAD is the amount of extra `padding' space to allocate or
870 retain whenever sbrk is called. It is used in two ways internally:
872 * When sbrk is called to extend the top of the arena to satisfy
873 a new malloc request, this much padding is added to the sbrk
874 request.
876 * When malloc_trim is called automatically from free(),
877 it is used as the `pad' argument.
879 In both cases, the actual amount of padding is rounded
880 so that the end of the arena is always a system page boundary.
882 The main reason for using padding is to avoid calling sbrk so
883 often. Having even a small pad greatly reduces the likelihood
884 that nearly every malloc request during program start-up (or
885 after trimming) will invoke sbrk, which needlessly wastes
886 time.
888 Automatic rounding-up to page-size units is normally sufficient
889 to avoid measurable overhead, so the default is 0. However, in
890 systems where sbrk is relatively slow, it can pay to increase
891 this value, at the expense of carrying around more memory than
892 the program needs.
895 #define M_TOP_PAD -2
897 #ifndef DEFAULT_TOP_PAD
898 #define DEFAULT_TOP_PAD (0)
899 #endif
902 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
903 adjusted MMAP_THRESHOLD.
906 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
907 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
908 #endif
910 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
911 /* For 32-bit platforms we cannot increase the maximum mmap
912 threshold much because it is also the minimum value for the
913 maximum heap size and its alignment. Going above 512k (i.e., 1M
914 for new heaps) wastes too much address space. */
915 # if __WORDSIZE == 32
916 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
917 # else
918 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
919 # endif
920 #endif
923 M_MMAP_THRESHOLD is the request size threshold for using mmap()
924 to service a request. Requests of at least this size that cannot
925 be allocated using already-existing space will be serviced via mmap.
926 (If enough normal freed space already exists it is used instead.)
928 Using mmap segregates relatively large chunks of memory so that
929 they can be individually obtained and released from the host
930 system. A request serviced through mmap is never reused by any
931 other request (at least not directly; the system may just so
932 happen to remap successive requests to the same locations).
934 Segregating space in this way has the benefits that:
936 1. Mmapped space can ALWAYS be individually released back
937 to the system, which helps keep the system level memory
938 demands of a long-lived program low.
939 2. Mapped memory can never become `locked' between
940 other chunks, as can happen with normally allocated chunks, which
941 means that even trimming via malloc_trim would not release them.
942 3. On some systems with "holes" in address spaces, mmap can obtain
943 memory that sbrk cannot.
945 However, it has the disadvantages that:
947 1. The space cannot be reclaimed, consolidated, and then
948 used to service later requests, as happens with normal chunks.
949 2. It can lead to more wastage because of mmap page alignment
950 requirements
951 3. It causes malloc performance to be more dependent on host
952 system memory management support routines which may vary in
953 implementation quality and may impose arbitrary
954 limitations. Generally, servicing a request via normal
955 malloc steps is faster than going through a system's mmap.
957 The advantages of mmap nearly always outweigh disadvantages for
958 "large" chunks, but the value of "large" varies across systems. The
959 default is an empirically derived value that works well in most
960 systems.
963 Update in 2006:
964 The above was written in 2001. Since then the world has changed a lot.
965 Memory got bigger. Applications got bigger. The virtual address space
966 layout in 32 bit linux changed.
968 In the new situation, brk() and mmap space is shared and there are no
969 artificial limits on brk size imposed by the kernel. What is more,
970 applications have started using transient allocations larger than the
971 128Kb as was imagined in 2001.
973 The price for mmap is also high now; each time glibc mmaps from the
974 kernel, the kernel is forced to zero out the memory it gives to the
975 application. Zeroing memory is expensive and eats a lot of cache and
976 memory bandwidth. This has nothing to do with the efficiency of the
977 virtual memory system, by doing mmap the kernel just has no choice but
978 to zero.
980 In 2001, the kernel had a maximum size for brk() which was about 800
981 megabytes on 32 bit x86, at that point brk() would hit the first
982 mmaped shared libaries and couldn't expand anymore. With current 2.6
983 kernels, the VA space layout is different and brk() and mmap
984 both can span the entire heap at will.
986 Rather than using a static threshold for the brk/mmap tradeoff,
987 we are now using a simple dynamic one. The goal is still to avoid
988 fragmentation. The old goals we kept are
989 1) try to get the long lived large allocations to use mmap()
990 2) really large allocations should always use mmap()
991 and we're adding now:
992 3) transient allocations should use brk() to avoid forcing the kernel
993 having to zero memory over and over again
995 The implementation works with a sliding threshold, which is by default
996 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
997 out at 128Kb as per the 2001 default.
999 This allows us to satisfy requirement 1) under the assumption that long
1000 lived allocations are made early in the process' lifespan, before it has
1001 started doing dynamic allocations of the same size (which will
1002 increase the threshold).
1004 The upperbound on the threshold satisfies requirement 2)
1006 The threshold goes up in value when the application frees memory that was
1007 allocated with the mmap allocator. The idea is that once the application
1008 starts freeing memory of a certain size, it's highly probable that this is
1009 a size the application uses for transient allocations. This estimator
1010 is there to satisfy the new third requirement.
1014 #define M_MMAP_THRESHOLD -3
1016 #ifndef DEFAULT_MMAP_THRESHOLD
1017 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1018 #endif
1021 M_MMAP_MAX is the maximum number of requests to simultaneously
1022 service using mmap. This parameter exists because
1023 some systems have a limited number of internal tables for
1024 use by mmap, and using more than a few of them may degrade
1025 performance.
1027 The default is set to a value that serves only as a safeguard.
1028 Setting to 0 disables use of mmap for servicing large requests.
1031 #define M_MMAP_MAX -4
1033 #ifndef DEFAULT_MMAP_MAX
1034 #define DEFAULT_MMAP_MAX (65536)
1035 #endif
1037 #include <malloc.h>
1039 #ifndef RETURN_ADDRESS
1040 #define RETURN_ADDRESS(X_) (NULL)
1041 #endif
1043 /* On some platforms we can compile internal, not exported functions better.
1044 Let the environment provide a macro and define it to be empty if it
1045 is not available. */
1046 #ifndef internal_function
1047 # define internal_function
1048 #endif
1050 /* Forward declarations. */
1051 struct malloc_chunk;
1052 typedef struct malloc_chunk* mchunkptr;
1054 /* Internal routines. */
1056 static void* _int_malloc(mstate, size_t);
1057 static void _int_free(mstate, mchunkptr, int);
1058 static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1059 INTERNAL_SIZE_T);
1060 static void* _int_memalign(mstate, size_t, size_t);
1061 static void* _int_valloc(mstate, size_t);
1062 static void* _int_pvalloc(mstate, size_t);
1063 static void malloc_printerr(int action, const char *str, void *ptr);
1065 static void* internal_function mem2mem_check(void *p, size_t sz);
1066 static int internal_function top_check(void);
1067 static void internal_function munmap_chunk(mchunkptr p);
1068 #if HAVE_MREMAP
1069 static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1070 #endif
1072 static void* malloc_check(size_t sz, const void *caller);
1073 static void free_check(void* mem, const void *caller);
1074 static void* realloc_check(void* oldmem, size_t bytes,
1075 const void *caller);
1076 static void* memalign_check(size_t alignment, size_t bytes,
1077 const void *caller);
1078 /* These routines are never needed in this configuration. */
1079 static void* malloc_atfork(size_t sz, const void *caller);
1080 static void free_atfork(void* mem, const void *caller);
1083 /* ------------- Optional versions of memcopy ---------------- */
1087 Note: memcpy is ONLY invoked with non-overlapping regions,
1088 so the (usually slower) memmove is not needed.
1091 #define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
1092 #define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
1095 /* ------------------ MMAP support ------------------ */
1098 #include <fcntl.h>
1099 #include <sys/mman.h>
1101 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1102 # define MAP_ANONYMOUS MAP_ANON
1103 #endif
1105 #ifndef MAP_NORESERVE
1106 # define MAP_NORESERVE 0
1107 #endif
1109 #define MMAP(addr, size, prot, flags) \
1110 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1114 ----------------------- Chunk representations -----------------------
1119 This struct declaration is misleading (but accurate and necessary).
1120 It declares a "view" into memory allowing access to necessary
1121 fields at known offsets from a given base. See explanation below.
1124 struct malloc_chunk {
1126 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1127 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1129 struct malloc_chunk* fd; /* double links -- used only if free. */
1130 struct malloc_chunk* bk;
1132 /* Only used for large blocks: pointer to next larger size. */
1133 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1134 struct malloc_chunk* bk_nextsize;
1139 malloc_chunk details:
1141 (The following includes lightly edited explanations by Colin Plumb.)
1143 Chunks of memory are maintained using a `boundary tag' method as
1144 described in e.g., Knuth or Standish. (See the paper by Paul
1145 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1146 survey of such techniques.) Sizes of free chunks are stored both
1147 in the front of each chunk and at the end. This makes
1148 consolidating fragmented chunks into bigger chunks very fast. The
1149 size fields also hold bits representing whether chunks are free or
1150 in use.
1152 An allocated chunk looks like this:
1155 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1156 | Size of previous chunk, if allocated | |
1157 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1158 | Size of chunk, in bytes |M|P|
1159 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1160 | User data starts here... .
1162 . (malloc_usable_size() bytes) .
1164 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1165 | Size of chunk |
1166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1169 Where "chunk" is the front of the chunk for the purpose of most of
1170 the malloc code, but "mem" is the pointer that is returned to the
1171 user. "Nextchunk" is the beginning of the next contiguous chunk.
1173 Chunks always begin on even word boundries, so the mem portion
1174 (which is returned to the user) is also on an even word boundary, and
1175 thus at least double-word aligned.
1177 Free chunks are stored in circular doubly-linked lists, and look like this:
1179 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1180 | Size of previous chunk |
1181 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1182 `head:' | Size of chunk, in bytes |P|
1183 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1184 | Forward pointer to next chunk in list |
1185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1186 | Back pointer to previous chunk in list |
1187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1188 | Unused space (may be 0 bytes long) .
1191 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1192 `foot:' | Size of chunk, in bytes |
1193 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1195 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1196 chunk size (which is always a multiple of two words), is an in-use
1197 bit for the *previous* chunk. If that bit is *clear*, then the
1198 word before the current chunk size contains the previous chunk
1199 size, and can be used to find the front of the previous chunk.
1200 The very first chunk allocated always has this bit set,
1201 preventing access to non-existent (or non-owned) memory. If
1202 prev_inuse is set for any given chunk, then you CANNOT determine
1203 the size of the previous chunk, and might even get a memory
1204 addressing fault when trying to do so.
1206 Note that the `foot' of the current chunk is actually represented
1207 as the prev_size of the NEXT chunk. This makes it easier to
1208 deal with alignments etc but can be very confusing when trying
1209 to extend or adapt this code.
1211 The two exceptions to all this are
1213 1. The special chunk `top' doesn't bother using the
1214 trailing size field since there is no next contiguous chunk
1215 that would have to index off it. After initialization, `top'
1216 is forced to always exist. If it would become less than
1217 MINSIZE bytes long, it is replenished.
1219 2. Chunks allocated via mmap, which have the second-lowest-order
1220 bit M (IS_MMAPPED) set in their size fields. Because they are
1221 allocated one-by-one, each must contain its own trailing size field.
1226 ---------- Size and alignment checks and conversions ----------
1229 /* conversion from malloc headers to user pointers, and back */
1231 #define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ))
1232 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1234 /* The smallest possible chunk */
1235 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1237 /* The smallest size we can malloc is an aligned minimal chunk */
1239 #define MINSIZE \
1240 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1242 /* Check if m has acceptable alignment */
1244 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1246 #define misaligned_chunk(p) \
1247 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1248 & MALLOC_ALIGN_MASK)
1252 Check if a request is so large that it would wrap around zero when
1253 padded and aligned. To simplify some other code, the bound is made
1254 low enough so that adding MINSIZE will also not wrap around zero.
1257 #define REQUEST_OUT_OF_RANGE(req) \
1258 ((unsigned long)(req) >= \
1259 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
1261 /* pad request bytes into a usable size -- internal version */
1263 #define request2size(req) \
1264 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1265 MINSIZE : \
1266 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1268 /* Same, except also perform argument check */
1270 #define checked_request2size(req, sz) \
1271 if (REQUEST_OUT_OF_RANGE(req)) { \
1272 __set_errno (ENOMEM); \
1273 return 0; \
1275 (sz) = request2size(req);
1278 --------------- Physical chunk operations ---------------
1282 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1283 #define PREV_INUSE 0x1
1285 /* extract inuse bit of previous chunk */
1286 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1289 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1290 #define IS_MMAPPED 0x2
1292 /* check for mmap()'ed chunk */
1293 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1296 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1297 from a non-main arena. This is only set immediately before handing
1298 the chunk to the user, if necessary. */
1299 #define NON_MAIN_ARENA 0x4
1301 /* check for chunk from non-main arena */
1302 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1306 Bits to mask off when extracting size
1308 Note: IS_MMAPPED is intentionally not masked off from size field in
1309 macros for which mmapped chunks should never be seen. This should
1310 cause helpful core dumps to occur if it is tried by accident by
1311 people extending or adapting this malloc.
1313 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
1315 /* Get size, ignoring use bits */
1316 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1319 /* Ptr to next physical malloc_chunk. */
1320 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
1322 /* Ptr to previous physical malloc_chunk */
1323 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1325 /* Treat space at ptr + offset as a chunk */
1326 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1328 /* extract p's inuse bit */
1329 #define inuse(p)\
1330 ((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
1332 /* set/clear chunk as being inuse without otherwise disturbing */
1333 #define set_inuse(p)\
1334 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
1336 #define clear_inuse(p)\
1337 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
1340 /* check/set/clear inuse bits in known places */
1341 #define inuse_bit_at_offset(p, s)\
1342 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1344 #define set_inuse_bit_at_offset(p, s)\
1345 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1347 #define clear_inuse_bit_at_offset(p, s)\
1348 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1351 /* Set size at head, without disturbing its use bit */
1352 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
1354 /* Set size/use field */
1355 #define set_head(p, s) ((p)->size = (s))
1357 /* Set size at footer (only when chunk is not in use) */
1358 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1362 -------------------- Internal data structures --------------------
1364 All internal state is held in an instance of malloc_state defined
1365 below. There are no other static variables, except in two optional
1366 cases:
1367 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1368 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1369 for mmap.
1371 Beware of lots of tricks that minimize the total bookkeeping space
1372 requirements. The result is a little over 1K bytes (for 4byte
1373 pointers and size_t.)
1377 Bins
1379 An array of bin headers for free chunks. Each bin is doubly
1380 linked. The bins are approximately proportionally (log) spaced.
1381 There are a lot of these bins (128). This may look excessive, but
1382 works very well in practice. Most bins hold sizes that are
1383 unusual as malloc request sizes, but are more usual for fragments
1384 and consolidated sets of chunks, which is what these bins hold, so
1385 they can be found quickly. All procedures maintain the invariant
1386 that no consolidated chunk physically borders another one, so each
1387 chunk in a list is known to be preceeded and followed by either
1388 inuse chunks or the ends of memory.
1390 Chunks in bins are kept in size order, with ties going to the
1391 approximately least recently used chunk. Ordering isn't needed
1392 for the small bins, which all contain the same-sized chunks, but
1393 facilitates best-fit allocation for larger chunks. These lists
1394 are just sequential. Keeping them in order almost never requires
1395 enough traversal to warrant using fancier ordered data
1396 structures.
1398 Chunks of the same size are linked with the most
1399 recently freed at the front, and allocations are taken from the
1400 back. This results in LRU (FIFO) allocation order, which tends
1401 to give each chunk an equal opportunity to be consolidated with
1402 adjacent freed chunks, resulting in larger free chunks and less
1403 fragmentation.
1405 To simplify use in double-linked lists, each bin header acts
1406 as a malloc_chunk. This avoids special-casing for headers.
1407 But to conserve space and improve locality, we allocate
1408 only the fd/bk pointers of bins, and then use repositioning tricks
1409 to treat these as the fields of a malloc_chunk*.
1412 typedef struct malloc_chunk* mbinptr;
1414 /* addressing -- note that bin_at(0) does not exist */
1415 #define bin_at(m, i) \
1416 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1417 - offsetof (struct malloc_chunk, fd))
1419 /* analog of ++bin */
1420 #define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
1422 /* Reminders about list directionality within bins */
1423 #define first(b) ((b)->fd)
1424 #define last(b) ((b)->bk)
1426 /* Take a chunk off a bin list */
1427 #define unlink(P, BK, FD) { \
1428 FD = P->fd; \
1429 BK = P->bk; \
1430 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1431 malloc_printerr (check_action, "corrupted double-linked list", P); \
1432 else { \
1433 FD->bk = BK; \
1434 BK->fd = FD; \
1435 if (!in_smallbin_range (P->size) \
1436 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
1437 assert (P->fd_nextsize->bk_nextsize == P); \
1438 assert (P->bk_nextsize->fd_nextsize == P); \
1439 if (FD->fd_nextsize == NULL) { \
1440 if (P->fd_nextsize == P) \
1441 FD->fd_nextsize = FD->bk_nextsize = FD; \
1442 else { \
1443 FD->fd_nextsize = P->fd_nextsize; \
1444 FD->bk_nextsize = P->bk_nextsize; \
1445 P->fd_nextsize->bk_nextsize = FD; \
1446 P->bk_nextsize->fd_nextsize = FD; \
1448 } else { \
1449 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
1450 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
1457 Indexing
1459 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1460 8 bytes apart. Larger bins are approximately logarithmically spaced:
1462 64 bins of size 8
1463 32 bins of size 64
1464 16 bins of size 512
1465 8 bins of size 4096
1466 4 bins of size 32768
1467 2 bins of size 262144
1468 1 bin of size what's left
1470 There is actually a little bit of slop in the numbers in bin_index
1471 for the sake of speed. This makes no difference elsewhere.
1473 The bins top out around 1MB because we expect to service large
1474 requests via mmap.
1476 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1477 a valid chunk size the small bins are bumped up one.
1480 #define NBINS 128
1481 #define NSMALLBINS 64
1482 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1483 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1484 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1486 #define in_smallbin_range(sz) \
1487 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
1489 #define smallbin_index(sz) \
1490 ((SMALLBIN_WIDTH == 16 ? (((unsigned)(sz)) >> 4) : (((unsigned)(sz)) >> 3)) \
1491 + SMALLBIN_CORRECTION)
1493 #define largebin_index_32(sz) \
1494 (((((unsigned long)(sz)) >> 6) <= 38)? 56 + (((unsigned long)(sz)) >> 6): \
1495 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
1496 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
1497 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
1498 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
1499 126)
1501 #define largebin_index_32_big(sz) \
1502 (((((unsigned long)(sz)) >> 6) <= 45)? 49 + (((unsigned long)(sz)) >> 6): \
1503 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
1504 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
1505 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
1506 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
1507 126)
1509 // XXX It remains to be seen whether it is good to keep the widths of
1510 // XXX the buckets the same or whether it should be scaled by a factor
1511 // XXX of two as well.
1512 #define largebin_index_64(sz) \
1513 (((((unsigned long)(sz)) >> 6) <= 48)? 48 + (((unsigned long)(sz)) >> 6): \
1514 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
1515 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
1516 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
1517 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
1518 126)
1520 #define largebin_index(sz) \
1521 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1522 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1523 : largebin_index_32 (sz))
1525 #define bin_index(sz) \
1526 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
1530 Unsorted chunks
1532 All remainders from chunk splits, as well as all returned chunks,
1533 are first placed in the "unsorted" bin. They are then placed
1534 in regular bins after malloc gives them ONE chance to be used before
1535 binning. So, basically, the unsorted_chunks list acts as a queue,
1536 with chunks being placed on it in free (and malloc_consolidate),
1537 and taken off (to be either used or placed in bins) in malloc.
1539 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1540 does not have to be taken into account in size comparisons.
1543 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1544 #define unsorted_chunks(M) (bin_at(M, 1))
1549 The top-most available chunk (i.e., the one bordering the end of
1550 available memory) is treated specially. It is never included in
1551 any bin, is used only if no other chunk is available, and is
1552 released back to the system if it is very large (see
1553 M_TRIM_THRESHOLD). Because top initially
1554 points to its own bin with initial zero size, thus forcing
1555 extension on the first malloc request, we avoid having any special
1556 code in malloc to check whether it even exists yet. But we still
1557 need to do so when getting memory from system, so we make
1558 initial_top treat the bin as a legal but unusable chunk during the
1559 interval between initialization and the first call to
1560 sysmalloc. (This is somewhat delicate, since it relies on
1561 the 2 preceding words to be zero during this interval as well.)
1564 /* Conveniently, the unsorted bin can be used as dummy top on first call */
1565 #define initial_top(M) (unsorted_chunks(M))
1568 Binmap
1570 To help compensate for the large number of bins, a one-level index
1571 structure is used for bin-by-bin searching. `binmap' is a
1572 bitvector recording whether bins are definitely empty so they can
1573 be skipped over during during traversals. The bits are NOT always
1574 cleared as soon as bins are empty, but instead only
1575 when they are noticed to be empty during traversal in malloc.
1578 /* Conservatively use 32 bits per map word, even if on 64bit system */
1579 #define BINMAPSHIFT 5
1580 #define BITSPERMAP (1U << BINMAPSHIFT)
1581 #define BINMAPSIZE (NBINS / BITSPERMAP)
1583 #define idx2block(i) ((i) >> BINMAPSHIFT)
1584 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
1586 #define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
1587 #define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
1588 #define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
1591 Fastbins
1593 An array of lists holding recently freed small chunks. Fastbins
1594 are not doubly linked. It is faster to single-link them, and
1595 since chunks are never removed from the middles of these lists,
1596 double linking is not necessary. Also, unlike regular bins, they
1597 are not even processed in FIFO order (they use faster LIFO) since
1598 ordering doesn't much matter in the transient contexts in which
1599 fastbins are normally used.
1601 Chunks in fastbins keep their inuse bit set, so they cannot
1602 be consolidated with other free chunks. malloc_consolidate
1603 releases all chunks in fastbins and consolidates them with
1604 other free chunks.
1607 typedef struct malloc_chunk* mfastbinptr;
1608 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1610 /* offset 2 to use otherwise unindexable first 2 bins */
1611 #define fastbin_index(sz) \
1612 ((((unsigned int)(sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1615 /* The maximum fastbin request size we support */
1616 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1618 #define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
1621 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1622 that triggers automatic consolidation of possibly-surrounding
1623 fastbin chunks. This is a heuristic, so the exact value should not
1624 matter too much. It is defined at half the default trim threshold as a
1625 compromise heuristic to only attempt consolidation if it is likely
1626 to lead to trimming. However, it is not dynamically tunable, since
1627 consolidation reduces fragmentation surrounding large chunks even
1628 if trimming is not used.
1631 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1634 Since the lowest 2 bits in max_fast don't matter in size comparisons,
1635 they are used as flags.
1639 FASTCHUNKS_BIT held in max_fast indicates that there are probably
1640 some fastbin chunks. It is set true on entering a chunk into any
1641 fastbin, and cleared only in malloc_consolidate.
1643 The truth value is inverted so that have_fastchunks will be true
1644 upon startup (since statics are zero-filled), simplifying
1645 initialization checks.
1648 #define FASTCHUNKS_BIT (1U)
1650 #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
1651 #define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
1652 #define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
1655 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1656 regions. Otherwise, contiguity is exploited in merging together,
1657 when possible, results from consecutive MORECORE calls.
1659 The initial value comes from MORECORE_CONTIGUOUS, but is
1660 changed dynamically if mmap is ever used as an sbrk substitute.
1663 #define NONCONTIGUOUS_BIT (2U)
1665 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1666 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1667 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1668 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1671 Set value of max_fast.
1672 Use impossibly small value if 0.
1673 Precondition: there are no existing fastbin chunks.
1674 Setting the value clears fastchunk bit but preserves noncontiguous bit.
1677 #define set_max_fast(s) \
1678 global_max_fast = (((s) == 0) \
1679 ? SMALLBIN_WIDTH: ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1680 #define get_max_fast() global_max_fast
1684 ----------- Internal state representation and initialization -----------
1687 struct malloc_state {
1688 /* Serialize access. */
1689 mutex_t mutex;
1691 /* Flags (formerly in max_fast). */
1692 int flags;
1694 #if THREAD_STATS
1695 /* Statistics for locking. Only used if THREAD_STATS is defined. */
1696 long stat_lock_direct, stat_lock_loop, stat_lock_wait;
1697 #endif
1699 /* Fastbins */
1700 mfastbinptr fastbinsY[NFASTBINS];
1702 /* Base of the topmost chunk -- not otherwise kept in a bin */
1703 mchunkptr top;
1705 /* The remainder from the most recent split of a small request */
1706 mchunkptr last_remainder;
1708 /* Normal bins packed as described above */
1709 mchunkptr bins[NBINS * 2 - 2];
1711 /* Bitmap of bins */
1712 unsigned int binmap[BINMAPSIZE];
1714 /* Linked list */
1715 struct malloc_state *next;
1717 #ifdef PER_THREAD
1718 /* Linked list for free arenas. */
1719 struct malloc_state *next_free;
1720 #endif
1722 /* Memory allocated from the system in this arena. */
1723 INTERNAL_SIZE_T system_mem;
1724 INTERNAL_SIZE_T max_system_mem;
1727 struct malloc_par {
1728 /* Tunable parameters */
1729 unsigned long trim_threshold;
1730 INTERNAL_SIZE_T top_pad;
1731 INTERNAL_SIZE_T mmap_threshold;
1732 #ifdef PER_THREAD
1733 INTERNAL_SIZE_T arena_test;
1734 INTERNAL_SIZE_T arena_max;
1735 #endif
1737 /* Memory map support */
1738 int n_mmaps;
1739 int n_mmaps_max;
1740 int max_n_mmaps;
1741 /* the mmap_threshold is dynamic, until the user sets
1742 it manually, at which point we need to disable any
1743 dynamic behavior. */
1744 int no_dyn_threshold;
1746 /* Statistics */
1747 INTERNAL_SIZE_T mmapped_mem;
1748 /*INTERNAL_SIZE_T sbrked_mem;*/
1749 /*INTERNAL_SIZE_T max_sbrked_mem;*/
1750 INTERNAL_SIZE_T max_mmapped_mem;
1751 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
1753 /* First address handed out by MORECORE/sbrk. */
1754 char* sbrk_base;
1757 /* There are several instances of this struct ("arenas") in this
1758 malloc. If you are adapting this malloc in a way that does NOT use
1759 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1760 before using. This malloc relies on the property that malloc_state
1761 is initialized to all zeroes (as is true of C statics). */
1763 static struct malloc_state main_arena =
1765 .mutex = MUTEX_INITIALIZER,
1766 .next = &main_arena
1769 /* There is only one instance of the malloc parameters. */
1771 static struct malloc_par mp_ =
1773 .top_pad = DEFAULT_TOP_PAD,
1774 .n_mmaps_max = DEFAULT_MMAP_MAX,
1775 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1776 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1777 #ifdef PER_THREAD
1778 # define NARENAS_FROM_NCORES(n) ((n) * (sizeof(long) == 4 ? 2 : 8))
1779 .arena_test = NARENAS_FROM_NCORES (1)
1780 #endif
1784 #ifdef PER_THREAD
1785 /* Non public mallopt parameters. */
1786 #define M_ARENA_TEST -7
1787 #define M_ARENA_MAX -8
1788 #endif
1791 /* Maximum size of memory handled in fastbins. */
1792 static INTERNAL_SIZE_T global_max_fast;
1795 Initialize a malloc_state struct.
1797 This is called only from within malloc_consolidate, which needs
1798 be called in the same contexts anyway. It is never called directly
1799 outside of malloc_consolidate because some optimizing compilers try
1800 to inline it at all call points, which turns out not to be an
1801 optimization at all. (Inlining it in malloc_consolidate is fine though.)
1804 static void malloc_init_state(mstate av)
1806 int i;
1807 mbinptr bin;
1809 /* Establish circular links for normal bins */
1810 for (i = 1; i < NBINS; ++i) {
1811 bin = bin_at(av,i);
1812 bin->fd = bin->bk = bin;
1815 #if MORECORE_CONTIGUOUS
1816 if (av != &main_arena)
1817 #endif
1818 set_noncontiguous(av);
1819 if (av == &main_arena)
1820 set_max_fast(DEFAULT_MXFAST);
1821 av->flags |= FASTCHUNKS_BIT;
1823 av->top = initial_top(av);
1827 Other internal utilities operating on mstates
1830 static void* sysmalloc(INTERNAL_SIZE_T, mstate);
1831 static int systrim(size_t, mstate);
1832 static void malloc_consolidate(mstate);
1835 /* -------------- Early definitions for debugging hooks ---------------- */
1837 /* Define and initialize the hook variables. These weak definitions must
1838 appear before any use of the variables in a function (arena.c uses one). */
1839 #ifndef weak_variable
1840 /* In GNU libc we want the hook variables to be weak definitions to
1841 avoid a problem with Emacs. */
1842 # define weak_variable weak_function
1843 #endif
1845 /* Forward declarations. */
1846 static void* malloc_hook_ini __MALLOC_P ((size_t sz,
1847 const __malloc_ptr_t caller));
1848 static void* realloc_hook_ini __MALLOC_P ((void* ptr, size_t sz,
1849 const __malloc_ptr_t caller));
1850 static void* memalign_hook_ini __MALLOC_P ((size_t alignment, size_t sz,
1851 const __malloc_ptr_t caller));
1853 void weak_variable (*__malloc_initialize_hook) (void) = NULL;
1854 void weak_variable (*__free_hook) (__malloc_ptr_t __ptr,
1855 const __malloc_ptr_t) = NULL;
1856 __malloc_ptr_t weak_variable (*__malloc_hook)
1857 (size_t __size, const __malloc_ptr_t) = malloc_hook_ini;
1858 __malloc_ptr_t weak_variable (*__realloc_hook)
1859 (__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t)
1860 = realloc_hook_ini;
1861 __malloc_ptr_t weak_variable (*__memalign_hook)
1862 (size_t __alignment, size_t __size, const __malloc_ptr_t)
1863 = memalign_hook_ini;
1864 void weak_variable (*__after_morecore_hook) (void) = NULL;
1867 /* ---------------- Error behavior ------------------------------------ */
1869 #ifndef DEFAULT_CHECK_ACTION
1870 #define DEFAULT_CHECK_ACTION 3
1871 #endif
1873 static int check_action = DEFAULT_CHECK_ACTION;
1876 /* ------------------ Testing support ----------------------------------*/
1878 static int perturb_byte;
1880 #define alloc_perturb(p, n) memset (p, (perturb_byte ^ 0xff) & 0xff, n)
1881 #define free_perturb(p, n) memset (p, perturb_byte & 0xff, n)
1884 /* ------------------- Support for multiple arenas -------------------- */
1885 #include "arena.c"
1888 Debugging support
1890 These routines make a number of assertions about the states
1891 of data structures that should be true at all times. If any
1892 are not true, it's very likely that a user program has somehow
1893 trashed memory. (It's also possible that there is a coding error
1894 in malloc. In which case, please report it!)
1897 #if ! MALLOC_DEBUG
1899 #define check_chunk(A,P)
1900 #define check_free_chunk(A,P)
1901 #define check_inuse_chunk(A,P)
1902 #define check_remalloced_chunk(A,P,N)
1903 #define check_malloced_chunk(A,P,N)
1904 #define check_malloc_state(A)
1906 #else
1908 #define check_chunk(A,P) do_check_chunk(A,P)
1909 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
1910 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
1911 #define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
1912 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
1913 #define check_malloc_state(A) do_check_malloc_state(A)
1916 Properties of all chunks
1919 static void do_check_chunk(mstate av, mchunkptr p)
1921 unsigned long sz = chunksize(p);
1922 /* min and max possible addresses assuming contiguous allocation */
1923 char* max_address = (char*)(av->top) + chunksize(av->top);
1924 char* min_address = max_address - av->system_mem;
1926 if (!chunk_is_mmapped(p)) {
1928 /* Has legal address ... */
1929 if (p != av->top) {
1930 if (contiguous(av)) {
1931 assert(((char*)p) >= min_address);
1932 assert(((char*)p + sz) <= ((char*)(av->top)));
1935 else {
1936 /* top size is always at least MINSIZE */
1937 assert((unsigned long)(sz) >= MINSIZE);
1938 /* top predecessor always marked inuse */
1939 assert(prev_inuse(p));
1943 else {
1944 /* address is outside main heap */
1945 if (contiguous(av) && av->top != initial_top(av)) {
1946 assert(((char*)p) < min_address || ((char*)p) >= max_address);
1948 /* chunk is page-aligned */
1949 assert(((p->prev_size + sz) & (GLRO(dl_pagesize)-1)) == 0);
1950 /* mem is aligned */
1951 assert(aligned_OK(chunk2mem(p)));
1956 Properties of free chunks
1959 static void do_check_free_chunk(mstate av, mchunkptr p)
1961 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
1962 mchunkptr next = chunk_at_offset(p, sz);
1964 do_check_chunk(av, p);
1966 /* Chunk must claim to be free ... */
1967 assert(!inuse(p));
1968 assert (!chunk_is_mmapped(p));
1970 /* Unless a special marker, must have OK fields */
1971 if ((unsigned long)(sz) >= MINSIZE)
1973 assert((sz & MALLOC_ALIGN_MASK) == 0);
1974 assert(aligned_OK(chunk2mem(p)));
1975 /* ... matching footer field */
1976 assert(next->prev_size == sz);
1977 /* ... and is fully consolidated */
1978 assert(prev_inuse(p));
1979 assert (next == av->top || inuse(next));
1981 /* ... and has minimally sane links */
1982 assert(p->fd->bk == p);
1983 assert(p->bk->fd == p);
1985 else /* markers are always of size SIZE_SZ */
1986 assert(sz == SIZE_SZ);
1990 Properties of inuse chunks
1993 static void do_check_inuse_chunk(mstate av, mchunkptr p)
1995 mchunkptr next;
1997 do_check_chunk(av, p);
1999 if (chunk_is_mmapped(p))
2000 return; /* mmapped chunks have no next/prev */
2002 /* Check whether it claims to be in use ... */
2003 assert(inuse(p));
2005 next = next_chunk(p);
2007 /* ... and is surrounded by OK chunks.
2008 Since more things can be checked with free chunks than inuse ones,
2009 if an inuse chunk borders them and debug is on, it's worth doing them.
2011 if (!prev_inuse(p)) {
2012 /* Note that we cannot even look at prev unless it is not inuse */
2013 mchunkptr prv = prev_chunk(p);
2014 assert(next_chunk(prv) == p);
2015 do_check_free_chunk(av, prv);
2018 if (next == av->top) {
2019 assert(prev_inuse(next));
2020 assert(chunksize(next) >= MINSIZE);
2022 else if (!inuse(next))
2023 do_check_free_chunk(av, next);
2027 Properties of chunks recycled from fastbins
2030 static void do_check_remalloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2032 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2034 if (!chunk_is_mmapped(p)) {
2035 assert(av == arena_for_chunk(p));
2036 if (chunk_non_main_arena(p))
2037 assert(av != &main_arena);
2038 else
2039 assert(av == &main_arena);
2042 do_check_inuse_chunk(av, p);
2044 /* Legal size ... */
2045 assert((sz & MALLOC_ALIGN_MASK) == 0);
2046 assert((unsigned long)(sz) >= MINSIZE);
2047 /* ... and alignment */
2048 assert(aligned_OK(chunk2mem(p)));
2049 /* chunk is less than MINSIZE more than request */
2050 assert((long)(sz) - (long)(s) >= 0);
2051 assert((long)(sz) - (long)(s + MINSIZE) < 0);
2055 Properties of nonrecycled chunks at the point they are malloced
2058 static void do_check_malloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2060 /* same as recycled case ... */
2061 do_check_remalloced_chunk(av, p, s);
2064 ... plus, must obey implementation invariant that prev_inuse is
2065 always true of any allocated chunk; i.e., that each allocated
2066 chunk borders either a previously allocated and still in-use
2067 chunk, or the base of its memory arena. This is ensured
2068 by making all allocations from the `lowest' part of any found
2069 chunk. This does not necessarily hold however for chunks
2070 recycled via fastbins.
2073 assert(prev_inuse(p));
2078 Properties of malloc_state.
2080 This may be useful for debugging malloc, as well as detecting user
2081 programmer errors that somehow write into malloc_state.
2083 If you are extending or experimenting with this malloc, you can
2084 probably figure out how to hack this routine to print out or
2085 display chunk addresses, sizes, bins, and other instrumentation.
2088 static void do_check_malloc_state(mstate av)
2090 int i;
2091 mchunkptr p;
2092 mchunkptr q;
2093 mbinptr b;
2094 unsigned int idx;
2095 INTERNAL_SIZE_T size;
2096 unsigned long total = 0;
2097 int max_fast_bin;
2099 /* internal size_t must be no wider than pointer type */
2100 assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
2102 /* alignment is a power of 2 */
2103 assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
2105 /* cannot run remaining checks until fully initialized */
2106 if (av->top == 0 || av->top == initial_top(av))
2107 return;
2109 /* pagesize is a power of 2 */
2110 assert((GLRO(dl_pagesize) & (GLRO(dl_pagesize)-1)) == 0);
2112 /* A contiguous main_arena is consistent with sbrk_base. */
2113 if (av == &main_arena && contiguous(av))
2114 assert((char*)mp_.sbrk_base + av->system_mem ==
2115 (char*)av->top + chunksize(av->top));
2117 /* properties of fastbins */
2119 /* max_fast is in allowed range */
2120 assert((get_max_fast () & ~1) <= request2size(MAX_FAST_SIZE));
2122 max_fast_bin = fastbin_index(get_max_fast ());
2124 for (i = 0; i < NFASTBINS; ++i) {
2125 p = fastbin (av, i);
2127 /* The following test can only be performed for the main arena.
2128 While mallopt calls malloc_consolidate to get rid of all fast
2129 bins (especially those larger than the new maximum) this does
2130 only happen for the main arena. Trying to do this for any
2131 other arena would mean those arenas have to be locked and
2132 malloc_consolidate be called for them. This is excessive. And
2133 even if this is acceptable to somebody it still cannot solve
2134 the problem completely since if the arena is locked a
2135 concurrent malloc call might create a new arena which then
2136 could use the newly invalid fast bins. */
2138 /* all bins past max_fast are empty */
2139 if (av == &main_arena && i > max_fast_bin)
2140 assert(p == 0);
2142 while (p != 0) {
2143 /* each chunk claims to be inuse */
2144 do_check_inuse_chunk(av, p);
2145 total += chunksize(p);
2146 /* chunk belongs in this bin */
2147 assert(fastbin_index(chunksize(p)) == i);
2148 p = p->fd;
2152 if (total != 0)
2153 assert(have_fastchunks(av));
2154 else if (!have_fastchunks(av))
2155 assert(total == 0);
2157 /* check normal bins */
2158 for (i = 1; i < NBINS; ++i) {
2159 b = bin_at(av,i);
2161 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2162 if (i >= 2) {
2163 unsigned int binbit = get_binmap(av,i);
2164 int empty = last(b) == b;
2165 if (!binbit)
2166 assert(empty);
2167 else if (!empty)
2168 assert(binbit);
2171 for (p = last(b); p != b; p = p->bk) {
2172 /* each chunk claims to be free */
2173 do_check_free_chunk(av, p);
2174 size = chunksize(p);
2175 total += size;
2176 if (i >= 2) {
2177 /* chunk belongs in bin */
2178 idx = bin_index(size);
2179 assert(idx == i);
2180 /* lists are sorted */
2181 assert(p->bk == b ||
2182 (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
2184 if (!in_smallbin_range(size))
2186 if (p->fd_nextsize != NULL)
2188 if (p->fd_nextsize == p)
2189 assert (p->bk_nextsize == p);
2190 else
2192 if (p->fd_nextsize == first (b))
2193 assert (chunksize (p) < chunksize (p->fd_nextsize));
2194 else
2195 assert (chunksize (p) > chunksize (p->fd_nextsize));
2197 if (p == first (b))
2198 assert (chunksize (p) > chunksize (p->bk_nextsize));
2199 else
2200 assert (chunksize (p) < chunksize (p->bk_nextsize));
2203 else
2204 assert (p->bk_nextsize == NULL);
2206 } else if (!in_smallbin_range(size))
2207 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2208 /* chunk is followed by a legal chain of inuse chunks */
2209 for (q = next_chunk(p);
2210 (q != av->top && inuse(q) &&
2211 (unsigned long)(chunksize(q)) >= MINSIZE);
2212 q = next_chunk(q))
2213 do_check_inuse_chunk(av, q);
2217 /* top chunk is OK */
2218 check_chunk(av, av->top);
2220 /* sanity checks for statistics */
2222 assert(mp_.n_mmaps <= mp_.max_n_mmaps);
2224 assert((unsigned long)(av->system_mem) <=
2225 (unsigned long)(av->max_system_mem));
2227 assert((unsigned long)(mp_.mmapped_mem) <=
2228 (unsigned long)(mp_.max_mmapped_mem));
2230 #endif
2233 /* ----------------- Support for debugging hooks -------------------- */
2234 #include "hooks.c"
2237 /* ----------- Routines dealing with system allocation -------------- */
2240 sysmalloc handles malloc cases requiring more memory from the system.
2241 On entry, it is assumed that av->top does not have enough
2242 space to service request for nb bytes, thus requiring that av->top
2243 be extended or replaced.
2246 static void* sysmalloc(INTERNAL_SIZE_T nb, mstate av)
2248 mchunkptr old_top; /* incoming value of av->top */
2249 INTERNAL_SIZE_T old_size; /* its size */
2250 char* old_end; /* its end address */
2252 long size; /* arg to first MORECORE or mmap call */
2253 char* brk; /* return value from MORECORE */
2255 long correction; /* arg to 2nd MORECORE call */
2256 char* snd_brk; /* 2nd return val */
2258 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2259 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2260 char* aligned_brk; /* aligned offset into brk */
2262 mchunkptr p; /* the allocated/returned chunk */
2263 mchunkptr remainder; /* remainder from allocation */
2264 unsigned long remainder_size; /* its size */
2266 unsigned long sum; /* for updating stats */
2268 size_t pagemask = GLRO(dl_pagesize) - 1;
2269 bool tried_mmap = false;
2273 If have mmap, and the request size meets the mmap threshold, and
2274 the system supports mmap, and there are few enough currently
2275 allocated mmapped regions, try to directly map this request
2276 rather than expanding top.
2279 if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) &&
2280 (mp_.n_mmaps < mp_.n_mmaps_max)) {
2282 char* mm; /* return value from mmap call*/
2284 try_mmap:
2286 Round up size to nearest page. For mmapped chunks, the overhead
2287 is one SIZE_SZ unit larger than for normal chunks, because there
2288 is no following chunk whose prev_size field could be used.
2290 See the front_misalign handling below, for glibc there is no
2291 need for further alignments unless we have have high alignment.
2293 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2294 size = (nb + SIZE_SZ + pagemask) & ~pagemask;
2295 else
2296 size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
2297 tried_mmap = true;
2299 /* Don't try if size wraps around 0 */
2300 if ((unsigned long)(size) > (unsigned long)(nb)) {
2302 mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, 0));
2304 if (mm != MAP_FAILED) {
2307 The offset to the start of the mmapped region is stored
2308 in the prev_size field of the chunk. This allows us to adjust
2309 returned start address to meet alignment requirements here
2310 and in memalign(), and still be able to compute proper
2311 address argument for later munmap in free() and realloc().
2314 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2316 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2317 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2318 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2319 assert (((INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK) == 0);
2320 front_misalign = 0;
2322 else
2323 front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
2324 if (front_misalign > 0) {
2325 correction = MALLOC_ALIGNMENT - front_misalign;
2326 p = (mchunkptr)(mm + correction);
2327 p->prev_size = correction;
2328 set_head(p, (size - correction) |IS_MMAPPED);
2330 else
2332 p = (mchunkptr)mm;
2333 set_head(p, size|IS_MMAPPED);
2336 /* update statistics */
2338 if (++mp_.n_mmaps > mp_.max_n_mmaps)
2339 mp_.max_n_mmaps = mp_.n_mmaps;
2341 sum = mp_.mmapped_mem += size;
2342 if (sum > (unsigned long)(mp_.max_mmapped_mem))
2343 mp_.max_mmapped_mem = sum;
2345 check_chunk(av, p);
2347 return chunk2mem(p);
2352 /* Record incoming configuration of top */
2354 old_top = av->top;
2355 old_size = chunksize(old_top);
2356 old_end = (char*)(chunk_at_offset(old_top, old_size));
2358 brk = snd_brk = (char*)(MORECORE_FAILURE);
2361 If not the first time through, we require old_size to be
2362 at least MINSIZE and to have prev_inuse set.
2365 assert((old_top == initial_top(av) && old_size == 0) ||
2366 ((unsigned long) (old_size) >= MINSIZE &&
2367 prev_inuse(old_top) &&
2368 ((unsigned long)old_end & pagemask) == 0));
2370 /* Precondition: not enough current space to satisfy nb request */
2371 assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
2374 if (av != &main_arena) {
2376 heap_info *old_heap, *heap;
2377 size_t old_heap_size;
2379 /* First try to extend the current heap. */
2380 old_heap = heap_for_ptr(old_top);
2381 old_heap_size = old_heap->size;
2382 if ((long) (MINSIZE + nb - old_size) > 0
2383 && grow_heap(old_heap, MINSIZE + nb - old_size) == 0) {
2384 av->system_mem += old_heap->size - old_heap_size;
2385 arena_mem += old_heap->size - old_heap_size;
2386 set_head(old_top, (((char *)old_heap + old_heap->size) - (char *)old_top)
2387 | PREV_INUSE);
2389 else if ((heap = new_heap(nb + (MINSIZE + sizeof(*heap)), mp_.top_pad))) {
2390 /* Use a newly allocated heap. */
2391 heap->ar_ptr = av;
2392 heap->prev = old_heap;
2393 av->system_mem += heap->size;
2394 arena_mem += heap->size;
2395 /* Set up the new top. */
2396 top(av) = chunk_at_offset(heap, sizeof(*heap));
2397 set_head(top(av), (heap->size - sizeof(*heap)) | PREV_INUSE);
2399 /* Setup fencepost and free the old top chunk with a multiple of
2400 MALLOC_ALIGNMENT in size. */
2401 /* The fencepost takes at least MINSIZE bytes, because it might
2402 become the top chunk again later. Note that a footer is set
2403 up, too, although the chunk is marked in use. */
2404 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2405 set_head(chunk_at_offset(old_top, old_size + 2*SIZE_SZ), 0|PREV_INUSE);
2406 if (old_size >= MINSIZE) {
2407 set_head(chunk_at_offset(old_top, old_size), (2*SIZE_SZ)|PREV_INUSE);
2408 set_foot(chunk_at_offset(old_top, old_size), (2*SIZE_SZ));
2409 set_head(old_top, old_size|PREV_INUSE|NON_MAIN_ARENA);
2410 _int_free(av, old_top, 1);
2411 } else {
2412 set_head(old_top, (old_size + 2*SIZE_SZ)|PREV_INUSE);
2413 set_foot(old_top, (old_size + 2*SIZE_SZ));
2416 else if (!tried_mmap)
2417 /* We can at least try to use to mmap memory. */
2418 goto try_mmap;
2420 } else { /* av == main_arena */
2423 /* Request enough space for nb + pad + overhead */
2425 size = nb + mp_.top_pad + MINSIZE;
2428 If contiguous, we can subtract out existing space that we hope to
2429 combine with new space. We add it back later only if
2430 we don't actually get contiguous space.
2433 if (contiguous(av))
2434 size -= old_size;
2437 Round to a multiple of page size.
2438 If MORECORE is not contiguous, this ensures that we only call it
2439 with whole-page arguments. And if MORECORE is contiguous and
2440 this is not first time through, this preserves page-alignment of
2441 previous calls. Otherwise, we correct to page-align below.
2444 size = (size + pagemask) & ~pagemask;
2447 Don't try to call MORECORE if argument is so big as to appear
2448 negative. Note that since mmap takes size_t arg, it may succeed
2449 below even if we cannot call MORECORE.
2452 if (size > 0)
2453 brk = (char*)(MORECORE(size));
2455 if (brk != (char*)(MORECORE_FAILURE)) {
2456 /* Call the `morecore' hook if necessary. */
2457 void (*hook) (void) = force_reg (__after_morecore_hook);
2458 if (__builtin_expect (hook != NULL, 0))
2459 (*hook) ();
2460 } else {
2462 If have mmap, try using it as a backup when MORECORE fails or
2463 cannot be used. This is worth doing on systems that have "holes" in
2464 address space, so sbrk cannot extend to give contiguous space, but
2465 space is available elsewhere. Note that we ignore mmap max count
2466 and threshold limits, since the space will not be used as a
2467 segregated mmap region.
2470 /* Cannot merge with old top, so add its size back in */
2471 if (contiguous(av))
2472 size = (size + old_size + pagemask) & ~pagemask;
2474 /* If we are relying on mmap as backup, then use larger units */
2475 if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
2476 size = MMAP_AS_MORECORE_SIZE;
2478 /* Don't try if size wraps around 0 */
2479 if ((unsigned long)(size) > (unsigned long)(nb)) {
2481 char *mbrk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, 0));
2483 if (mbrk != MAP_FAILED) {
2485 /* We do not need, and cannot use, another sbrk call to find end */
2486 brk = mbrk;
2487 snd_brk = brk + size;
2490 Record that we no longer have a contiguous sbrk region.
2491 After the first time mmap is used as backup, we do not
2492 ever rely on contiguous space since this could incorrectly
2493 bridge regions.
2495 set_noncontiguous(av);
2500 if (brk != (char*)(MORECORE_FAILURE)) {
2501 if (mp_.sbrk_base == 0)
2502 mp_.sbrk_base = brk;
2503 av->system_mem += size;
2506 If MORECORE extends previous space, we can likewise extend top size.
2509 if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE))
2510 set_head(old_top, (size + old_size) | PREV_INUSE);
2512 else if (contiguous(av) && old_size && brk < old_end) {
2513 /* Oops! Someone else killed our space.. Can't touch anything. */
2514 malloc_printerr (3, "break adjusted to free malloc space", brk);
2518 Otherwise, make adjustments:
2520 * If the first time through or noncontiguous, we need to call sbrk
2521 just to find out where the end of memory lies.
2523 * We need to ensure that all returned chunks from malloc will meet
2524 MALLOC_ALIGNMENT
2526 * If there was an intervening foreign sbrk, we need to adjust sbrk
2527 request size to account for fact that we will not be able to
2528 combine new space with existing space in old_top.
2530 * Almost all systems internally allocate whole pages at a time, in
2531 which case we might as well use the whole last page of request.
2532 So we allocate enough more memory to hit a page boundary now,
2533 which in turn causes future contiguous calls to page-align.
2536 else {
2537 front_misalign = 0;
2538 end_misalign = 0;
2539 correction = 0;
2540 aligned_brk = brk;
2542 /* handle contiguous cases */
2543 if (contiguous(av)) {
2545 /* Count foreign sbrk as system_mem. */
2546 if (old_size)
2547 av->system_mem += brk - old_end;
2549 /* Guarantee alignment of first new chunk made from this space */
2551 front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2552 if (front_misalign > 0) {
2555 Skip over some bytes to arrive at an aligned position.
2556 We don't need to specially mark these wasted front bytes.
2557 They will never be accessed anyway because
2558 prev_inuse of av->top (and any chunk created from its start)
2559 is always true after initialization.
2562 correction = MALLOC_ALIGNMENT - front_misalign;
2563 aligned_brk += correction;
2567 If this isn't adjacent to existing space, then we will not
2568 be able to merge with old_top space, so must add to 2nd request.
2571 correction += old_size;
2573 /* Extend the end address to hit a page boundary */
2574 end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
2575 correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
2577 assert(correction >= 0);
2578 snd_brk = (char*)(MORECORE(correction));
2581 If can't allocate correction, try to at least find out current
2582 brk. It might be enough to proceed without failing.
2584 Note that if second sbrk did NOT fail, we assume that space
2585 is contiguous with first sbrk. This is a safe assumption unless
2586 program is multithreaded but doesn't use locks and a foreign sbrk
2587 occurred between our first and second calls.
2590 if (snd_brk == (char*)(MORECORE_FAILURE)) {
2591 correction = 0;
2592 snd_brk = (char*)(MORECORE(0));
2593 } else {
2594 /* Call the `morecore' hook if necessary. */
2595 void (*hook) (void) = force_reg (__after_morecore_hook);
2596 if (__builtin_expect (hook != NULL, 0))
2597 (*hook) ();
2601 /* handle non-contiguous cases */
2602 else {
2603 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2604 /* MORECORE/mmap must correctly align */
2605 assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
2606 else {
2607 front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2608 if (front_misalign > 0) {
2611 Skip over some bytes to arrive at an aligned position.
2612 We don't need to specially mark these wasted front bytes.
2613 They will never be accessed anyway because
2614 prev_inuse of av->top (and any chunk created from its start)
2615 is always true after initialization.
2618 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2622 /* Find out current end of memory */
2623 if (snd_brk == (char*)(MORECORE_FAILURE)) {
2624 snd_brk = (char*)(MORECORE(0));
2628 /* Adjust top based on results of second sbrk */
2629 if (snd_brk != (char*)(MORECORE_FAILURE)) {
2630 av->top = (mchunkptr)aligned_brk;
2631 set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2632 av->system_mem += correction;
2635 If not the first time through, we either have a
2636 gap due to foreign sbrk or a non-contiguous region. Insert a
2637 double fencepost at old_top to prevent consolidation with space
2638 we don't own. These fenceposts are artificial chunks that are
2639 marked as inuse and are in any case too small to use. We need
2640 two to make sizes and alignments work out.
2643 if (old_size != 0) {
2645 Shrink old_top to insert fenceposts, keeping size a
2646 multiple of MALLOC_ALIGNMENT. We know there is at least
2647 enough space in old_top to do this.
2649 old_size = (old_size - 4*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2650 set_head(old_top, old_size | PREV_INUSE);
2653 Note that the following assignments completely overwrite
2654 old_top when old_size was previously MINSIZE. This is
2655 intentional. We need the fencepost, even if old_top otherwise gets
2656 lost.
2658 chunk_at_offset(old_top, old_size )->size =
2659 (2*SIZE_SZ)|PREV_INUSE;
2661 chunk_at_offset(old_top, old_size + 2*SIZE_SZ)->size =
2662 (2*SIZE_SZ)|PREV_INUSE;
2664 /* If possible, release the rest. */
2665 if (old_size >= MINSIZE) {
2666 _int_free(av, old_top, 1);
2674 } /* if (av != &main_arena) */
2676 if ((unsigned long)av->system_mem > (unsigned long)(av->max_system_mem))
2677 av->max_system_mem = av->system_mem;
2678 check_malloc_state(av);
2680 /* finally, do the allocation */
2681 p = av->top;
2682 size = chunksize(p);
2684 /* check that one of the above allocation paths succeeded */
2685 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
2686 remainder_size = size - nb;
2687 remainder = chunk_at_offset(p, nb);
2688 av->top = remainder;
2689 set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2690 set_head(remainder, remainder_size | PREV_INUSE);
2691 check_malloced_chunk(av, p, nb);
2692 return chunk2mem(p);
2695 /* catch all failure paths */
2696 __set_errno (ENOMEM);
2697 return 0;
2702 systrim is an inverse of sorts to sysmalloc. It gives memory back
2703 to the system (via negative arguments to sbrk) if there is unused
2704 memory at the `high' end of the malloc pool. It is called
2705 automatically by free() when top space exceeds the trim
2706 threshold. It is also called by the public malloc_trim routine. It
2707 returns 1 if it actually released any memory, else 0.
2710 static int systrim(size_t pad, mstate av)
2712 long top_size; /* Amount of top-most memory */
2713 long extra; /* Amount to release */
2714 long released; /* Amount actually released */
2715 char* current_brk; /* address returned by pre-check sbrk call */
2716 char* new_brk; /* address returned by post-check sbrk call */
2717 size_t pagesz;
2719 pagesz = GLRO(dl_pagesize);
2720 top_size = chunksize(av->top);
2722 /* Release in pagesize units, keeping at least one page */
2723 extra = (top_size - pad - MINSIZE - 1) & ~(pagesz - 1);
2725 if (extra > 0) {
2728 Only proceed if end of memory is where we last set it.
2729 This avoids problems if there were foreign sbrk calls.
2731 current_brk = (char*)(MORECORE(0));
2732 if (current_brk == (char*)(av->top) + top_size) {
2735 Attempt to release memory. We ignore MORECORE return value,
2736 and instead call again to find out where new end of memory is.
2737 This avoids problems if first call releases less than we asked,
2738 of if failure somehow altered brk value. (We could still
2739 encounter problems if it altered brk in some very bad way,
2740 but the only thing we can do is adjust anyway, which will cause
2741 some downstream failure.)
2744 MORECORE(-extra);
2745 /* Call the `morecore' hook if necessary. */
2746 void (*hook) (void) = force_reg (__after_morecore_hook);
2747 if (__builtin_expect (hook != NULL, 0))
2748 (*hook) ();
2749 new_brk = (char*)(MORECORE(0));
2751 if (new_brk != (char*)MORECORE_FAILURE) {
2752 released = (long)(current_brk - new_brk);
2754 if (released != 0) {
2755 /* Success. Adjust top. */
2756 av->system_mem -= released;
2757 set_head(av->top, (top_size - released) | PREV_INUSE);
2758 check_malloc_state(av);
2759 return 1;
2764 return 0;
2767 static void
2768 internal_function
2769 munmap_chunk(mchunkptr p)
2771 INTERNAL_SIZE_T size = chunksize(p);
2773 assert (chunk_is_mmapped(p));
2775 uintptr_t block = (uintptr_t) p - p->prev_size;
2776 size_t total_size = p->prev_size + size;
2777 /* Unfortunately we have to do the compilers job by hand here. Normally
2778 we would test BLOCK and TOTAL-SIZE separately for compliance with the
2779 page size. But gcc does not recognize the optimization possibility
2780 (in the moment at least) so we combine the two values into one before
2781 the bit test. */
2782 if (__builtin_expect (((block | total_size) & (GLRO(dl_pagesize) - 1)) != 0, 0))
2784 malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
2785 chunk2mem (p));
2786 return;
2789 mp_.n_mmaps--;
2790 mp_.mmapped_mem -= total_size;
2792 /* If munmap failed the process virtual memory address space is in a
2793 bad shape. Just leave the block hanging around, the process will
2794 terminate shortly anyway since not much can be done. */
2795 __munmap((char *)block, total_size);
2798 #if HAVE_MREMAP
2800 static mchunkptr
2801 internal_function
2802 mremap_chunk(mchunkptr p, size_t new_size)
2804 size_t page_mask = GLRO(dl_pagesize) - 1;
2805 INTERNAL_SIZE_T offset = p->prev_size;
2806 INTERNAL_SIZE_T size = chunksize(p);
2807 char *cp;
2809 assert (chunk_is_mmapped(p));
2810 assert(((size + offset) & (GLRO(dl_pagesize)-1)) == 0);
2812 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2813 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
2815 /* No need to remap if the number of pages does not change. */
2816 if (size + offset == new_size)
2817 return p;
2819 cp = (char *)__mremap((char *)p - offset, size + offset, new_size,
2820 MREMAP_MAYMOVE);
2822 if (cp == MAP_FAILED) return 0;
2824 p = (mchunkptr)(cp + offset);
2826 assert(aligned_OK(chunk2mem(p)));
2828 assert((p->prev_size == offset));
2829 set_head(p, (new_size - offset)|IS_MMAPPED);
2831 mp_.mmapped_mem -= size + offset;
2832 mp_.mmapped_mem += new_size;
2833 if ((unsigned long)mp_.mmapped_mem > (unsigned long)mp_.max_mmapped_mem)
2834 mp_.max_mmapped_mem = mp_.mmapped_mem;
2835 return p;
2838 #endif /* HAVE_MREMAP */
2840 /*------------------------ Public wrappers. --------------------------------*/
2842 void*
2843 __libc_malloc(size_t bytes)
2845 mstate ar_ptr;
2846 void *victim;
2848 __malloc_ptr_t (*hook) (size_t, const __malloc_ptr_t)
2849 = force_reg (__malloc_hook);
2850 if (__builtin_expect (hook != NULL, 0))
2851 return (*hook)(bytes, RETURN_ADDRESS (0));
2853 arena_lookup(ar_ptr);
2855 arena_lock(ar_ptr, bytes);
2856 if(!ar_ptr)
2857 return 0;
2858 victim = _int_malloc(ar_ptr, bytes);
2859 if(!victim) {
2860 /* Maybe the failure is due to running out of mmapped areas. */
2861 if(ar_ptr != &main_arena) {
2862 (void)mutex_unlock(&ar_ptr->mutex);
2863 ar_ptr = &main_arena;
2864 (void)mutex_lock(&ar_ptr->mutex);
2865 victim = _int_malloc(ar_ptr, bytes);
2866 (void)mutex_unlock(&ar_ptr->mutex);
2867 } else {
2868 /* ... or sbrk() has failed and there is still a chance to mmap()
2869 Grab ar_ptr->next prior to releasing its lock. */
2870 mstate prev = ar_ptr->next ? ar_ptr : 0;
2871 (void)mutex_unlock(&ar_ptr->mutex);
2872 ar_ptr = arena_get2(prev, bytes, ar_ptr);
2873 if(ar_ptr) {
2874 victim = _int_malloc(ar_ptr, bytes);
2875 (void)mutex_unlock(&ar_ptr->mutex);
2878 } else
2879 (void)mutex_unlock(&ar_ptr->mutex);
2880 assert(!victim || chunk_is_mmapped(mem2chunk(victim)) ||
2881 ar_ptr == arena_for_chunk(mem2chunk(victim)));
2882 return victim;
2884 libc_hidden_def(__libc_malloc)
2886 void
2887 __libc_free(void* mem)
2889 mstate ar_ptr;
2890 mchunkptr p; /* chunk corresponding to mem */
2892 void (*hook) (__malloc_ptr_t, const __malloc_ptr_t)
2893 = force_reg (__free_hook);
2894 if (__builtin_expect (hook != NULL, 0)) {
2895 (*hook)(mem, RETURN_ADDRESS (0));
2896 return;
2899 if (mem == 0) /* free(0) has no effect */
2900 return;
2902 p = mem2chunk(mem);
2904 if (chunk_is_mmapped(p)) /* release mmapped memory. */
2906 /* see if the dynamic brk/mmap threshold needs adjusting */
2907 if (!mp_.no_dyn_threshold
2908 && p->size > mp_.mmap_threshold
2909 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
2911 mp_.mmap_threshold = chunksize (p);
2912 mp_.trim_threshold = 2 * mp_.mmap_threshold;
2914 munmap_chunk(p);
2915 return;
2918 ar_ptr = arena_for_chunk(p);
2919 _int_free(ar_ptr, p, 0);
2921 libc_hidden_def (__libc_free)
2923 void*
2924 __libc_realloc(void* oldmem, size_t bytes)
2926 mstate ar_ptr;
2927 INTERNAL_SIZE_T nb; /* padded request size */
2929 void* newp; /* chunk to return */
2931 __malloc_ptr_t (*hook) (__malloc_ptr_t, size_t, const __malloc_ptr_t) =
2932 force_reg (__realloc_hook);
2933 if (__builtin_expect (hook != NULL, 0))
2934 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
2936 #if REALLOC_ZERO_BYTES_FREES
2937 if (bytes == 0 && oldmem != NULL) { __libc_free(oldmem); return 0; }
2938 #endif
2940 /* realloc of null is supposed to be same as malloc */
2941 if (oldmem == 0) return __libc_malloc(bytes);
2943 /* chunk corresponding to oldmem */
2944 const mchunkptr oldp = mem2chunk(oldmem);
2945 /* its size */
2946 const INTERNAL_SIZE_T oldsize = chunksize(oldp);
2948 /* Little security check which won't hurt performance: the
2949 allocator never wrapps around at the end of the address space.
2950 Therefore we can exclude some size values which might appear
2951 here by accident or by "design" from some intruder. */
2952 if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
2953 || __builtin_expect (misaligned_chunk (oldp), 0))
2955 malloc_printerr (check_action, "realloc(): invalid pointer", oldmem);
2956 return NULL;
2959 checked_request2size(bytes, nb);
2961 if (chunk_is_mmapped(oldp))
2963 void* newmem;
2965 #if HAVE_MREMAP
2966 newp = mremap_chunk(oldp, nb);
2967 if(newp) return chunk2mem(newp);
2968 #endif
2969 /* Note the extra SIZE_SZ overhead. */
2970 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2971 /* Must alloc, copy, free. */
2972 newmem = __libc_malloc(bytes);
2973 if (newmem == 0) return 0; /* propagate failure */
2974 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2975 munmap_chunk(oldp);
2976 return newmem;
2979 ar_ptr = arena_for_chunk(oldp);
2980 #if THREAD_STATS
2981 if(!mutex_trylock(&ar_ptr->mutex))
2982 ++(ar_ptr->stat_lock_direct);
2983 else {
2984 (void)mutex_lock(&ar_ptr->mutex);
2985 ++(ar_ptr->stat_lock_wait);
2987 #else
2988 (void)mutex_lock(&ar_ptr->mutex);
2989 #endif
2991 #if !defined PER_THREAD
2992 /* As in malloc(), remember this arena for the next allocation. */
2993 tsd_setspecific(arena_key, (void *)ar_ptr);
2994 #endif
2996 newp = _int_realloc(ar_ptr, oldp, oldsize, nb);
2998 (void)mutex_unlock(&ar_ptr->mutex);
2999 assert(!newp || chunk_is_mmapped(mem2chunk(newp)) ||
3000 ar_ptr == arena_for_chunk(mem2chunk(newp)));
3002 if (newp == NULL)
3004 /* Try harder to allocate memory in other arenas. */
3005 newp = __libc_malloc(bytes);
3006 if (newp != NULL)
3008 MALLOC_COPY (newp, oldmem, oldsize - SIZE_SZ);
3009 _int_free(ar_ptr, oldp, 0);
3013 return newp;
3015 libc_hidden_def (__libc_realloc)
3017 void*
3018 __libc_memalign(size_t alignment, size_t bytes)
3020 mstate ar_ptr;
3021 void *p;
3023 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3024 const __malloc_ptr_t)) =
3025 force_reg (__memalign_hook);
3026 if (__builtin_expect (hook != NULL, 0))
3027 return (*hook)(alignment, bytes, RETURN_ADDRESS (0));
3029 /* If need less alignment than we give anyway, just relay to malloc */
3030 if (alignment <= MALLOC_ALIGNMENT) return __libc_malloc(bytes);
3032 /* Otherwise, ensure that it is at least a minimum chunk size */
3033 if (alignment < MINSIZE) alignment = MINSIZE;
3035 arena_get(ar_ptr, bytes + alignment + MINSIZE);
3036 if(!ar_ptr)
3037 return 0;
3038 p = _int_memalign(ar_ptr, alignment, bytes);
3039 if(!p) {
3040 /* Maybe the failure is due to running out of mmapped areas. */
3041 if(ar_ptr != &main_arena) {
3042 (void)mutex_unlock(&ar_ptr->mutex);
3043 ar_ptr = &main_arena;
3044 (void)mutex_lock(&ar_ptr->mutex);
3045 p = _int_memalign(ar_ptr, alignment, bytes);
3046 (void)mutex_unlock(&ar_ptr->mutex);
3047 } else {
3048 /* ... or sbrk() has failed and there is still a chance to mmap()
3049 Grab ar_ptr->next prior to releasing its lock. */
3050 mstate prev = ar_ptr->next ? ar_ptr : 0;
3051 (void)mutex_unlock(&ar_ptr->mutex);
3052 ar_ptr = arena_get2(prev, bytes, ar_ptr);
3053 if(ar_ptr) {
3054 p = _int_memalign(ar_ptr, alignment, bytes);
3055 (void)mutex_unlock(&ar_ptr->mutex);
3058 } else
3059 (void)mutex_unlock(&ar_ptr->mutex);
3060 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3061 ar_ptr == arena_for_chunk(mem2chunk(p)));
3062 return p;
3064 /* For ISO C11. */
3065 weak_alias (__libc_memalign, aligned_alloc)
3066 libc_hidden_def (__libc_memalign)
3068 void*
3069 __libc_valloc(size_t bytes)
3071 mstate ar_ptr;
3072 void *p;
3074 if(__malloc_initialized < 0)
3075 ptmalloc_init ();
3077 size_t pagesz = GLRO(dl_pagesize);
3079 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3080 const __malloc_ptr_t)) =
3081 force_reg (__memalign_hook);
3082 if (__builtin_expect (hook != NULL, 0))
3083 return (*hook)(pagesz, bytes, RETURN_ADDRESS (0));
3085 arena_get(ar_ptr, bytes + pagesz + MINSIZE);
3086 if(!ar_ptr)
3087 return 0;
3088 p = _int_valloc(ar_ptr, bytes);
3089 if(!p) {
3090 /* Maybe the failure is due to running out of mmapped areas. */
3091 if(ar_ptr != &main_arena) {
3092 (void)mutex_unlock(&ar_ptr->mutex);
3093 ar_ptr = &main_arena;
3094 (void)mutex_lock(&ar_ptr->mutex);
3095 p = _int_memalign(ar_ptr, pagesz, bytes);
3096 (void)mutex_unlock(&ar_ptr->mutex);
3097 } else {
3098 /* ... or sbrk() has failed and there is still a chance to mmap()
3099 Grab ar_ptr->next prior to releasing its lock. */
3100 mstate prev = ar_ptr->next ? ar_ptr : 0;
3101 (void)mutex_unlock(&ar_ptr->mutex);
3102 ar_ptr = arena_get2(prev, bytes, ar_ptr);
3103 if(ar_ptr) {
3104 p = _int_memalign(ar_ptr, pagesz, bytes);
3105 (void)mutex_unlock(&ar_ptr->mutex);
3108 } else
3109 (void)mutex_unlock (&ar_ptr->mutex);
3110 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3111 ar_ptr == arena_for_chunk(mem2chunk(p)));
3113 return p;
3116 void*
3117 __libc_pvalloc(size_t bytes)
3119 mstate ar_ptr;
3120 void *p;
3122 if(__malloc_initialized < 0)
3123 ptmalloc_init ();
3125 size_t pagesz = GLRO(dl_pagesize);
3126 size_t page_mask = GLRO(dl_pagesize) - 1;
3127 size_t rounded_bytes = (bytes + page_mask) & ~(page_mask);
3129 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3130 const __malloc_ptr_t)) =
3131 force_reg (__memalign_hook);
3132 if (__builtin_expect (hook != NULL, 0))
3133 return (*hook)(pagesz, rounded_bytes, RETURN_ADDRESS (0));
3135 arena_get(ar_ptr, bytes + 2*pagesz + MINSIZE);
3136 p = _int_pvalloc(ar_ptr, bytes);
3137 if(!p) {
3138 /* Maybe the failure is due to running out of mmapped areas. */
3139 if(ar_ptr != &main_arena) {
3140 (void)mutex_unlock(&ar_ptr->mutex);
3141 ar_ptr = &main_arena;
3142 (void)mutex_lock(&ar_ptr->mutex);
3143 p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
3144 (void)mutex_unlock(&ar_ptr->mutex);
3145 } else {
3146 /* ... or sbrk() has failed and there is still a chance to mmap()
3147 Grab ar_ptr->next prior to releasing its lock. */
3148 mstate prev = ar_ptr->next ? ar_ptr : 0;
3149 (void)mutex_unlock(&ar_ptr->mutex);
3150 ar_ptr = arena_get2(prev, bytes + 2*pagesz + MINSIZE, ar_ptr);
3151 if(ar_ptr) {
3152 p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
3153 (void)mutex_unlock(&ar_ptr->mutex);
3156 } else
3157 (void)mutex_unlock(&ar_ptr->mutex);
3158 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3159 ar_ptr == arena_for_chunk(mem2chunk(p)));
3161 return p;
3164 void*
3165 __libc_calloc(size_t n, size_t elem_size)
3167 mstate av;
3168 mchunkptr oldtop, p;
3169 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3170 void* mem;
3171 unsigned long clearsize;
3172 unsigned long nclears;
3173 INTERNAL_SIZE_T* d;
3175 /* size_t is unsigned so the behavior on overflow is defined. */
3176 bytes = n * elem_size;
3177 #define HALF_INTERNAL_SIZE_T \
3178 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3179 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) {
3180 if (elem_size != 0 && bytes / elem_size != n) {
3181 __set_errno (ENOMEM);
3182 return 0;
3186 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, const __malloc_ptr_t)) =
3187 force_reg (__malloc_hook);
3188 if (__builtin_expect (hook != NULL, 0)) {
3189 sz = bytes;
3190 mem = (*hook)(sz, RETURN_ADDRESS (0));
3191 if(mem == 0)
3192 return 0;
3193 return memset(mem, 0, sz);
3196 sz = bytes;
3198 arena_get(av, sz);
3199 if(!av)
3200 return 0;
3202 /* Check if we hand out the top chunk, in which case there may be no
3203 need to clear. */
3204 #if MORECORE_CLEARS
3205 oldtop = top(av);
3206 oldtopsize = chunksize(top(av));
3207 #if MORECORE_CLEARS < 2
3208 /* Only newly allocated memory is guaranteed to be cleared. */
3209 if (av == &main_arena &&
3210 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *)oldtop)
3211 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *)oldtop);
3212 #endif
3213 if (av != &main_arena)
3215 heap_info *heap = heap_for_ptr (oldtop);
3216 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3217 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3219 #endif
3220 mem = _int_malloc(av, sz);
3223 assert(!mem || chunk_is_mmapped(mem2chunk(mem)) ||
3224 av == arena_for_chunk(mem2chunk(mem)));
3226 if (mem == 0) {
3227 /* Maybe the failure is due to running out of mmapped areas. */
3228 if(av != &main_arena) {
3229 (void)mutex_unlock(&av->mutex);
3230 (void)mutex_lock(&main_arena.mutex);
3231 mem = _int_malloc(&main_arena, sz);
3232 (void)mutex_unlock(&main_arena.mutex);
3233 } else {
3234 /* ... or sbrk() has failed and there is still a chance to mmap()
3235 Grab av->next prior to releasing its lock. */
3236 mstate prev = av->next ? av : 0;
3237 (void)mutex_unlock(&av->mutex);
3238 av = arena_get2(prev, sz, av);
3239 if(av) {
3240 mem = _int_malloc(av, sz);
3241 (void)mutex_unlock(&av->mutex);
3244 if (mem == 0) return 0;
3245 } else
3246 (void)mutex_unlock(&av->mutex);
3247 p = mem2chunk(mem);
3249 /* Two optional cases in which clearing not necessary */
3250 if (chunk_is_mmapped (p))
3252 if (__builtin_expect (perturb_byte, 0))
3253 MALLOC_ZERO (mem, sz);
3254 return mem;
3257 csz = chunksize(p);
3259 #if MORECORE_CLEARS
3260 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) {
3261 /* clear only the bytes from non-freshly-sbrked memory */
3262 csz = oldtopsize;
3264 #endif
3266 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3267 contents have an odd number of INTERNAL_SIZE_T-sized words;
3268 minimally 3. */
3269 d = (INTERNAL_SIZE_T*)mem;
3270 clearsize = csz - SIZE_SZ;
3271 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
3272 assert(nclears >= 3);
3274 if (nclears > 9)
3275 MALLOC_ZERO(d, clearsize);
3277 else {
3278 *(d+0) = 0;
3279 *(d+1) = 0;
3280 *(d+2) = 0;
3281 if (nclears > 4) {
3282 *(d+3) = 0;
3283 *(d+4) = 0;
3284 if (nclears > 6) {
3285 *(d+5) = 0;
3286 *(d+6) = 0;
3287 if (nclears > 8) {
3288 *(d+7) = 0;
3289 *(d+8) = 0;
3295 return mem;
3299 ------------------------------ malloc ------------------------------
3302 static void*
3303 _int_malloc(mstate av, size_t bytes)
3305 INTERNAL_SIZE_T nb; /* normalized request size */
3306 unsigned int idx; /* associated bin index */
3307 mbinptr bin; /* associated bin */
3309 mchunkptr victim; /* inspected/selected chunk */
3310 INTERNAL_SIZE_T size; /* its size */
3311 int victim_index; /* its bin index */
3313 mchunkptr remainder; /* remainder from a split */
3314 unsigned long remainder_size; /* its size */
3316 unsigned int block; /* bit map traverser */
3317 unsigned int bit; /* bit map traverser */
3318 unsigned int map; /* current word of binmap */
3320 mchunkptr fwd; /* misc temp for linking */
3321 mchunkptr bck; /* misc temp for linking */
3323 const char *errstr = NULL;
3326 Convert request size to internal form by adding SIZE_SZ bytes
3327 overhead plus possibly more to obtain necessary alignment and/or
3328 to obtain a size of at least MINSIZE, the smallest allocatable
3329 size. Also, checked_request2size traps (returning 0) request sizes
3330 that are so large that they wrap around zero when padded and
3331 aligned.
3334 checked_request2size(bytes, nb);
3337 If the size qualifies as a fastbin, first check corresponding bin.
3338 This code is safe to execute even if av is not yet initialized, so we
3339 can try it without checking, which saves some time on this fast path.
3342 if ((unsigned long)(nb) <= (unsigned long)(get_max_fast ())) {
3343 idx = fastbin_index(nb);
3344 mfastbinptr* fb = &fastbin (av, idx);
3345 mchunkptr pp = *fb;
3348 victim = pp;
3349 if (victim == NULL)
3350 break;
3352 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
3353 != victim);
3354 if (victim != 0) {
3355 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
3357 errstr = "malloc(): memory corruption (fast)";
3358 errout:
3359 malloc_printerr (check_action, errstr, chunk2mem (victim));
3360 return NULL;
3362 check_remalloced_chunk(av, victim, nb);
3363 void *p = chunk2mem(victim);
3364 if (__builtin_expect (perturb_byte, 0))
3365 alloc_perturb (p, bytes);
3366 return p;
3371 If a small request, check regular bin. Since these "smallbins"
3372 hold one size each, no searching within bins is necessary.
3373 (For a large request, we need to wait until unsorted chunks are
3374 processed to find best fit. But for small ones, fits are exact
3375 anyway, so we can check now, which is faster.)
3378 if (in_smallbin_range(nb)) {
3379 idx = smallbin_index(nb);
3380 bin = bin_at(av,idx);
3382 if ( (victim = last(bin)) != bin) {
3383 if (victim == 0) /* initialization check */
3384 malloc_consolidate(av);
3385 else {
3386 bck = victim->bk;
3387 if (__builtin_expect (bck->fd != victim, 0))
3389 errstr = "malloc(): smallbin double linked list corrupted";
3390 goto errout;
3392 set_inuse_bit_at_offset(victim, nb);
3393 bin->bk = bck;
3394 bck->fd = bin;
3396 if (av != &main_arena)
3397 victim->size |= NON_MAIN_ARENA;
3398 check_malloced_chunk(av, victim, nb);
3399 void *p = chunk2mem(victim);
3400 if (__builtin_expect (perturb_byte, 0))
3401 alloc_perturb (p, bytes);
3402 return p;
3408 If this is a large request, consolidate fastbins before continuing.
3409 While it might look excessive to kill all fastbins before
3410 even seeing if there is space available, this avoids
3411 fragmentation problems normally associated with fastbins.
3412 Also, in practice, programs tend to have runs of either small or
3413 large requests, but less often mixtures, so consolidation is not
3414 invoked all that often in most programs. And the programs that
3415 it is called frequently in otherwise tend to fragment.
3418 else {
3419 idx = largebin_index(nb);
3420 if (have_fastchunks(av))
3421 malloc_consolidate(av);
3425 Process recently freed or remaindered chunks, taking one only if
3426 it is exact fit, or, if this a small request, the chunk is remainder from
3427 the most recent non-exact fit. Place other traversed chunks in
3428 bins. Note that this step is the only place in any routine where
3429 chunks are placed in bins.
3431 The outer loop here is needed because we might not realize until
3432 near the end of malloc that we should have consolidated, so must
3433 do so and retry. This happens at most once, and only when we would
3434 otherwise need to expand memory to service a "small" request.
3437 for(;;) {
3439 int iters = 0;
3440 while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
3441 bck = victim->bk;
3442 if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
3443 || __builtin_expect (victim->size > av->system_mem, 0))
3444 malloc_printerr (check_action, "malloc(): memory corruption",
3445 chunk2mem (victim));
3446 size = chunksize(victim);
3449 If a small request, try to use last remainder if it is the
3450 only chunk in unsorted bin. This helps promote locality for
3451 runs of consecutive small requests. This is the only
3452 exception to best-fit, and applies only when there is
3453 no exact fit for a small chunk.
3456 if (in_smallbin_range(nb) &&
3457 bck == unsorted_chunks(av) &&
3458 victim == av->last_remainder &&
3459 (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
3461 /* split and reattach remainder */
3462 remainder_size = size - nb;
3463 remainder = chunk_at_offset(victim, nb);
3464 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
3465 av->last_remainder = remainder;
3466 remainder->bk = remainder->fd = unsorted_chunks(av);
3467 if (!in_smallbin_range(remainder_size))
3469 remainder->fd_nextsize = NULL;
3470 remainder->bk_nextsize = NULL;
3473 set_head(victim, nb | PREV_INUSE |
3474 (av != &main_arena ? NON_MAIN_ARENA : 0));
3475 set_head(remainder, remainder_size | PREV_INUSE);
3476 set_foot(remainder, remainder_size);
3478 check_malloced_chunk(av, victim, nb);
3479 void *p = chunk2mem(victim);
3480 if (__builtin_expect (perturb_byte, 0))
3481 alloc_perturb (p, bytes);
3482 return p;
3485 /* remove from unsorted list */
3486 unsorted_chunks(av)->bk = bck;
3487 bck->fd = unsorted_chunks(av);
3489 /* Take now instead of binning if exact fit */
3491 if (size == nb) {
3492 set_inuse_bit_at_offset(victim, size);
3493 if (av != &main_arena)
3494 victim->size |= NON_MAIN_ARENA;
3495 check_malloced_chunk(av, victim, nb);
3496 void *p = chunk2mem(victim);
3497 if (__builtin_expect (perturb_byte, 0))
3498 alloc_perturb (p, bytes);
3499 return p;
3502 /* place chunk in bin */
3504 if (in_smallbin_range(size)) {
3505 victim_index = smallbin_index(size);
3506 bck = bin_at(av, victim_index);
3507 fwd = bck->fd;
3509 else {
3510 victim_index = largebin_index(size);
3511 bck = bin_at(av, victim_index);
3512 fwd = bck->fd;
3514 /* maintain large bins in sorted order */
3515 if (fwd != bck) {
3516 /* Or with inuse bit to speed comparisons */
3517 size |= PREV_INUSE;
3518 /* if smaller than smallest, bypass loop below */
3519 assert((bck->bk->size & NON_MAIN_ARENA) == 0);
3520 if ((unsigned long)(size) < (unsigned long)(bck->bk->size)) {
3521 fwd = bck;
3522 bck = bck->bk;
3524 victim->fd_nextsize = fwd->fd;
3525 victim->bk_nextsize = fwd->fd->bk_nextsize;
3526 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
3528 else {
3529 assert((fwd->size & NON_MAIN_ARENA) == 0);
3530 while ((unsigned long) size < fwd->size)
3532 fwd = fwd->fd_nextsize;
3533 assert((fwd->size & NON_MAIN_ARENA) == 0);
3536 if ((unsigned long) size == (unsigned long) fwd->size)
3537 /* Always insert in the second position. */
3538 fwd = fwd->fd;
3539 else
3541 victim->fd_nextsize = fwd;
3542 victim->bk_nextsize = fwd->bk_nextsize;
3543 fwd->bk_nextsize = victim;
3544 victim->bk_nextsize->fd_nextsize = victim;
3546 bck = fwd->bk;
3548 } else
3549 victim->fd_nextsize = victim->bk_nextsize = victim;
3552 mark_bin(av, victim_index);
3553 victim->bk = bck;
3554 victim->fd = fwd;
3555 fwd->bk = victim;
3556 bck->fd = victim;
3558 #define MAX_ITERS 10000
3559 if (++iters >= MAX_ITERS)
3560 break;
3564 If a large request, scan through the chunks of current bin in
3565 sorted order to find smallest that fits. Use the skip list for this.
3568 if (!in_smallbin_range(nb)) {
3569 bin = bin_at(av, idx);
3571 /* skip scan if empty or largest chunk is too small */
3572 if ((victim = first(bin)) != bin &&
3573 (unsigned long)(victim->size) >= (unsigned long)(nb)) {
3575 victim = victim->bk_nextsize;
3576 while (((unsigned long)(size = chunksize(victim)) <
3577 (unsigned long)(nb)))
3578 victim = victim->bk_nextsize;
3580 /* Avoid removing the first entry for a size so that the skip
3581 list does not have to be rerouted. */
3582 if (victim != last(bin) && victim->size == victim->fd->size)
3583 victim = victim->fd;
3585 remainder_size = size - nb;
3586 unlink(victim, bck, fwd);
3588 /* Exhaust */
3589 if (remainder_size < MINSIZE) {
3590 set_inuse_bit_at_offset(victim, size);
3591 if (av != &main_arena)
3592 victim->size |= NON_MAIN_ARENA;
3594 /* Split */
3595 else {
3596 remainder = chunk_at_offset(victim, nb);
3597 /* We cannot assume the unsorted list is empty and therefore
3598 have to perform a complete insert here. */
3599 bck = unsorted_chunks(av);
3600 fwd = bck->fd;
3601 if (__builtin_expect (fwd->bk != bck, 0))
3603 errstr = "malloc(): corrupted unsorted chunks";
3604 goto errout;
3606 remainder->bk = bck;
3607 remainder->fd = fwd;
3608 bck->fd = remainder;
3609 fwd->bk = remainder;
3610 if (!in_smallbin_range(remainder_size))
3612 remainder->fd_nextsize = NULL;
3613 remainder->bk_nextsize = NULL;
3615 set_head(victim, nb | PREV_INUSE |
3616 (av != &main_arena ? NON_MAIN_ARENA : 0));
3617 set_head(remainder, remainder_size | PREV_INUSE);
3618 set_foot(remainder, remainder_size);
3620 check_malloced_chunk(av, victim, nb);
3621 void *p = chunk2mem(victim);
3622 if (__builtin_expect (perturb_byte, 0))
3623 alloc_perturb (p, bytes);
3624 return p;
3629 Search for a chunk by scanning bins, starting with next largest
3630 bin. This search is strictly by best-fit; i.e., the smallest
3631 (with ties going to approximately the least recently used) chunk
3632 that fits is selected.
3634 The bitmap avoids needing to check that most blocks are nonempty.
3635 The particular case of skipping all bins during warm-up phases
3636 when no chunks have been returned yet is faster than it might look.
3639 ++idx;
3640 bin = bin_at(av,idx);
3641 block = idx2block(idx);
3642 map = av->binmap[block];
3643 bit = idx2bit(idx);
3645 for (;;) {
3647 /* Skip rest of block if there are no more set bits in this block. */
3648 if (bit > map || bit == 0) {
3649 do {
3650 if (++block >= BINMAPSIZE) /* out of bins */
3651 goto use_top;
3652 } while ( (map = av->binmap[block]) == 0);
3654 bin = bin_at(av, (block << BINMAPSHIFT));
3655 bit = 1;
3658 /* Advance to bin with set bit. There must be one. */
3659 while ((bit & map) == 0) {
3660 bin = next_bin(bin);
3661 bit <<= 1;
3662 assert(bit != 0);
3665 /* Inspect the bin. It is likely to be non-empty */
3666 victim = last(bin);
3668 /* If a false alarm (empty bin), clear the bit. */
3669 if (victim == bin) {
3670 av->binmap[block] = map &= ~bit; /* Write through */
3671 bin = next_bin(bin);
3672 bit <<= 1;
3675 else {
3676 size = chunksize(victim);
3678 /* We know the first chunk in this bin is big enough to use. */
3679 assert((unsigned long)(size) >= (unsigned long)(nb));
3681 remainder_size = size - nb;
3683 /* unlink */
3684 unlink(victim, bck, fwd);
3686 /* Exhaust */
3687 if (remainder_size < MINSIZE) {
3688 set_inuse_bit_at_offset(victim, size);
3689 if (av != &main_arena)
3690 victim->size |= NON_MAIN_ARENA;
3693 /* Split */
3694 else {
3695 remainder = chunk_at_offset(victim, nb);
3697 /* We cannot assume the unsorted list is empty and therefore
3698 have to perform a complete insert here. */
3699 bck = unsorted_chunks(av);
3700 fwd = bck->fd;
3701 if (__builtin_expect (fwd->bk != bck, 0))
3703 errstr = "malloc(): corrupted unsorted chunks 2";
3704 goto errout;
3706 remainder->bk = bck;
3707 remainder->fd = fwd;
3708 bck->fd = remainder;
3709 fwd->bk = remainder;
3711 /* advertise as last remainder */
3712 if (in_smallbin_range(nb))
3713 av->last_remainder = remainder;
3714 if (!in_smallbin_range(remainder_size))
3716 remainder->fd_nextsize = NULL;
3717 remainder->bk_nextsize = NULL;
3719 set_head(victim, nb | PREV_INUSE |
3720 (av != &main_arena ? NON_MAIN_ARENA : 0));
3721 set_head(remainder, remainder_size | PREV_INUSE);
3722 set_foot(remainder, remainder_size);
3724 check_malloced_chunk(av, victim, nb);
3725 void *p = chunk2mem(victim);
3726 if (__builtin_expect (perturb_byte, 0))
3727 alloc_perturb (p, bytes);
3728 return p;
3732 use_top:
3734 If large enough, split off the chunk bordering the end of memory
3735 (held in av->top). Note that this is in accord with the best-fit
3736 search rule. In effect, av->top is treated as larger (and thus
3737 less well fitting) than any other available chunk since it can
3738 be extended to be as large as necessary (up to system
3739 limitations).
3741 We require that av->top always exists (i.e., has size >=
3742 MINSIZE) after initialization, so if it would otherwise be
3743 exhausted by current request, it is replenished. (The main
3744 reason for ensuring it exists is that we may need MINSIZE space
3745 to put in fenceposts in sysmalloc.)
3748 victim = av->top;
3749 size = chunksize(victim);
3751 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
3752 remainder_size = size - nb;
3753 remainder = chunk_at_offset(victim, nb);
3754 av->top = remainder;
3755 set_head(victim, nb | PREV_INUSE |
3756 (av != &main_arena ? NON_MAIN_ARENA : 0));
3757 set_head(remainder, remainder_size | PREV_INUSE);
3759 check_malloced_chunk(av, victim, nb);
3760 void *p = chunk2mem(victim);
3761 if (__builtin_expect (perturb_byte, 0))
3762 alloc_perturb (p, bytes);
3763 return p;
3766 /* When we are using atomic ops to free fast chunks we can get
3767 here for all block sizes. */
3768 else if (have_fastchunks(av)) {
3769 malloc_consolidate(av);
3770 /* restore original bin index */
3771 if (in_smallbin_range(nb))
3772 idx = smallbin_index(nb);
3773 else
3774 idx = largebin_index(nb);
3778 Otherwise, relay to handle system-dependent cases
3780 else {
3781 void *p = sysmalloc(nb, av);
3782 if (p != NULL && __builtin_expect (perturb_byte, 0))
3783 alloc_perturb (p, bytes);
3784 return p;
3790 ------------------------------ free ------------------------------
3793 static void
3794 _int_free(mstate av, mchunkptr p, int have_lock)
3796 INTERNAL_SIZE_T size; /* its size */
3797 mfastbinptr* fb; /* associated fastbin */
3798 mchunkptr nextchunk; /* next contiguous chunk */
3799 INTERNAL_SIZE_T nextsize; /* its size */
3800 int nextinuse; /* true if nextchunk is used */
3801 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
3802 mchunkptr bck; /* misc temp for linking */
3803 mchunkptr fwd; /* misc temp for linking */
3805 const char *errstr = NULL;
3806 int locked = 0;
3808 size = chunksize(p);
3810 /* Little security check which won't hurt performance: the
3811 allocator never wrapps around at the end of the address space.
3812 Therefore we can exclude some size values which might appear
3813 here by accident or by "design" from some intruder. */
3814 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
3815 || __builtin_expect (misaligned_chunk (p), 0))
3817 errstr = "free(): invalid pointer";
3818 errout:
3819 if (! have_lock && locked)
3820 (void)mutex_unlock(&av->mutex);
3821 malloc_printerr (check_action, errstr, chunk2mem(p));
3822 return;
3824 /* We know that each chunk is at least MINSIZE bytes in size or a
3825 multiple of MALLOC_ALIGNMENT. */
3826 if (__builtin_expect (size < MINSIZE || !aligned_OK (size), 0))
3828 errstr = "free(): invalid size";
3829 goto errout;
3832 check_inuse_chunk(av, p);
3835 If eligible, place chunk on a fastbin so it can be found
3836 and used quickly in malloc.
3839 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
3841 #if TRIM_FASTBINS
3843 If TRIM_FASTBINS set, don't place chunks
3844 bordering top into fastbins
3846 && (chunk_at_offset(p, size) != av->top)
3847 #endif
3850 if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
3851 || __builtin_expect (chunksize (chunk_at_offset (p, size))
3852 >= av->system_mem, 0))
3854 /* We might not have a lock at this point and concurrent modifications
3855 of system_mem might have let to a false positive. Redo the test
3856 after getting the lock. */
3857 if (have_lock
3858 || ({ assert (locked == 0);
3859 mutex_lock(&av->mutex);
3860 locked = 1;
3861 chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
3862 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
3865 errstr = "free(): invalid next size (fast)";
3866 goto errout;
3868 if (! have_lock)
3870 (void)mutex_unlock(&av->mutex);
3871 locked = 0;
3875 if (__builtin_expect (perturb_byte, 0))
3876 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
3878 set_fastchunks(av);
3879 unsigned int idx = fastbin_index(size);
3880 fb = &fastbin (av, idx);
3882 mchunkptr fd;
3883 mchunkptr old = *fb;
3884 unsigned int old_idx = ~0u;
3887 /* Another simple check: make sure the top of the bin is not the
3888 record we are going to add (i.e., double free). */
3889 if (__builtin_expect (old == p, 0))
3891 errstr = "double free or corruption (fasttop)";
3892 goto errout;
3894 if (old != NULL)
3895 old_idx = fastbin_index(chunksize(old));
3896 p->fd = fd = old;
3898 while ((old = catomic_compare_and_exchange_val_rel (fb, p, fd)) != fd);
3900 if (fd != NULL && __builtin_expect (old_idx != idx, 0))
3902 errstr = "invalid fastbin entry (free)";
3903 goto errout;
3908 Consolidate other non-mmapped chunks as they arrive.
3911 else if (!chunk_is_mmapped(p)) {
3912 if (! have_lock) {
3913 #if THREAD_STATS
3914 if(!mutex_trylock(&av->mutex))
3915 ++(av->stat_lock_direct);
3916 else {
3917 (void)mutex_lock(&av->mutex);
3918 ++(av->stat_lock_wait);
3920 #else
3921 (void)mutex_lock(&av->mutex);
3922 #endif
3923 locked = 1;
3926 nextchunk = chunk_at_offset(p, size);
3928 /* Lightweight tests: check whether the block is already the
3929 top block. */
3930 if (__builtin_expect (p == av->top, 0))
3932 errstr = "double free or corruption (top)";
3933 goto errout;
3935 /* Or whether the next chunk is beyond the boundaries of the arena. */
3936 if (__builtin_expect (contiguous (av)
3937 && (char *) nextchunk
3938 >= ((char *) av->top + chunksize(av->top)), 0))
3940 errstr = "double free or corruption (out)";
3941 goto errout;
3943 /* Or whether the block is actually not marked used. */
3944 if (__builtin_expect (!prev_inuse(nextchunk), 0))
3946 errstr = "double free or corruption (!prev)";
3947 goto errout;
3950 nextsize = chunksize(nextchunk);
3951 if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
3952 || __builtin_expect (nextsize >= av->system_mem, 0))
3954 errstr = "free(): invalid next size (normal)";
3955 goto errout;
3958 if (__builtin_expect (perturb_byte, 0))
3959 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
3961 /* consolidate backward */
3962 if (!prev_inuse(p)) {
3963 prevsize = p->prev_size;
3964 size += prevsize;
3965 p = chunk_at_offset(p, -((long) prevsize));
3966 unlink(p, bck, fwd);
3969 if (nextchunk != av->top) {
3970 /* get and clear inuse bit */
3971 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
3973 /* consolidate forward */
3974 if (!nextinuse) {
3975 unlink(nextchunk, bck, fwd);
3976 size += nextsize;
3977 } else
3978 clear_inuse_bit_at_offset(nextchunk, 0);
3981 Place the chunk in unsorted chunk list. Chunks are
3982 not placed into regular bins until after they have
3983 been given one chance to be used in malloc.
3986 bck = unsorted_chunks(av);
3987 fwd = bck->fd;
3988 if (__builtin_expect (fwd->bk != bck, 0))
3990 errstr = "free(): corrupted unsorted chunks";
3991 goto errout;
3993 p->fd = fwd;
3994 p->bk = bck;
3995 if (!in_smallbin_range(size))
3997 p->fd_nextsize = NULL;
3998 p->bk_nextsize = NULL;
4000 bck->fd = p;
4001 fwd->bk = p;
4003 set_head(p, size | PREV_INUSE);
4004 set_foot(p, size);
4006 check_free_chunk(av, p);
4010 If the chunk borders the current high end of memory,
4011 consolidate into top
4014 else {
4015 size += nextsize;
4016 set_head(p, size | PREV_INUSE);
4017 av->top = p;
4018 check_chunk(av, p);
4022 If freeing a large space, consolidate possibly-surrounding
4023 chunks. Then, if the total unused topmost memory exceeds trim
4024 threshold, ask malloc_trim to reduce top.
4026 Unless max_fast is 0, we don't know if there are fastbins
4027 bordering top, so we cannot tell for sure whether threshold
4028 has been reached unless fastbins are consolidated. But we
4029 don't want to consolidate on each free. As a compromise,
4030 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4031 is reached.
4034 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4035 if (have_fastchunks(av))
4036 malloc_consolidate(av);
4038 if (av == &main_arena) {
4039 #ifndef MORECORE_CANNOT_TRIM
4040 if ((unsigned long)(chunksize(av->top)) >=
4041 (unsigned long)(mp_.trim_threshold))
4042 systrim(mp_.top_pad, av);
4043 #endif
4044 } else {
4045 /* Always try heap_trim(), even if the top chunk is not
4046 large, because the corresponding heap might go away. */
4047 heap_info *heap = heap_for_ptr(top(av));
4049 assert(heap->ar_ptr == av);
4050 heap_trim(heap, mp_.top_pad);
4054 if (! have_lock) {
4055 assert (locked);
4056 (void)mutex_unlock(&av->mutex);
4060 If the chunk was allocated via mmap, release via munmap().
4063 else {
4064 munmap_chunk (p);
4069 ------------------------- malloc_consolidate -------------------------
4071 malloc_consolidate is a specialized version of free() that tears
4072 down chunks held in fastbins. Free itself cannot be used for this
4073 purpose since, among other things, it might place chunks back onto
4074 fastbins. So, instead, we need to use a minor variant of the same
4075 code.
4077 Also, because this routine needs to be called the first time through
4078 malloc anyway, it turns out to be the perfect place to trigger
4079 initialization code.
4082 static void malloc_consolidate(mstate av)
4084 mfastbinptr* fb; /* current fastbin being consolidated */
4085 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4086 mchunkptr p; /* current chunk being consolidated */
4087 mchunkptr nextp; /* next chunk to consolidate */
4088 mchunkptr unsorted_bin; /* bin header */
4089 mchunkptr first_unsorted; /* chunk to link to */
4091 /* These have same use as in free() */
4092 mchunkptr nextchunk;
4093 INTERNAL_SIZE_T size;
4094 INTERNAL_SIZE_T nextsize;
4095 INTERNAL_SIZE_T prevsize;
4096 int nextinuse;
4097 mchunkptr bck;
4098 mchunkptr fwd;
4101 If max_fast is 0, we know that av hasn't
4102 yet been initialized, in which case do so below
4105 if (get_max_fast () != 0) {
4106 clear_fastchunks(av);
4108 unsorted_bin = unsorted_chunks(av);
4111 Remove each chunk from fast bin and consolidate it, placing it
4112 then in unsorted bin. Among other reasons for doing this,
4113 placing in unsorted bin avoids needing to calculate actual bins
4114 until malloc is sure that chunks aren't immediately going to be
4115 reused anyway.
4118 maxfb = &fastbin (av, NFASTBINS - 1);
4119 fb = &fastbin (av, 0);
4120 do {
4121 p = atomic_exchange_acq (fb, 0);
4122 if (p != 0) {
4123 do {
4124 check_inuse_chunk(av, p);
4125 nextp = p->fd;
4127 /* Slightly streamlined version of consolidation code in free() */
4128 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
4129 nextchunk = chunk_at_offset(p, size);
4130 nextsize = chunksize(nextchunk);
4132 if (!prev_inuse(p)) {
4133 prevsize = p->prev_size;
4134 size += prevsize;
4135 p = chunk_at_offset(p, -((long) prevsize));
4136 unlink(p, bck, fwd);
4139 if (nextchunk != av->top) {
4140 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4142 if (!nextinuse) {
4143 size += nextsize;
4144 unlink(nextchunk, bck, fwd);
4145 } else
4146 clear_inuse_bit_at_offset(nextchunk, 0);
4148 first_unsorted = unsorted_bin->fd;
4149 unsorted_bin->fd = p;
4150 first_unsorted->bk = p;
4152 if (!in_smallbin_range (size)) {
4153 p->fd_nextsize = NULL;
4154 p->bk_nextsize = NULL;
4157 set_head(p, size | PREV_INUSE);
4158 p->bk = unsorted_bin;
4159 p->fd = first_unsorted;
4160 set_foot(p, size);
4163 else {
4164 size += nextsize;
4165 set_head(p, size | PREV_INUSE);
4166 av->top = p;
4169 } while ( (p = nextp) != 0);
4172 } while (fb++ != maxfb);
4174 else {
4175 malloc_init_state(av);
4176 check_malloc_state(av);
4181 ------------------------------ realloc ------------------------------
4184 void*
4185 _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4186 INTERNAL_SIZE_T nb)
4188 mchunkptr newp; /* chunk to return */
4189 INTERNAL_SIZE_T newsize; /* its size */
4190 void* newmem; /* corresponding user mem */
4192 mchunkptr next; /* next contiguous chunk after oldp */
4194 mchunkptr remainder; /* extra space at end of newp */
4195 unsigned long remainder_size; /* its size */
4197 mchunkptr bck; /* misc temp for linking */
4198 mchunkptr fwd; /* misc temp for linking */
4200 unsigned long copysize; /* bytes to copy */
4201 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4202 INTERNAL_SIZE_T* s; /* copy source */
4203 INTERNAL_SIZE_T* d; /* copy destination */
4205 const char *errstr = NULL;
4207 /* oldmem size */
4208 if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
4209 || __builtin_expect (oldsize >= av->system_mem, 0))
4211 errstr = "realloc(): invalid old size";
4212 errout:
4213 malloc_printerr (check_action, errstr, chunk2mem(oldp));
4214 return NULL;
4217 check_inuse_chunk(av, oldp);
4219 /* All callers already filter out mmap'ed chunks. */
4220 assert (!chunk_is_mmapped(oldp));
4222 next = chunk_at_offset(oldp, oldsize);
4223 INTERNAL_SIZE_T nextsize = chunksize(next);
4224 if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
4225 || __builtin_expect (nextsize >= av->system_mem, 0))
4227 errstr = "realloc(): invalid next size";
4228 goto errout;
4231 if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
4232 /* already big enough; split below */
4233 newp = oldp;
4234 newsize = oldsize;
4237 else {
4238 /* Try to expand forward into top */
4239 if (next == av->top &&
4240 (unsigned long)(newsize = oldsize + nextsize) >=
4241 (unsigned long)(nb + MINSIZE)) {
4242 set_head_size(oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4243 av->top = chunk_at_offset(oldp, nb);
4244 set_head(av->top, (newsize - nb) | PREV_INUSE);
4245 check_inuse_chunk(av, oldp);
4246 return chunk2mem(oldp);
4249 /* Try to expand forward into next chunk; split off remainder below */
4250 else if (next != av->top &&
4251 !inuse(next) &&
4252 (unsigned long)(newsize = oldsize + nextsize) >=
4253 (unsigned long)(nb)) {
4254 newp = oldp;
4255 unlink(next, bck, fwd);
4258 /* allocate, copy, free */
4259 else {
4260 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
4261 if (newmem == 0)
4262 return 0; /* propagate failure */
4264 newp = mem2chunk(newmem);
4265 newsize = chunksize(newp);
4268 Avoid copy if newp is next chunk after oldp.
4270 if (newp == next) {
4271 newsize += oldsize;
4272 newp = oldp;
4274 else {
4276 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4277 We know that contents have an odd number of
4278 INTERNAL_SIZE_T-sized words; minimally 3.
4281 copysize = oldsize - SIZE_SZ;
4282 s = (INTERNAL_SIZE_T*)(chunk2mem(oldp));
4283 d = (INTERNAL_SIZE_T*)(newmem);
4284 ncopies = copysize / sizeof(INTERNAL_SIZE_T);
4285 assert(ncopies >= 3);
4287 if (ncopies > 9)
4288 MALLOC_COPY(d, s, copysize);
4290 else {
4291 *(d+0) = *(s+0);
4292 *(d+1) = *(s+1);
4293 *(d+2) = *(s+2);
4294 if (ncopies > 4) {
4295 *(d+3) = *(s+3);
4296 *(d+4) = *(s+4);
4297 if (ncopies > 6) {
4298 *(d+5) = *(s+5);
4299 *(d+6) = *(s+6);
4300 if (ncopies > 8) {
4301 *(d+7) = *(s+7);
4302 *(d+8) = *(s+8);
4308 _int_free(av, oldp, 1);
4309 check_inuse_chunk(av, newp);
4310 return chunk2mem(newp);
4315 /* If possible, free extra space in old or extended chunk */
4317 assert((unsigned long)(newsize) >= (unsigned long)(nb));
4319 remainder_size = newsize - nb;
4321 if (remainder_size < MINSIZE) { /* not enough extra to split off */
4322 set_head_size(newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4323 set_inuse_bit_at_offset(newp, newsize);
4325 else { /* split remainder */
4326 remainder = chunk_at_offset(newp, nb);
4327 set_head_size(newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4328 set_head(remainder, remainder_size | PREV_INUSE |
4329 (av != &main_arena ? NON_MAIN_ARENA : 0));
4330 /* Mark remainder as inuse so free() won't complain */
4331 set_inuse_bit_at_offset(remainder, remainder_size);
4332 _int_free(av, remainder, 1);
4335 check_inuse_chunk(av, newp);
4336 return chunk2mem(newp);
4340 ------------------------------ memalign ------------------------------
4343 static void*
4344 _int_memalign(mstate av, size_t alignment, size_t bytes)
4346 INTERNAL_SIZE_T nb; /* padded request size */
4347 char* m; /* memory returned by malloc call */
4348 mchunkptr p; /* corresponding chunk */
4349 char* brk; /* alignment point within p */
4350 mchunkptr newp; /* chunk to return */
4351 INTERNAL_SIZE_T newsize; /* its size */
4352 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4353 mchunkptr remainder; /* spare room at end to split off */
4354 unsigned long remainder_size; /* its size */
4355 INTERNAL_SIZE_T size;
4357 /* If need less alignment than we give anyway, just relay to malloc */
4359 if (alignment <= MALLOC_ALIGNMENT) return _int_malloc(av, bytes);
4361 /* Otherwise, ensure that it is at least a minimum chunk size */
4363 if (alignment < MINSIZE) alignment = MINSIZE;
4365 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
4366 if ((alignment & (alignment - 1)) != 0) {
4367 size_t a = MALLOC_ALIGNMENT * 2;
4368 while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
4369 alignment = a;
4372 checked_request2size(bytes, nb);
4375 Strategy: find a spot within that chunk that meets the alignment
4376 request, and then possibly free the leading and trailing space.
4380 /* Call malloc with worst case padding to hit alignment. */
4382 m = (char*)(_int_malloc(av, nb + alignment + MINSIZE));
4384 if (m == 0) return 0; /* propagate failure */
4386 p = mem2chunk(m);
4388 if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
4391 Find an aligned spot inside chunk. Since we need to give back
4392 leading space in a chunk of at least MINSIZE, if the first
4393 calculation places us at a spot with less than MINSIZE leader,
4394 we can move to the next aligned spot -- we've allocated enough
4395 total room so that this is always possible.
4398 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
4399 -((signed long) alignment));
4400 if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
4401 brk += alignment;
4403 newp = (mchunkptr)brk;
4404 leadsize = brk - (char*)(p);
4405 newsize = chunksize(p) - leadsize;
4407 /* For mmapped chunks, just adjust offset */
4408 if (chunk_is_mmapped(p)) {
4409 newp->prev_size = p->prev_size + leadsize;
4410 set_head(newp, newsize|IS_MMAPPED);
4411 return chunk2mem(newp);
4414 /* Otherwise, give back leader, use the rest */
4415 set_head(newp, newsize | PREV_INUSE |
4416 (av != &main_arena ? NON_MAIN_ARENA : 0));
4417 set_inuse_bit_at_offset(newp, newsize);
4418 set_head_size(p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4419 _int_free(av, p, 1);
4420 p = newp;
4422 assert (newsize >= nb &&
4423 (((unsigned long)(chunk2mem(p))) % alignment) == 0);
4426 /* Also give back spare room at the end */
4427 if (!chunk_is_mmapped(p)) {
4428 size = chunksize(p);
4429 if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
4430 remainder_size = size - nb;
4431 remainder = chunk_at_offset(p, nb);
4432 set_head(remainder, remainder_size | PREV_INUSE |
4433 (av != &main_arena ? NON_MAIN_ARENA : 0));
4434 set_head_size(p, nb);
4435 _int_free(av, remainder, 1);
4439 check_inuse_chunk(av, p);
4440 return chunk2mem(p);
4445 ------------------------------ valloc ------------------------------
4448 static void*
4449 _int_valloc(mstate av, size_t bytes)
4451 /* Ensure initialization/consolidation */
4452 if (have_fastchunks(av)) malloc_consolidate(av);
4453 return _int_memalign(av, GLRO(dl_pagesize), bytes);
4457 ------------------------------ pvalloc ------------------------------
4461 static void*
4462 _int_pvalloc(mstate av, size_t bytes)
4464 size_t pagesz;
4466 /* Ensure initialization/consolidation */
4467 if (have_fastchunks(av)) malloc_consolidate(av);
4468 pagesz = GLRO(dl_pagesize);
4469 return _int_memalign(av, pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
4474 ------------------------------ malloc_trim ------------------------------
4477 static int mtrim(mstate av, size_t pad)
4479 /* Ensure initialization/consolidation */
4480 malloc_consolidate (av);
4482 const size_t ps = GLRO(dl_pagesize);
4483 int psindex = bin_index (ps);
4484 const size_t psm1 = ps - 1;
4486 int result = 0;
4487 for (int i = 1; i < NBINS; ++i)
4488 if (i == 1 || i >= psindex)
4490 mbinptr bin = bin_at (av, i);
4492 for (mchunkptr p = last (bin); p != bin; p = p->bk)
4494 INTERNAL_SIZE_T size = chunksize (p);
4496 if (size > psm1 + sizeof (struct malloc_chunk))
4498 /* See whether the chunk contains at least one unused page. */
4499 char *paligned_mem = (char *) (((uintptr_t) p
4500 + sizeof (struct malloc_chunk)
4501 + psm1) & ~psm1);
4503 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
4504 assert ((char *) p + size > paligned_mem);
4506 /* This is the size we could potentially free. */
4507 size -= paligned_mem - (char *) p;
4509 if (size > psm1)
4511 #ifdef MALLOC_DEBUG
4512 /* When debugging we simulate destroying the memory
4513 content. */
4514 memset (paligned_mem, 0x89, size & ~psm1);
4515 #endif
4516 madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
4518 result = 1;
4524 #ifndef MORECORE_CANNOT_TRIM
4525 return result | (av == &main_arena ? systrim (pad, av) : 0);
4526 #else
4527 return result;
4528 #endif
4533 __malloc_trim(size_t s)
4535 int result = 0;
4537 if(__malloc_initialized < 0)
4538 ptmalloc_init ();
4540 mstate ar_ptr = &main_arena;
4543 (void) mutex_lock (&ar_ptr->mutex);
4544 result |= mtrim (ar_ptr, s);
4545 (void) mutex_unlock (&ar_ptr->mutex);
4547 ar_ptr = ar_ptr->next;
4549 while (ar_ptr != &main_arena);
4551 return result;
4556 ------------------------- malloc_usable_size -------------------------
4559 static size_t
4560 musable(void* mem)
4562 mchunkptr p;
4563 if (mem != 0) {
4564 p = mem2chunk(mem);
4565 if (chunk_is_mmapped(p))
4566 return chunksize(p) - 2*SIZE_SZ;
4567 else if (inuse(p))
4568 return chunksize(p) - SIZE_SZ;
4570 return 0;
4574 size_t
4575 __malloc_usable_size(void* m)
4577 size_t result;
4579 result = musable(m);
4580 return result;
4584 ------------------------------ mallinfo ------------------------------
4585 Accumulate malloc statistics for arena AV into M.
4588 static void
4589 int_mallinfo(mstate av, struct mallinfo *m)
4591 size_t i;
4592 mbinptr b;
4593 mchunkptr p;
4594 INTERNAL_SIZE_T avail;
4595 INTERNAL_SIZE_T fastavail;
4596 int nblocks;
4597 int nfastblocks;
4599 /* Ensure initialization */
4600 if (av->top == 0) malloc_consolidate(av);
4602 check_malloc_state(av);
4604 /* Account for top */
4605 avail = chunksize(av->top);
4606 nblocks = 1; /* top always exists */
4608 /* traverse fastbins */
4609 nfastblocks = 0;
4610 fastavail = 0;
4612 for (i = 0; i < NFASTBINS; ++i) {
4613 for (p = fastbin (av, i); p != 0; p = p->fd) {
4614 ++nfastblocks;
4615 fastavail += chunksize(p);
4619 avail += fastavail;
4621 /* traverse regular bins */
4622 for (i = 1; i < NBINS; ++i) {
4623 b = bin_at(av, i);
4624 for (p = last(b); p != b; p = p->bk) {
4625 ++nblocks;
4626 avail += chunksize(p);
4630 m->smblks += nfastblocks;
4631 m->ordblks += nblocks;
4632 m->fordblks += avail;
4633 m->uordblks += av->system_mem - avail;
4634 m->arena += av->system_mem;
4635 m->fsmblks += fastavail;
4636 if (av == &main_arena)
4638 m->hblks = mp_.n_mmaps;
4639 m->hblkhd = mp_.mmapped_mem;
4640 m->usmblks = mp_.max_total_mem;
4641 m->keepcost = chunksize(av->top);
4646 struct mallinfo __libc_mallinfo()
4648 struct mallinfo m;
4649 mstate ar_ptr;
4651 if(__malloc_initialized < 0)
4652 ptmalloc_init ();
4654 memset(&m, 0, sizeof (m));
4655 ar_ptr = &main_arena;
4656 do {
4657 (void)mutex_lock(&ar_ptr->mutex);
4658 int_mallinfo(ar_ptr, &m);
4659 (void)mutex_unlock(&ar_ptr->mutex);
4661 ar_ptr = ar_ptr->next;
4662 } while (ar_ptr != &main_arena);
4664 return m;
4668 ------------------------------ malloc_stats ------------------------------
4671 void
4672 __malloc_stats()
4674 int i;
4675 mstate ar_ptr;
4676 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
4677 #if THREAD_STATS
4678 long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
4679 #endif
4681 if(__malloc_initialized < 0)
4682 ptmalloc_init ();
4683 _IO_flockfile (stderr);
4684 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
4685 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
4686 for (i=0, ar_ptr = &main_arena;; i++) {
4687 struct mallinfo mi;
4689 memset(&mi, 0, sizeof(mi));
4690 (void)mutex_lock(&ar_ptr->mutex);
4691 int_mallinfo(ar_ptr, &mi);
4692 fprintf(stderr, "Arena %d:\n", i);
4693 fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
4694 fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
4695 #if MALLOC_DEBUG > 1
4696 if (i > 0)
4697 dump_heap(heap_for_ptr(top(ar_ptr)));
4698 #endif
4699 system_b += mi.arena;
4700 in_use_b += mi.uordblks;
4701 #if THREAD_STATS
4702 stat_lock_direct += ar_ptr->stat_lock_direct;
4703 stat_lock_loop += ar_ptr->stat_lock_loop;
4704 stat_lock_wait += ar_ptr->stat_lock_wait;
4705 #endif
4706 (void)mutex_unlock(&ar_ptr->mutex);
4707 ar_ptr = ar_ptr->next;
4708 if(ar_ptr == &main_arena) break;
4710 fprintf(stderr, "Total (incl. mmap):\n");
4711 fprintf(stderr, "system bytes = %10u\n", system_b);
4712 fprintf(stderr, "in use bytes = %10u\n", in_use_b);
4713 fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)mp_.max_n_mmaps);
4714 fprintf(stderr, "max mmap bytes = %10lu\n",
4715 (unsigned long)mp_.max_mmapped_mem);
4716 #if THREAD_STATS
4717 fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
4718 fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
4719 fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
4720 fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
4721 fprintf(stderr, "locked total = %10ld\n",
4722 stat_lock_direct + stat_lock_loop + stat_lock_wait);
4723 #endif
4724 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
4725 _IO_funlockfile (stderr);
4730 ------------------------------ mallopt ------------------------------
4733 int __libc_mallopt(int param_number, int value)
4735 mstate av = &main_arena;
4736 int res = 1;
4738 if(__malloc_initialized < 0)
4739 ptmalloc_init ();
4740 (void)mutex_lock(&av->mutex);
4741 /* Ensure initialization/consolidation */
4742 malloc_consolidate(av);
4744 switch(param_number) {
4745 case M_MXFAST:
4746 if (value >= 0 && value <= MAX_FAST_SIZE) {
4747 set_max_fast(value);
4749 else
4750 res = 0;
4751 break;
4753 case M_TRIM_THRESHOLD:
4754 mp_.trim_threshold = value;
4755 mp_.no_dyn_threshold = 1;
4756 break;
4758 case M_TOP_PAD:
4759 mp_.top_pad = value;
4760 mp_.no_dyn_threshold = 1;
4761 break;
4763 case M_MMAP_THRESHOLD:
4764 /* Forbid setting the threshold too high. */
4765 if((unsigned long)value > HEAP_MAX_SIZE/2)
4766 res = 0;
4767 else
4768 mp_.mmap_threshold = value;
4769 mp_.no_dyn_threshold = 1;
4770 break;
4772 case M_MMAP_MAX:
4773 mp_.n_mmaps_max = value;
4774 mp_.no_dyn_threshold = 1;
4775 break;
4777 case M_CHECK_ACTION:
4778 check_action = value;
4779 break;
4781 case M_PERTURB:
4782 perturb_byte = value;
4783 break;
4785 #ifdef PER_THREAD
4786 case M_ARENA_TEST:
4787 if (value > 0)
4788 mp_.arena_test = value;
4789 break;
4791 case M_ARENA_MAX:
4792 if (value > 0)
4793 mp_.arena_max = value;
4794 break;
4795 #endif
4797 (void)mutex_unlock(&av->mutex);
4798 return res;
4800 libc_hidden_def (__libc_mallopt)
4804 -------------------- Alternative MORECORE functions --------------------
4809 General Requirements for MORECORE.
4811 The MORECORE function must have the following properties:
4813 If MORECORE_CONTIGUOUS is false:
4815 * MORECORE must allocate in multiples of pagesize. It will
4816 only be called with arguments that are multiples of pagesize.
4818 * MORECORE(0) must return an address that is at least
4819 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
4821 else (i.e. If MORECORE_CONTIGUOUS is true):
4823 * Consecutive calls to MORECORE with positive arguments
4824 return increasing addresses, indicating that space has been
4825 contiguously extended.
4827 * MORECORE need not allocate in multiples of pagesize.
4828 Calls to MORECORE need not have args of multiples of pagesize.
4830 * MORECORE need not page-align.
4832 In either case:
4834 * MORECORE may allocate more memory than requested. (Or even less,
4835 but this will generally result in a malloc failure.)
4837 * MORECORE must not allocate memory when given argument zero, but
4838 instead return one past the end address of memory from previous
4839 nonzero call. This malloc does NOT call MORECORE(0)
4840 until at least one call with positive arguments is made, so
4841 the initial value returned is not important.
4843 * Even though consecutive calls to MORECORE need not return contiguous
4844 addresses, it must be OK for malloc'ed chunks to span multiple
4845 regions in those cases where they do happen to be contiguous.
4847 * MORECORE need not handle negative arguments -- it may instead
4848 just return MORECORE_FAILURE when given negative arguments.
4849 Negative arguments are always multiples of pagesize. MORECORE
4850 must not misinterpret negative args as large positive unsigned
4851 args. You can suppress all such calls from even occurring by defining
4852 MORECORE_CANNOT_TRIM,
4854 There is some variation across systems about the type of the
4855 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
4856 actually be size_t, because sbrk supports negative args, so it is
4857 normally the signed type of the same width as size_t (sometimes
4858 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
4859 matter though. Internally, we use "long" as arguments, which should
4860 work across all reasonable possibilities.
4862 Additionally, if MORECORE ever returns failure for a positive
4863 request, then mmap is used as a noncontiguous system allocator. This
4864 is a useful backup strategy for systems with holes in address spaces
4865 -- in this case sbrk cannot contiguously expand the heap, but mmap
4866 may be able to map noncontiguous space.
4868 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
4869 a function that always returns MORECORE_FAILURE.
4871 If you are using this malloc with something other than sbrk (or its
4872 emulation) to supply memory regions, you probably want to set
4873 MORECORE_CONTIGUOUS as false. As an example, here is a custom
4874 allocator kindly contributed for pre-OSX macOS. It uses virtually
4875 but not necessarily physically contiguous non-paged memory (locked
4876 in, present and won't get swapped out). You can use it by
4877 uncommenting this section, adding some #includes, and setting up the
4878 appropriate defines above:
4880 #define MORECORE osMoreCore
4881 #define MORECORE_CONTIGUOUS 0
4883 There is also a shutdown routine that should somehow be called for
4884 cleanup upon program exit.
4886 #define MAX_POOL_ENTRIES 100
4887 #define MINIMUM_MORECORE_SIZE (64 * 1024)
4888 static int next_os_pool;
4889 void *our_os_pools[MAX_POOL_ENTRIES];
4891 void *osMoreCore(int size)
4893 void *ptr = 0;
4894 static void *sbrk_top = 0;
4896 if (size > 0)
4898 if (size < MINIMUM_MORECORE_SIZE)
4899 size = MINIMUM_MORECORE_SIZE;
4900 if (CurrentExecutionLevel() == kTaskLevel)
4901 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4902 if (ptr == 0)
4904 return (void *) MORECORE_FAILURE;
4906 // save ptrs so they can be freed during cleanup
4907 our_os_pools[next_os_pool] = ptr;
4908 next_os_pool++;
4909 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4910 sbrk_top = (char *) ptr + size;
4911 return ptr;
4913 else if (size < 0)
4915 // we don't currently support shrink behavior
4916 return (void *) MORECORE_FAILURE;
4918 else
4920 return sbrk_top;
4924 // cleanup any allocated memory pools
4925 // called as last thing before shutting down driver
4927 void osCleanupMem(void)
4929 void **ptr;
4931 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4932 if (*ptr)
4934 PoolDeallocate(*ptr);
4935 *ptr = 0;
4942 /* Helper code. */
4944 extern char **__libc_argv attribute_hidden;
4946 static void
4947 malloc_printerr(int action, const char *str, void *ptr)
4949 if ((action & 5) == 5)
4950 __libc_message (action & 2, "%s\n", str);
4951 else if (action & 1)
4953 char buf[2 * sizeof (uintptr_t) + 1];
4955 buf[sizeof (buf) - 1] = '\0';
4956 char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
4957 while (cp > buf)
4958 *--cp = '0';
4960 __libc_message (action & 2,
4961 "*** glibc detected *** %s: %s: 0x%s ***\n",
4962 __libc_argv[0] ?: "<unknown>", str, cp);
4964 else if (action & 2)
4965 abort ();
4968 #include <sys/param.h>
4970 /* We need a wrapper function for one of the additions of POSIX. */
4972 __posix_memalign (void **memptr, size_t alignment, size_t size)
4974 void *mem;
4976 /* Test whether the SIZE argument is valid. It must be a power of
4977 two multiple of sizeof (void *). */
4978 if (alignment % sizeof (void *) != 0
4979 || !powerof2 (alignment / sizeof (void *)) != 0
4980 || alignment == 0)
4981 return EINVAL;
4983 /* Call the hook here, so that caller is posix_memalign's caller
4984 and not posix_memalign itself. */
4985 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
4986 const __malloc_ptr_t)) =
4987 force_reg (__memalign_hook);
4988 if (__builtin_expect (hook != NULL, 0))
4989 mem = (*hook)(alignment, size, RETURN_ADDRESS (0));
4990 else
4991 mem = __libc_memalign (alignment, size);
4993 if (mem != NULL) {
4994 *memptr = mem;
4995 return 0;
4998 return ENOMEM;
5000 weak_alias (__posix_memalign, posix_memalign)
5004 malloc_info (int options, FILE *fp)
5006 /* For now, at least. */
5007 if (options != 0)
5008 return EINVAL;
5010 int n = 0;
5011 size_t total_nblocks = 0;
5012 size_t total_nfastblocks = 0;
5013 size_t total_avail = 0;
5014 size_t total_fastavail = 0;
5015 size_t total_system = 0;
5016 size_t total_max_system = 0;
5017 size_t total_aspace = 0;
5018 size_t total_aspace_mprotect = 0;
5020 void mi_arena (mstate ar_ptr)
5022 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5024 size_t nblocks = 0;
5025 size_t nfastblocks = 0;
5026 size_t avail = 0;
5027 size_t fastavail = 0;
5028 struct
5030 size_t from;
5031 size_t to;
5032 size_t total;
5033 size_t count;
5034 } sizes[NFASTBINS + NBINS - 1];
5035 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5037 mutex_lock (&ar_ptr->mutex);
5039 for (size_t i = 0; i < NFASTBINS; ++i)
5041 mchunkptr p = fastbin (ar_ptr, i);
5042 if (p != NULL)
5044 size_t nthissize = 0;
5045 size_t thissize = chunksize (p);
5047 while (p != NULL)
5049 ++nthissize;
5050 p = p->fd;
5053 fastavail += nthissize * thissize;
5054 nfastblocks += nthissize;
5055 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5056 sizes[i].to = thissize;
5057 sizes[i].count = nthissize;
5059 else
5060 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5062 sizes[i].total = sizes[i].count * sizes[i].to;
5065 mbinptr bin = bin_at (ar_ptr, 1);
5066 struct malloc_chunk *r = bin->fd;
5067 if (r != NULL)
5069 while (r != bin)
5071 ++sizes[NFASTBINS].count;
5072 sizes[NFASTBINS].total += r->size;
5073 sizes[NFASTBINS].from = MIN (sizes[NFASTBINS].from, r->size);
5074 sizes[NFASTBINS].to = MAX (sizes[NFASTBINS].to, r->size);
5075 r = r->fd;
5077 nblocks += sizes[NFASTBINS].count;
5078 avail += sizes[NFASTBINS].total;
5081 for (size_t i = 2; i < NBINS; ++i)
5083 bin = bin_at (ar_ptr, i);
5084 r = bin->fd;
5085 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5086 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5087 = sizes[NFASTBINS - 1 + i].count = 0;
5089 if (r != NULL)
5090 while (r != bin)
5092 ++sizes[NFASTBINS - 1 + i].count;
5093 sizes[NFASTBINS - 1 + i].total += r->size;
5094 sizes[NFASTBINS - 1 + i].from
5095 = MIN (sizes[NFASTBINS - 1 + i].from, r->size);
5096 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5097 r->size);
5099 r = r->fd;
5102 if (sizes[NFASTBINS - 1 + i].count == 0)
5103 sizes[NFASTBINS - 1 + i].from = 0;
5104 nblocks += sizes[NFASTBINS - 1 + i].count;
5105 avail += sizes[NFASTBINS - 1 + i].total;
5108 mutex_unlock (&ar_ptr->mutex);
5110 total_nfastblocks += nfastblocks;
5111 total_fastavail += fastavail;
5113 total_nblocks += nblocks;
5114 total_avail += avail;
5116 for (size_t i = 0; i < nsizes; ++i)
5117 if (sizes[i].count != 0 && i != NFASTBINS)
5118 fprintf (fp, "\
5119 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5120 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5122 if (sizes[NFASTBINS].count != 0)
5123 fprintf (fp, "\
5124 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5125 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5126 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5128 total_system += ar_ptr->system_mem;
5129 total_max_system += ar_ptr->max_system_mem;
5131 fprintf (fp,
5132 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5133 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5134 "<system type=\"current\" size=\"%zu\"/>\n"
5135 "<system type=\"max\" size=\"%zu\"/>\n",
5136 nfastblocks, fastavail, nblocks, avail,
5137 ar_ptr->system_mem, ar_ptr->max_system_mem);
5139 if (ar_ptr != &main_arena)
5141 heap_info *heap = heap_for_ptr(top(ar_ptr));
5142 fprintf (fp,
5143 "<aspace type=\"total\" size=\"%zu\"/>\n"
5144 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5145 heap->size, heap->mprotect_size);
5146 total_aspace += heap->size;
5147 total_aspace_mprotect += heap->mprotect_size;
5149 else
5151 fprintf (fp,
5152 "<aspace type=\"total\" size=\"%zu\"/>\n"
5153 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5154 ar_ptr->system_mem, ar_ptr->system_mem);
5155 total_aspace += ar_ptr->system_mem;
5156 total_aspace_mprotect += ar_ptr->system_mem;
5159 fputs ("</heap>\n", fp);
5162 if(__malloc_initialized < 0)
5163 ptmalloc_init ();
5165 fputs ("<malloc version=\"1\">\n", fp);
5167 /* Iterate over all arenas currently in use. */
5168 mstate ar_ptr = &main_arena;
5171 mi_arena (ar_ptr);
5172 ar_ptr = ar_ptr->next;
5174 while (ar_ptr != &main_arena);
5176 fprintf (fp,
5177 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5178 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5179 "<system type=\"current\" size=\"%zu\"/>\n"
5180 "<system type=\"max\" size=\"%zu\"/>\n"
5181 "<aspace type=\"total\" size=\"%zu\"/>\n"
5182 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5183 "</malloc>\n",
5184 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5185 total_system, total_max_system,
5186 total_aspace, total_aspace_mprotect);
5188 return 0;
5192 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5193 strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
5194 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5195 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5196 strong_alias (__libc_memalign, __memalign)
5197 weak_alias (__libc_memalign, memalign)
5198 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5199 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5200 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5201 strong_alias (__libc_mallinfo, __mallinfo)
5202 weak_alias (__libc_mallinfo, mallinfo)
5203 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5205 weak_alias (__malloc_stats, malloc_stats)
5206 weak_alias (__malloc_usable_size, malloc_usable_size)
5207 weak_alias (__malloc_trim, malloc_trim)
5208 weak_alias (__malloc_get_state, malloc_get_state)
5209 weak_alias (__malloc_set_state, malloc_set_state)
5212 /* ------------------------------------------------------------
5213 History:
5215 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5219 * Local variables:
5220 * c-basic-offset: 2
5221 * End: