Remove --enable-tunables configure option
[glibc.git] / manual / string.texi
blobe06433187eb1be512314b7cec2ce7c99abd90198
1 @node String and Array Utilities, Character Set Handling, Character Handling, Top
2 @c %MENU% Utilities for copying and comparing strings and arrays
3 @chapter String and Array Utilities
5 Operations on strings (null-terminated byte sequences) are an important part of
6 many programs.  @Theglibc{} provides an extensive set of string
7 utility functions, including functions for copying, concatenating,
8 comparing, and searching strings.  Many of these functions can also
9 operate on arbitrary regions of storage; for example, the @code{memcpy}
10 function can be used to copy the contents of any kind of array.
12 It's fairly common for beginning C programmers to ``reinvent the wheel''
13 by duplicating this functionality in their own code, but it pays to
14 become familiar with the library functions and to make use of them,
15 since this offers benefits in maintenance, efficiency, and portability.
17 For instance, you could easily compare one string to another in two
18 lines of C code, but if you use the built-in @code{strcmp} function,
19 you're less likely to make a mistake.  And, since these library
20 functions are typically highly optimized, your program may run faster
21 too.
23 @menu
24 * Representation of Strings::   Introduction to basic concepts.
25 * String/Array Conventions::    Whether to use a string function or an
26                                  arbitrary array function.
27 * String Length::               Determining the length of a string.
28 * Copying Strings and Arrays::  Functions to copy strings and arrays.
29 * Concatenating Strings::       Functions to concatenate strings while copying.
30 * Truncating Strings::          Functions to truncate strings while copying.
31 * String/Array Comparison::     Functions for byte-wise and character-wise
32                                  comparison.
33 * Collation Functions::         Functions for collating strings.
34 * Search Functions::            Searching for a specific element or substring.
35 * Finding Tokens in a String::  Splitting a string into tokens by looking
36                                  for delimiters.
37 * Erasing Sensitive Data::      Clearing memory which contains sensitive
38                                  data, after it's no longer needed.
39 * Shuffling Bytes::             Or how to flash-cook a string.
40 * Obfuscating Data::            Reversibly obscuring data from casual view.
41 * Encode Binary Data::          Encoding and Decoding of Binary Data.
42 * Argz and Envz Vectors::       Null-separated string vectors.
43 @end menu
45 @node Representation of Strings
46 @section Representation of Strings
47 @cindex string, representation of
49 This section is a quick summary of string concepts for beginning C
50 programmers.  It describes how strings are represented in C
51 and some common pitfalls.  If you are already familiar with this
52 material, you can skip this section.
54 @cindex string
55 A @dfn{string} is a null-terminated array of bytes of type @code{char},
56 including the terminating null byte.  String-valued
57 variables are usually declared to be pointers of type @code{char *}.
58 Such variables do not include space for the text of a string; that has
59 to be stored somewhere else---in an array variable, a string constant,
60 or dynamically allocated memory (@pxref{Memory Allocation}).  It's up to
61 you to store the address of the chosen memory space into the pointer
62 variable.  Alternatively you can store a @dfn{null pointer} in the
63 pointer variable.  The null pointer does not point anywhere, so
64 attempting to reference the string it points to gets an error.
66 @cindex multibyte character
67 @cindex multibyte string
68 @cindex wide string
69 A @dfn{multibyte character} is a sequence of one or more bytes that
70 represents a single character using the locale's encoding scheme; a
71 null byte always represents the null character.  A @dfn{multibyte
72 string} is a string that consists entirely of multibyte
73 characters.  In contrast, a @dfn{wide string} is a null-terminated
74 sequence of @code{wchar_t} objects.  A wide-string variable is usually
75 declared to be a pointer of type @code{wchar_t *}, by analogy with
76 string variables and @code{char *}.  @xref{Extended Char Intro}.
78 @cindex null byte
79 @cindex null wide character
80 By convention, the @dfn{null byte}, @code{'\0'},
81 marks the end of a string and the @dfn{null wide character},
82 @code{L'\0'}, marks the end of a wide string.  For example, in
83 testing to see whether the @code{char *} variable @var{p} points to a
84 null byte marking the end of a string, you can write
85 @code{!*@var{p}} or @code{*@var{p} == '\0'}.
87 A null byte is quite different conceptually from a null pointer,
88 although both are represented by the integer constant @code{0}.
90 @cindex string literal
91 A @dfn{string literal} appears in C program source as a multibyte
92 string between double-quote characters (@samp{"}).  If the
93 initial double-quote character is immediately preceded by a capital
94 @samp{L} (ell) character (as in @code{L"foo"}), it is a wide string
95 literal.  String literals can also contribute to @dfn{string
96 concatenation}: @code{"a" "b"} is the same as @code{"ab"}.
97 For wide strings one can use either
98 @code{L"a" L"b"} or @code{L"a" "b"}.  Modification of string literals is
99 not allowed by the GNU C compiler, because literals are placed in
100 read-only storage.
102 Arrays that are declared @code{const} cannot be modified
103 either.  It's generally good style to declare non-modifiable string
104 pointers to be of type @code{const char *}, since this often allows the
105 C compiler to detect accidental modifications as well as providing some
106 amount of documentation about what your program intends to do with the
107 string.
109 The amount of memory allocated for a byte array may extend past the null byte
110 that marks the end of the string that the array contains.  In this
111 document, the term @dfn{allocated size} is always used to refer to the
112 total amount of memory allocated for an array, while the term
113 @dfn{length} refers to the number of bytes up to (but not including)
114 the terminating null byte.  Wide strings are similar, except their
115 sizes and lengths count wide characters, not bytes.
116 @cindex length of string
117 @cindex allocation size of string
118 @cindex size of string
119 @cindex string length
120 @cindex string allocation
122 A notorious source of program bugs is trying to put more bytes into a
123 string than fit in its allocated size.  When writing code that extends
124 strings or moves bytes into a pre-allocated array, you should be
125 very careful to keep track of the length of the text and make explicit
126 checks for overflowing the array.  Many of the library functions
127 @emph{do not} do this for you!  Remember also that you need to allocate
128 an extra byte to hold the null byte that marks the end of the
129 string.
131 @cindex single-byte string
132 @cindex multibyte string
133 Originally strings were sequences of bytes where each byte represented a
134 single character.  This is still true today if the strings are encoded
135 using a single-byte character encoding.  Things are different if the
136 strings are encoded using a multibyte encoding (for more information on
137 encodings see @ref{Extended Char Intro}).  There is no difference in
138 the programming interface for these two kind of strings; the programmer
139 has to be aware of this and interpret the byte sequences accordingly.
141 But since there is no separate interface taking care of these
142 differences the byte-based string functions are sometimes hard to use.
143 Since the count parameters of these functions specify bytes a call to
144 @code{memcpy} could cut a multibyte character in the middle and put an
145 incomplete (and therefore unusable) byte sequence in the target buffer.
147 @cindex wide string
148 To avoid these problems later versions of the @w{ISO C} standard
149 introduce a second set of functions which are operating on @dfn{wide
150 characters} (@pxref{Extended Char Intro}).  These functions don't have
151 the problems the single-byte versions have since every wide character is
152 a legal, interpretable value.  This does not mean that cutting wide
153 strings at arbitrary points is without problems.  It normally
154 is for alphabet-based languages (except for non-normalized text) but
155 languages based on syllables still have the problem that more than one
156 wide character is necessary to complete a logical unit.  This is a
157 higher level problem which the @w{C library} functions are not designed
158 to solve.  But it is at least good that no invalid byte sequences can be
159 created.  Also, the higher level functions can also much more easily operate
160 on wide characters than on multibyte characters so that a common strategy
161 is to use wide characters internally whenever text is more than simply
162 copied.
164 The remaining of this chapter will discuss the functions for handling
165 wide strings in parallel with the discussion of
166 strings since there is almost always an exact equivalent
167 available.
169 @node String/Array Conventions
170 @section String and Array Conventions
172 This chapter describes both functions that work on arbitrary arrays or
173 blocks of memory, and functions that are specific to strings and wide
174 strings.
176 Functions that operate on arbitrary blocks of memory have names
177 beginning with @samp{mem} and @samp{wmem} (such as @code{memcpy} and
178 @code{wmemcpy}) and invariably take an argument which specifies the size
179 (in bytes and wide characters respectively) of the block of memory to
180 operate on.  The array arguments and return values for these functions
181 have type @code{void *} or @code{wchar_t}.  As a matter of style, the
182 elements of the arrays used with the @samp{mem} functions are referred
183 to as ``bytes''.  You can pass any kind of pointer to these functions,
184 and the @code{sizeof} operator is useful in computing the value for the
185 size argument.  Parameters to the @samp{wmem} functions must be of type
186 @code{wchar_t *}.  These functions are not really usable with anything
187 but arrays of this type.
189 In contrast, functions that operate specifically on strings and wide
190 strings have names beginning with @samp{str} and @samp{wcs}
191 respectively (such as @code{strcpy} and @code{wcscpy}) and look for a
192 terminating null byte or null wide character instead of requiring an explicit
193 size argument to be passed.  (Some of these functions accept a specified
194 maximum length, but they also check for premature termination.)
195 The array arguments and return values for these
196 functions have type @code{char *} and @code{wchar_t *} respectively, and
197 the array elements are referred to as ``bytes'' and ``wide
198 characters''.
200 In many cases, there are both @samp{mem} and @samp{str}/@samp{wcs}
201 versions of a function.  The one that is more appropriate to use depends
202 on the exact situation.  When your program is manipulating arbitrary
203 arrays or blocks of storage, then you should always use the @samp{mem}
204 functions.  On the other hand, when you are manipulating
205 strings it is usually more convenient to use the @samp{str}/@samp{wcs}
206 functions, unless you already know the length of the string in advance.
207 The @samp{wmem} functions should be used for wide character arrays with
208 known size.
210 @cindex wint_t
211 @cindex parameter promotion
212 Some of the memory and string functions take single characters as
213 arguments.  Since a value of type @code{char} is automatically promoted
214 into a value of type @code{int} when used as a parameter, the functions
215 are declared with @code{int} as the type of the parameter in question.
216 In case of the wide character functions the situation is similar: the
217 parameter type for a single wide character is @code{wint_t} and not
218 @code{wchar_t}.  This would for many implementations not be necessary
219 since @code{wchar_t} is large enough to not be automatically
220 promoted, but since the @w{ISO C} standard does not require such a
221 choice of types the @code{wint_t} type is used.
223 @node String Length
224 @section String Length
226 You can get the length of a string using the @code{strlen} function.
227 This function is declared in the header file @file{string.h}.
228 @pindex string.h
230 @deftypefun size_t strlen (const char *@var{s})
231 @standards{ISO, string.h}
232 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
233 The @code{strlen} function returns the length of the
234 string @var{s} in bytes.  (In other words, it returns the offset of the
235 terminating null byte within the array.)
237 For example,
238 @smallexample
239 strlen ("hello, world")
240     @result{} 12
241 @end smallexample
243 When applied to an array, the @code{strlen} function returns
244 the length of the string stored there, not its allocated size.  You can
245 get the allocated size of the array that holds a string using
246 the @code{sizeof} operator:
248 @smallexample
249 char string[32] = "hello, world";
250 sizeof (string)
251     @result{} 32
252 strlen (string)
253     @result{} 12
254 @end smallexample
256 But beware, this will not work unless @var{string} is the
257 array itself, not a pointer to it.  For example:
259 @smallexample
260 char string[32] = "hello, world";
261 char *ptr = string;
262 sizeof (string)
263     @result{} 32
264 sizeof (ptr)
265     @result{} 4  /* @r{(on a machine with 4 byte pointers)} */
266 @end smallexample
268 This is an easy mistake to make when you are working with functions that
269 take string arguments; those arguments are always pointers, not arrays.
271 It must also be noted that for multibyte encoded strings the return
272 value does not have to correspond to the number of characters in the
273 string.  To get this value the string can be converted to wide
274 characters and @code{wcslen} can be used or something like the following
275 code can be used:
277 @smallexample
278 /* @r{The input is in @code{string}.}
279    @r{The length is expected in @code{n}.}  */
281   mbstate_t t;
282   char *scopy = string;
283   /* In initial state.  */
284   memset (&t, '\0', sizeof (t));
285   /* Determine number of characters.  */
286   n = mbsrtowcs (NULL, &scopy, strlen (scopy), &t);
288 @end smallexample
290 This is cumbersome to do so if the number of characters (as opposed to
291 bytes) is needed often it is better to work with wide characters.
292 @end deftypefun
294 The wide character equivalent is declared in @file{wchar.h}.
296 @deftypefun size_t wcslen (const wchar_t *@var{ws})
297 @standards{ISO, wchar.h}
298 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
299 The @code{wcslen} function is the wide character equivalent to
300 @code{strlen}.  The return value is the number of wide characters in the
301 wide string pointed to by @var{ws} (this is also the offset of
302 the terminating null wide character of @var{ws}).
304 Since there are no multi wide character sequences making up one wide
305 character the return value is not only the offset in the array, it is
306 also the number of wide characters.
308 This function was introduced in @w{Amendment 1} to @w{ISO C90}.
309 @end deftypefun
311 @deftypefun size_t strnlen (const char *@var{s}, size_t @var{maxlen})
312 @standards{GNU, string.h}
313 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
314 If the array @var{s} of size @var{maxlen} contains a null byte,
315 the @code{strnlen} function returns the length of the string @var{s} in
316 bytes.  Otherwise it
317 returns @var{maxlen}.  Therefore this function is equivalent to
318 @code{(strlen (@var{s}) < @var{maxlen} ? strlen (@var{s}) : @var{maxlen})}
319 but it
320 is more efficient and works even if @var{s} is not null-terminated so
321 long as @var{maxlen} does not exceed the size of @var{s}'s array.
323 @smallexample
324 char string[32] = "hello, world";
325 strnlen (string, 32)
326     @result{} 12
327 strnlen (string, 5)
328     @result{} 5
329 @end smallexample
331 This function is a GNU extension and is declared in @file{string.h}.
332 @end deftypefun
334 @deftypefun size_t wcsnlen (const wchar_t *@var{ws}, size_t @var{maxlen})
335 @standards{GNU, wchar.h}
336 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
337 @code{wcsnlen} is the wide character equivalent to @code{strnlen}.  The
338 @var{maxlen} parameter specifies the maximum number of wide characters.
340 This function is a GNU extension and is declared in @file{wchar.h}.
341 @end deftypefun
343 @node Copying Strings and Arrays
344 @section Copying Strings and Arrays
346 You can use the functions described in this section to copy the contents
347 of strings, wide strings, and arrays.  The @samp{str} and @samp{mem}
348 functions are declared in @file{string.h} while the @samp{w} functions
349 are declared in @file{wchar.h}.
350 @pindex string.h
351 @pindex wchar.h
352 @cindex copying strings and arrays
353 @cindex string copy functions
354 @cindex array copy functions
355 @cindex concatenating strings
356 @cindex string concatenation functions
358 A helpful way to remember the ordering of the arguments to the functions
359 in this section is that it corresponds to an assignment expression, with
360 the destination array specified to the left of the source array.  Most
361 of these functions return the address of the destination array; a few
362 return the address of the destination's terminating null, or of just
363 past the destination.
365 Most of these functions do not work properly if the source and
366 destination arrays overlap.  For example, if the beginning of the
367 destination array overlaps the end of the source array, the original
368 contents of that part of the source array may get overwritten before it
369 is copied.  Even worse, in the case of the string functions, the null
370 byte marking the end of the string may be lost, and the copy
371 function might get stuck in a loop trashing all the memory allocated to
372 your program.
374 All functions that have problems copying between overlapping arrays are
375 explicitly identified in this manual.  In addition to functions in this
376 section, there are a few others like @code{sprintf} (@pxref{Formatted
377 Output Functions}) and @code{scanf} (@pxref{Formatted Input
378 Functions}).
380 @deftypefun {void *} memcpy (void *restrict @var{to}, const void *restrict @var{from}, size_t @var{size})
381 @standards{ISO, string.h}
382 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
383 The @code{memcpy} function copies @var{size} bytes from the object
384 beginning at @var{from} into the object beginning at @var{to}.  The
385 behavior of this function is undefined if the two arrays @var{to} and
386 @var{from} overlap; use @code{memmove} instead if overlapping is possible.
388 The value returned by @code{memcpy} is the value of @var{to}.
390 Here is an example of how you might use @code{memcpy} to copy the
391 contents of an array:
393 @smallexample
394 struct foo *oldarray, *newarray;
395 int arraysize;
396 @dots{}
397 memcpy (new, old, arraysize * sizeof (struct foo));
398 @end smallexample
399 @end deftypefun
401 @deftypefun {wchar_t *} wmemcpy (wchar_t *restrict @var{wto}, const wchar_t *restrict @var{wfrom}, size_t @var{size})
402 @standards{ISO, wchar.h}
403 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
404 The @code{wmemcpy} function copies @var{size} wide characters from the object
405 beginning at @var{wfrom} into the object beginning at @var{wto}.  The
406 behavior of this function is undefined if the two arrays @var{wto} and
407 @var{wfrom} overlap; use @code{wmemmove} instead if overlapping is possible.
409 The following is a possible implementation of @code{wmemcpy} but there
410 are more optimizations possible.
412 @smallexample
413 wchar_t *
414 wmemcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
415          size_t size)
417   return (wchar_t *) memcpy (wto, wfrom, size * sizeof (wchar_t));
419 @end smallexample
421 The value returned by @code{wmemcpy} is the value of @var{wto}.
423 This function was introduced in @w{Amendment 1} to @w{ISO C90}.
424 @end deftypefun
426 @deftypefun {void *} mempcpy (void *restrict @var{to}, const void *restrict @var{from}, size_t @var{size})
427 @standards{GNU, string.h}
428 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
429 The @code{mempcpy} function is nearly identical to the @code{memcpy}
430 function.  It copies @var{size} bytes from the object beginning at
431 @code{from} into the object pointed to by @var{to}.  But instead of
432 returning the value of @var{to} it returns a pointer to the byte
433 following the last written byte in the object beginning at @var{to}.
434 I.e., the value is @code{((void *) ((char *) @var{to} + @var{size}))}.
436 This function is useful in situations where a number of objects shall be
437 copied to consecutive memory positions.
439 @smallexample
440 void *
441 combine (void *o1, size_t s1, void *o2, size_t s2)
443   void *result = malloc (s1 + s2);
444   if (result != NULL)
445     mempcpy (mempcpy (result, o1, s1), o2, s2);
446   return result;
448 @end smallexample
450 This function is a GNU extension.
451 @end deftypefun
453 @deftypefun {wchar_t *} wmempcpy (wchar_t *restrict @var{wto}, const wchar_t *restrict @var{wfrom}, size_t @var{size})
454 @standards{GNU, wchar.h}
455 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
456 The @code{wmempcpy} function is nearly identical to the @code{wmemcpy}
457 function.  It copies @var{size} wide characters from the object
458 beginning at @code{wfrom} into the object pointed to by @var{wto}.  But
459 instead of returning the value of @var{wto} it returns a pointer to the
460 wide character following the last written wide character in the object
461 beginning at @var{wto}.  I.e., the value is @code{@var{wto} + @var{size}}.
463 This function is useful in situations where a number of objects shall be
464 copied to consecutive memory positions.
466 The following is a possible implementation of @code{wmemcpy} but there
467 are more optimizations possible.
469 @smallexample
470 wchar_t *
471 wmempcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
472           size_t size)
474   return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));
476 @end smallexample
478 This function is a GNU extension.
479 @end deftypefun
481 @deftypefun {void *} memmove (void *@var{to}, const void *@var{from}, size_t @var{size})
482 @standards{ISO, string.h}
483 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
484 @code{memmove} copies the @var{size} bytes at @var{from} into the
485 @var{size} bytes at @var{to}, even if those two blocks of space
486 overlap.  In the case of overlap, @code{memmove} is careful to copy the
487 original values of the bytes in the block at @var{from}, including those
488 bytes which also belong to the block at @var{to}.
490 The value returned by @code{memmove} is the value of @var{to}.
491 @end deftypefun
493 @deftypefun {wchar_t *} wmemmove (wchar_t *@var{wto}, const wchar_t *@var{wfrom}, size_t @var{size})
494 @standards{ISO, wchar.h}
495 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
496 @code{wmemmove} copies the @var{size} wide characters at @var{wfrom}
497 into the @var{size} wide characters at @var{wto}, even if those two
498 blocks of space overlap.  In the case of overlap, @code{wmemmove} is
499 careful to copy the original values of the wide characters in the block
500 at @var{wfrom}, including those wide characters which also belong to the
501 block at @var{wto}.
503 The following is a possible implementation of @code{wmemcpy} but there
504 are more optimizations possible.
506 @smallexample
507 wchar_t *
508 wmempcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
509           size_t size)
511   return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));
513 @end smallexample
515 The value returned by @code{wmemmove} is the value of @var{wto}.
517 This function is a GNU extension.
518 @end deftypefun
520 @deftypefun {void *} memccpy (void *restrict @var{to}, const void *restrict @var{from}, int @var{c}, size_t @var{size})
521 @standards{SVID, string.h}
522 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
523 This function copies no more than @var{size} bytes from @var{from} to
524 @var{to}, stopping if a byte matching @var{c} is found.  The return
525 value is a pointer into @var{to} one byte past where @var{c} was copied,
526 or a null pointer if no byte matching @var{c} appeared in the first
527 @var{size} bytes of @var{from}.
528 @end deftypefun
530 @deftypefun {void *} memset (void *@var{block}, int @var{c}, size_t @var{size})
531 @standards{ISO, string.h}
532 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
533 This function copies the value of @var{c} (converted to an
534 @code{unsigned char}) into each of the first @var{size} bytes of the
535 object beginning at @var{block}.  It returns the value of @var{block}.
536 @end deftypefun
538 @deftypefun {wchar_t *} wmemset (wchar_t *@var{block}, wchar_t @var{wc}, size_t @var{size})
539 @standards{ISO, wchar.h}
540 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
541 This function copies the value of @var{wc} into each of the first
542 @var{size} wide characters of the object beginning at @var{block}.  It
543 returns the value of @var{block}.
544 @end deftypefun
546 @deftypefun {char *} strcpy (char *restrict @var{to}, const char *restrict @var{from})
547 @standards{ISO, string.h}
548 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
549 This copies bytes from the string @var{from} (up to and including
550 the terminating null byte) into the string @var{to}.  Like
551 @code{memcpy}, this function has undefined results if the strings
552 overlap.  The return value is the value of @var{to}.
553 @end deftypefun
555 @deftypefun {wchar_t *} wcscpy (wchar_t *restrict @var{wto}, const wchar_t *restrict @var{wfrom})
556 @standards{ISO, wchar.h}
557 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
558 This copies wide characters from the wide string @var{wfrom} (up to and
559 including the terminating null wide character) into the string
560 @var{wto}.  Like @code{wmemcpy}, this function has undefined results if
561 the strings overlap.  The return value is the value of @var{wto}.
562 @end deftypefun
564 @deftypefun {char *} strdup (const char *@var{s})
565 @standards{SVID, string.h}
566 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
567 This function copies the string @var{s} into a newly
568 allocated string.  The string is allocated using @code{malloc}; see
569 @ref{Unconstrained Allocation}.  If @code{malloc} cannot allocate space
570 for the new string, @code{strdup} returns a null pointer.  Otherwise it
571 returns a pointer to the new string.
572 @end deftypefun
574 @deftypefun {wchar_t *} wcsdup (const wchar_t *@var{ws})
575 @standards{GNU, wchar.h}
576 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
577 This function copies the wide string @var{ws}
578 into a newly allocated string.  The string is allocated using
579 @code{malloc}; see @ref{Unconstrained Allocation}.  If @code{malloc}
580 cannot allocate space for the new string, @code{wcsdup} returns a null
581 pointer.  Otherwise it returns a pointer to the new wide string.
583 This function is a GNU extension.
584 @end deftypefun
586 @deftypefun {char *} stpcpy (char *restrict @var{to}, const char *restrict @var{from})
587 @standards{Unknown origin, string.h}
588 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
589 This function is like @code{strcpy}, except that it returns a pointer to
590 the end of the string @var{to} (that is, the address of the terminating
591 null byte @code{to + strlen (from)}) rather than the beginning.
593 For example, this program uses @code{stpcpy} to concatenate @samp{foo}
594 and @samp{bar} to produce @samp{foobar}, which it then prints.
596 @smallexample
597 @include stpcpy.c.texi
598 @end smallexample
600 This function is part of POSIX.1-2008 and later editions, but was
601 available in @theglibc{} and other systems as an extension long before
602 it was standardized.
604 Its behavior is undefined if the strings overlap.  The function is
605 declared in @file{string.h}.
606 @end deftypefun
608 @deftypefun {wchar_t *} wcpcpy (wchar_t *restrict @var{wto}, const wchar_t *restrict @var{wfrom})
609 @standards{GNU, wchar.h}
610 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
611 This function is like @code{wcscpy}, except that it returns a pointer to
612 the end of the string @var{wto} (that is, the address of the terminating
613 null wide character @code{wto + wcslen (wfrom)}) rather than the beginning.
615 This function is not part of ISO or POSIX but was found useful while
616 developing @theglibc{} itself.
618 The behavior of @code{wcpcpy} is undefined if the strings overlap.
620 @code{wcpcpy} is a GNU extension and is declared in @file{wchar.h}.
621 @end deftypefun
623 @deftypefn {Macro} {char *} strdupa (const char *@var{s})
624 @standards{GNU, string.h}
625 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
626 This macro is similar to @code{strdup} but allocates the new string
627 using @code{alloca} instead of @code{malloc} (@pxref{Variable Size
628 Automatic}).  This means of course the returned string has the same
629 limitations as any block of memory allocated using @code{alloca}.
631 For obvious reasons @code{strdupa} is implemented only as a macro;
632 you cannot get the address of this function.  Despite this limitation
633 it is a useful function.  The following code shows a situation where
634 using @code{malloc} would be a lot more expensive.
636 @smallexample
637 @include strdupa.c.texi
638 @end smallexample
640 Please note that calling @code{strtok} using @var{path} directly is
641 invalid.  It is also not allowed to call @code{strdupa} in the argument
642 list of @code{strtok} since @code{strdupa} uses @code{alloca}
643 (@pxref{Variable Size Automatic}) can interfere with the parameter
644 passing.
646 This function is only available if GNU CC is used.
647 @end deftypefn
649 @deftypefun void bcopy (const void *@var{from}, void *@var{to}, size_t @var{size})
650 @standards{BSD, string.h}
651 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
652 This is a partially obsolete alternative for @code{memmove}, derived from
653 BSD.  Note that it is not quite equivalent to @code{memmove}, because the
654 arguments are not in the same order and there is no return value.
655 @end deftypefun
657 @deftypefun void bzero (void *@var{block}, size_t @var{size})
658 @standards{BSD, string.h}
659 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
660 This is a partially obsolete alternative for @code{memset}, derived from
661 BSD.  Note that it is not as general as @code{memset}, because the only
662 value it can store is zero.
663 @end deftypefun
665 @node Concatenating Strings
666 @section Concatenating Strings
667 @pindex string.h
668 @pindex wchar.h
669 @cindex concatenating strings
670 @cindex string concatenation functions
672 The functions described in this section concatenate the contents of a
673 string or wide string to another.  They follow the string-copying
674 functions in their conventions.  @xref{Copying Strings and Arrays}.
675 @samp{strcat} is declared in the header file @file{string.h} while
676 @samp{wcscat} is declared in @file{wchar.h}.
678 @deftypefun {char *} strcat (char *restrict @var{to}, const char *restrict @var{from})
679 @standards{ISO, string.h}
680 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
681 The @code{strcat} function is similar to @code{strcpy}, except that the
682 bytes from @var{from} are concatenated or appended to the end of
683 @var{to}, instead of overwriting it.  That is, the first byte from
684 @var{from} overwrites the null byte marking the end of @var{to}.
686 An equivalent definition for @code{strcat} would be:
688 @smallexample
689 char *
690 strcat (char *restrict to, const char *restrict from)
692   strcpy (to + strlen (to), from);
693   return to;
695 @end smallexample
697 This function has undefined results if the strings overlap.
699 As noted below, this function has significant performance issues.
700 @end deftypefun
702 @deftypefun {wchar_t *} wcscat (wchar_t *restrict @var{wto}, const wchar_t *restrict @var{wfrom})
703 @standards{ISO, wchar.h}
704 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
705 The @code{wcscat} function is similar to @code{wcscpy}, except that the
706 wide characters from @var{wfrom} are concatenated or appended to the end of
707 @var{wto}, instead of overwriting it.  That is, the first wide character from
708 @var{wfrom} overwrites the null wide character marking the end of @var{wto}.
710 An equivalent definition for @code{wcscat} would be:
712 @smallexample
713 wchar_t *
714 wcscat (wchar_t *wto, const wchar_t *wfrom)
716   wcscpy (wto + wcslen (wto), wfrom);
717   return wto;
719 @end smallexample
721 This function has undefined results if the strings overlap.
723 As noted below, this function has significant performance issues.
724 @end deftypefun
726 Programmers using the @code{strcat} or @code{wcscat} function (or the
727 @code{strncat} or @code{wcsncat} functions defined in
728 a later section, for that matter)
729 can easily be recognized as lazy and reckless.  In almost all situations
730 the lengths of the participating strings are known (it better should be
731 since how can one otherwise ensure the allocated size of the buffer is
732 sufficient?)  Or at least, one could know them if one keeps track of the
733 results of the various function calls.  But then it is very inefficient
734 to use @code{strcat}/@code{wcscat}.  A lot of time is wasted finding the
735 end of the destination string so that the actual copying can start.
736 This is a common example:
738 @cindex va_copy
739 @smallexample
740 /* @r{This function concatenates arbitrarily many strings.  The last}
741    @r{parameter must be @code{NULL}.}  */
742 char *
743 concat (const char *str, @dots{})
745   va_list ap, ap2;
746   size_t total = 1;
748   va_start (ap, str);
749   va_copy (ap2, ap);
751   /* @r{Determine how much space we need.}  */
752   for (const char *s = str; s != NULL; s = va_arg (ap, const char *))
753     total += strlen (s);
755   va_end (ap);
757   char *result = malloc (total);
758   if (result != NULL)
759     @{
760       result[0] = '\0';
762       /* @r{Copy the strings.}  */
763       for (s = str; s != NULL; s = va_arg (ap2, const char *))
764         strcat (result, s);
765     @}
767   va_end (ap2);
769   return result;
771 @end smallexample
773 This looks quite simple, especially the second loop where the strings
774 are actually copied.  But these innocent lines hide a major performance
775 penalty.  Just imagine that ten strings of 100 bytes each have to be
776 concatenated.  For the second string we search the already stored 100
777 bytes for the end of the string so that we can append the next string.
778 For all strings in total the comparisons necessary to find the end of
779 the intermediate results sums up to 5500!  If we combine the copying
780 with the search for the allocation we can write this function more
781 efficiently:
783 @smallexample
784 char *
785 concat (const char *str, @dots{})
787   size_t allocated = 100;
788   char *result = malloc (allocated);
790   if (result != NULL)
791     @{
792       va_list ap;
793       size_t resultlen = 0;
794       char *newp;
796       va_start (ap, str);
798       for (const char *s = str; s != NULL; s = va_arg (ap, const char *))
799         @{
800           size_t len = strlen (s);
802           /* @r{Resize the allocated memory if necessary.}  */
803           if (resultlen + len + 1 > allocated)
804             @{
805               allocated += len;
806               newp = reallocarray (result, allocated, 2);
807               allocated *= 2;
808               if (newp == NULL)
809                 @{
810                   free (result);
811                   return NULL;
812                 @}
813               result = newp;
814             @}
816           memcpy (result + resultlen, s, len);
817           resultlen += len;
818         @}
820       /* @r{Terminate the result string.}  */
821       result[resultlen++] = '\0';
823       /* @r{Resize memory to the optimal size.}  */
824       newp = realloc (result, resultlen);
825       if (newp != NULL)
826         result = newp;
828       va_end (ap);
829     @}
831   return result;
833 @end smallexample
835 With a bit more knowledge about the input strings one could fine-tune
836 the memory allocation.  The difference we are pointing to here is that
837 we don't use @code{strcat} anymore.  We always keep track of the length
838 of the current intermediate result so we can save ourselves the search for the
839 end of the string and use @code{mempcpy}.  Please note that we also
840 don't use @code{stpcpy} which might seem more natural since we are handling
841 strings.  But this is not necessary since we already know the
842 length of the string and therefore can use the faster memory copying
843 function.  The example would work for wide characters the same way.
845 Whenever a programmer feels the need to use @code{strcat} she or he
846 should think twice and look through the program to see whether the code cannot
847 be rewritten to take advantage of already calculated results.  Again: it
848 is almost always unnecessary to use @code{strcat}.
850 @node Truncating Strings
851 @section Truncating Strings while Copying
852 @cindex truncating strings
853 @cindex string truncation
855 The functions described in this section copy or concatenate the
856 possibly-truncated contents of a string or array to another, and
857 similarly for wide strings.  They follow the string-copying functions
858 in their header conventions.  @xref{Copying Strings and Arrays}.  The
859 @samp{str} functions are declared in the header file @file{string.h}
860 and the @samp{wc} functions are declared in the file @file{wchar.h}.
862 @deftypefun {char *} strncpy (char *restrict @var{to}, const char *restrict @var{from}, size_t @var{size})
863 @standards{C90, string.h}
864 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
865 This function is similar to @code{strcpy} but always copies exactly
866 @var{size} bytes into @var{to}.
868 If @var{from} does not contain a null byte in its first @var{size}
869 bytes, @code{strncpy} copies just the first @var{size} bytes.  In this
870 case no null terminator is written into @var{to}.
872 Otherwise @var{from} must be a string with length less than
873 @var{size}.  In this case @code{strncpy} copies all of @var{from},
874 followed by enough null bytes to add up to @var{size} bytes in all.
876 The behavior of @code{strncpy} is undefined if the strings overlap.
878 This function was designed for now-rarely-used arrays consisting of
879 non-null bytes followed by zero or more null bytes.  It needs to set
880 all @var{size} bytes of the destination, even when @var{size} is much
881 greater than the length of @var{from}.  As noted below, this function
882 is generally a poor choice for processing text.
883 @end deftypefun
885 @deftypefun {wchar_t *} wcsncpy (wchar_t *restrict @var{wto}, const wchar_t *restrict @var{wfrom}, size_t @var{size})
886 @standards{ISO, wchar.h}
887 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
888 This function is similar to @code{wcscpy} but always copies exactly
889 @var{size} wide characters into @var{wto}.
891 If @var{wfrom} does not contain a null wide character in its first
892 @var{size} wide characters, then @code{wcsncpy} copies just the first
893 @var{size} wide characters.  In this case no null terminator is
894 written into @var{wto}.
896 Otherwise @var{wfrom} must be a wide string with length less than
897 @var{size}.  In this case @code{wcsncpy} copies all of @var{wfrom},
898 followed by enough null wide characters to add up to @var{size} wide
899 characters in all.
901 The behavior of @code{wcsncpy} is undefined if the strings overlap.
903 This function is the wide-character counterpart of @code{strncpy} and
904 suffers from most of the problems that @code{strncpy} does.  For
905 example, as noted below, this function is generally a poor choice for
906 processing text.
907 @end deftypefun
909 @deftypefun {char *} strndup (const char *@var{s}, size_t @var{size})
910 @standards{GNU, string.h}
911 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
912 This function is similar to @code{strdup} but always copies at most
913 @var{size} bytes into the newly allocated string.
915 If the length of @var{s} is more than @var{size}, then @code{strndup}
916 copies just the first @var{size} bytes and adds a closing null byte.
917 Otherwise all bytes are copied and the string is terminated.
919 This function differs from @code{strncpy} in that it always terminates
920 the destination string.
922 As noted below, this function is generally a poor choice for
923 processing text.
925 @code{strndup} is a GNU extension.
926 @end deftypefun
928 @deftypefn {Macro} {char *} strndupa (const char *@var{s}, size_t @var{size})
929 @standards{GNU, string.h}
930 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
931 This function is similar to @code{strndup} but like @code{strdupa} it
932 allocates the new string using @code{alloca} @pxref{Variable Size
933 Automatic}.  The same advantages and limitations of @code{strdupa} are
934 valid for @code{strndupa}, too.
936 This function is implemented only as a macro, just like @code{strdupa}.
937 Just as @code{strdupa} this macro also must not be used inside the
938 parameter list in a function call.
940 As noted below, this function is generally a poor choice for
941 processing text.
943 @code{strndupa} is only available if GNU CC is used.
944 @end deftypefn
946 @deftypefun {char *} stpncpy (char *restrict @var{to}, const char *restrict @var{from}, size_t @var{size})
947 @standards{GNU, string.h}
948 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
949 This function is similar to @code{stpcpy} but copies always exactly
950 @var{size} bytes into @var{to}.
952 If the length of @var{from} is more than @var{size}, then @code{stpncpy}
953 copies just the first @var{size} bytes and returns a pointer to the
954 byte directly following the one which was copied last.  Note that in
955 this case there is no null terminator written into @var{to}.
957 If the length of @var{from} is less than @var{size}, then @code{stpncpy}
958 copies all of @var{from}, followed by enough null bytes to add up
959 to @var{size} bytes in all.  This behavior is rarely useful, but it
960 is implemented to be useful in contexts where this behavior of the
961 @code{strncpy} is used.  @code{stpncpy} returns a pointer to the
962 @emph{first} written null byte.
964 This function is not part of ISO or POSIX but was found useful while
965 developing @theglibc{} itself.
967 Its behavior is undefined if the strings overlap.  The function is
968 declared in @file{string.h}.
970 As noted below, this function is generally a poor choice for
971 processing text.
972 @end deftypefun
974 @deftypefun {wchar_t *} wcpncpy (wchar_t *restrict @var{wto}, const wchar_t *restrict @var{wfrom}, size_t @var{size})
975 @standards{GNU, wchar.h}
976 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
977 This function is similar to @code{wcpcpy} but copies always exactly
978 @var{wsize} wide characters into @var{wto}.
980 If the length of @var{wfrom} is more than @var{size}, then
981 @code{wcpncpy} copies just the first @var{size} wide characters and
982 returns a pointer to the wide character directly following the last
983 non-null wide character which was copied last.  Note that in this case
984 there is no null terminator written into @var{wto}.
986 If the length of @var{wfrom} is less than @var{size}, then @code{wcpncpy}
987 copies all of @var{wfrom}, followed by enough null wide characters to add up
988 to @var{size} wide characters in all.  This behavior is rarely useful, but it
989 is implemented to be useful in contexts where this behavior of the
990 @code{wcsncpy} is used.  @code{wcpncpy} returns a pointer to the
991 @emph{first} written null wide character.
993 This function is not part of ISO or POSIX but was found useful while
994 developing @theglibc{} itself.
996 Its behavior is undefined if the strings overlap.
998 As noted below, this function is generally a poor choice for
999 processing text.
1001 @code{wcpncpy} is a GNU extension.
1002 @end deftypefun
1004 @deftypefun {char *} strncat (char *restrict @var{to}, const char *restrict @var{from}, size_t @var{size})
1005 @standards{ISO, string.h}
1006 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1007 This function is like @code{strcat} except that not more than @var{size}
1008 bytes from @var{from} are appended to the end of @var{to}, and
1009 @var{from} need not be null-terminated.  A single null byte is also
1010 always appended to @var{to}, so the total
1011 allocated size of @var{to} must be at least @code{@var{size} + 1} bytes
1012 longer than its initial length.
1014 The @code{strncat} function could be implemented like this:
1016 @smallexample
1017 @group
1018 char *
1019 strncat (char *to, const char *from, size_t size)
1021   size_t len = strlen (to);
1022   memcpy (to + len, from, strnlen (from, size));
1023   to[len + strnlen (from, size)] = '\0';
1024   return to;
1026 @end group
1027 @end smallexample
1029 The behavior of @code{strncat} is undefined if the strings overlap.
1031 As a companion to @code{strncpy}, @code{strncat} was designed for
1032 now-rarely-used arrays consisting of non-null bytes followed by zero
1033 or more null bytes.  As noted below, this function is generally a poor
1034 choice for processing text.  Also, this function has significant
1035 performance issues.  @xref{Concatenating Strings}.
1036 @end deftypefun
1038 @deftypefun {wchar_t *} wcsncat (wchar_t *restrict @var{wto}, const wchar_t *restrict @var{wfrom}, size_t @var{size})
1039 @standards{ISO, wchar.h}
1040 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1041 This function is like @code{wcscat} except that not more than @var{size}
1042 wide characters from @var{from} are appended to the end of @var{to},
1043 and @var{from} need not be null-terminated.  A single null wide
1044 character is also always appended to @var{to}, so the total allocated
1045 size of @var{to} must be at least @code{wcsnlen (@var{wfrom},
1046 @var{size}) + 1} wide characters longer than its initial length.
1048 The @code{wcsncat} function could be implemented like this:
1050 @smallexample
1051 @group
1052 wchar_t *
1053 wcsncat (wchar_t *restrict wto, const wchar_t *restrict wfrom,
1054          size_t size)
1056   size_t len = wcslen (wto);
1057   memcpy (wto + len, wfrom, wcsnlen (wfrom, size) * sizeof (wchar_t));
1058   wto[len + wcsnlen (wfrom, size)] = L'\0';
1059   return wto;
1061 @end group
1062 @end smallexample
1064 The behavior of @code{wcsncat} is undefined if the strings overlap.
1066 As noted below, this function is generally a poor choice for
1067 processing text.  Also, this function has significant performance
1068 issues.  @xref{Concatenating Strings}.
1069 @end deftypefun
1071 Because these functions can abruptly truncate strings or wide strings,
1072 they are generally poor choices for processing text.  When coping or
1073 concatening multibyte strings, they can truncate within a multibyte
1074 character so that the result is not a valid multibyte string.  When
1075 combining or concatenating multibyte or wide strings, they may
1076 truncate the output after a combining character, resulting in a
1077 corrupted grapheme.  They can cause bugs even when processing
1078 single-byte strings: for example, when calculating an ASCII-only user
1079 name, a truncated name can identify the wrong user.
1081 Although some buffer overruns can be prevented by manually replacing
1082 calls to copying functions with calls to truncation functions, there
1083 are often easier and safer automatic techniques that cause buffer
1084 overruns to reliably terminate a program, such as GCC's
1085 @option{-fcheck-pointer-bounds} and @option{-fsanitize=address}
1086 options.  @xref{Debugging Options,, Options for Debugging Your Program
1087 or GCC, gcc, Using GCC}.  Because truncation functions can mask
1088 application bugs that would otherwise be caught by the automatic
1089 techniques, these functions should be used only when the application's
1090 underlying logic requires truncation.
1092 @strong{Note:} GNU programs should not truncate strings or wide
1093 strings to fit arbitrary size limits.  @xref{Semantics, , Writing
1094 Robust Programs, standards, The GNU Coding Standards}.  Instead of
1095 string-truncation functions, it is usually better to use dynamic
1096 memory allocation (@pxref{Unconstrained Allocation}) and functions
1097 such as @code{strdup} or @code{asprintf} to construct strings.
1099 @node String/Array Comparison
1100 @section String/Array Comparison
1101 @cindex comparing strings and arrays
1102 @cindex string comparison functions
1103 @cindex array comparison functions
1104 @cindex predicates on strings
1105 @cindex predicates on arrays
1107 You can use the functions in this section to perform comparisons on the
1108 contents of strings and arrays.  As well as checking for equality, these
1109 functions can also be used as the ordering functions for sorting
1110 operations.  @xref{Searching and Sorting}, for an example of this.
1112 Unlike most comparison operations in C, the string comparison functions
1113 return a nonzero value if the strings are @emph{not} equivalent rather
1114 than if they are.  The sign of the value indicates the relative ordering
1115 of the first part of the strings that are not equivalent:  a
1116 negative value indicates that the first string is ``less'' than the
1117 second, while a positive value indicates that the first string is
1118 ``greater''.
1120 The most common use of these functions is to check only for equality.
1121 This is canonically done with an expression like @w{@samp{! strcmp (s1, s2)}}.
1123 All of these functions are declared in the header file @file{string.h}.
1124 @pindex string.h
1126 @deftypefun int memcmp (const void *@var{a1}, const void *@var{a2}, size_t @var{size})
1127 @standards{ISO, string.h}
1128 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1129 The function @code{memcmp} compares the @var{size} bytes of memory
1130 beginning at @var{a1} against the @var{size} bytes of memory beginning
1131 at @var{a2}.  The value returned has the same sign as the difference
1132 between the first differing pair of bytes (interpreted as @code{unsigned
1133 char} objects, then promoted to @code{int}).
1135 If the contents of the two blocks are equal, @code{memcmp} returns
1136 @code{0}.
1137 @end deftypefun
1139 @deftypefun int wmemcmp (const wchar_t *@var{a1}, const wchar_t *@var{a2}, size_t @var{size})
1140 @standards{ISO, wchar.h}
1141 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1142 The function @code{wmemcmp} compares the @var{size} wide characters
1143 beginning at @var{a1} against the @var{size} wide characters beginning
1144 at @var{a2}.  The value returned is smaller than or larger than zero
1145 depending on whether the first differing wide character is @var{a1} is
1146 smaller or larger than the corresponding wide character in @var{a2}.
1148 If the contents of the two blocks are equal, @code{wmemcmp} returns
1149 @code{0}.
1150 @end deftypefun
1152 On arbitrary arrays, the @code{memcmp} function is mostly useful for
1153 testing equality.  It usually isn't meaningful to do byte-wise ordering
1154 comparisons on arrays of things other than bytes.  For example, a
1155 byte-wise comparison on the bytes that make up floating-point numbers
1156 isn't likely to tell you anything about the relationship between the
1157 values of the floating-point numbers.
1159 @code{wmemcmp} is really only useful to compare arrays of type
1160 @code{wchar_t} since the function looks at @code{sizeof (wchar_t)} bytes
1161 at a time and this number of bytes is system dependent.
1163 You should also be careful about using @code{memcmp} to compare objects
1164 that can contain ``holes'', such as the padding inserted into structure
1165 objects to enforce alignment requirements, extra space at the end of
1166 unions, and extra bytes at the ends of strings whose length is less
1167 than their allocated size.  The contents of these ``holes'' are
1168 indeterminate and may cause strange behavior when performing byte-wise
1169 comparisons.  For more predictable results, perform an explicit
1170 component-wise comparison.
1172 For example, given a structure type definition like:
1174 @smallexample
1175 struct foo
1176   @{
1177     unsigned char tag;
1178     union
1179       @{
1180         double f;
1181         long i;
1182         char *p;
1183       @} value;
1184   @};
1185 @end smallexample
1187 @noindent
1188 you are better off writing a specialized comparison function to compare
1189 @code{struct foo} objects instead of comparing them with @code{memcmp}.
1191 @deftypefun int strcmp (const char *@var{s1}, const char *@var{s2})
1192 @standards{ISO, string.h}
1193 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1194 The @code{strcmp} function compares the string @var{s1} against
1195 @var{s2}, returning a value that has the same sign as the difference
1196 between the first differing pair of bytes (interpreted as
1197 @code{unsigned char} objects, then promoted to @code{int}).
1199 If the two strings are equal, @code{strcmp} returns @code{0}.
1201 A consequence of the ordering used by @code{strcmp} is that if @var{s1}
1202 is an initial substring of @var{s2}, then @var{s1} is considered to be
1203 ``less than'' @var{s2}.
1205 @code{strcmp} does not take sorting conventions of the language the
1206 strings are written in into account.  To get that one has to use
1207 @code{strcoll}.
1208 @end deftypefun
1210 @deftypefun int wcscmp (const wchar_t *@var{ws1}, const wchar_t *@var{ws2})
1211 @standards{ISO, wchar.h}
1212 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1214 The @code{wcscmp} function compares the wide string @var{ws1}
1215 against @var{ws2}.  The value returned is smaller than or larger than zero
1216 depending on whether the first differing wide character is @var{ws1} is
1217 smaller or larger than the corresponding wide character in @var{ws2}.
1219 If the two strings are equal, @code{wcscmp} returns @code{0}.
1221 A consequence of the ordering used by @code{wcscmp} is that if @var{ws1}
1222 is an initial substring of @var{ws2}, then @var{ws1} is considered to be
1223 ``less than'' @var{ws2}.
1225 @code{wcscmp} does not take sorting conventions of the language the
1226 strings are written in into account.  To get that one has to use
1227 @code{wcscoll}.
1228 @end deftypefun
1230 @deftypefun int strcasecmp (const char *@var{s1}, const char *@var{s2})
1231 @standards{BSD, string.h}
1232 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1233 @c Although this calls tolower multiple times, it's a macro, and
1234 @c strcasecmp is optimized so that the locale pointer is read only once.
1235 @c There are some asm implementations too, for which the single-read
1236 @c from locale TLS pointers also applies.
1237 This function is like @code{strcmp}, except that differences in case are
1238 ignored, and its arguments must be multibyte strings.
1239 How uppercase and lowercase characters are related is
1240 determined by the currently selected locale.  In the standard @code{"C"}
1241 locale the characters @"A and @"a do not match but in a locale which
1242 regards these characters as parts of the alphabet they do match.
1244 @noindent
1245 @code{strcasecmp} is derived from BSD.
1246 @end deftypefun
1248 @deftypefun int wcscasecmp (const wchar_t *@var{ws1}, const wchar_t *@var{ws2})
1249 @standards{GNU, wchar.h}
1250 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1251 @c Since towlower is not a macro, the locale object may be read multiple
1252 @c times.
1253 This function is like @code{wcscmp}, except that differences in case are
1254 ignored.  How uppercase and lowercase characters are related is
1255 determined by the currently selected locale.  In the standard @code{"C"}
1256 locale the characters @"A and @"a do not match but in a locale which
1257 regards these characters as parts of the alphabet they do match.
1259 @noindent
1260 @code{wcscasecmp} is a GNU extension.
1261 @end deftypefun
1263 @deftypefun int strncmp (const char *@var{s1}, const char *@var{s2}, size_t @var{size})
1264 @standards{ISO, string.h}
1265 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1266 This function is the similar to @code{strcmp}, except that no more than
1267 @var{size} bytes are compared.  In other words, if the two
1268 strings are the same in their first @var{size} bytes, the
1269 return value is zero.
1270 @end deftypefun
1272 @deftypefun int wcsncmp (const wchar_t *@var{ws1}, const wchar_t *@var{ws2}, size_t @var{size})
1273 @standards{ISO, wchar.h}
1274 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1275 This function is similar to @code{wcscmp}, except that no more than
1276 @var{size} wide characters are compared.  In other words, if the two
1277 strings are the same in their first @var{size} wide characters, the
1278 return value is zero.
1279 @end deftypefun
1281 @deftypefun int strncasecmp (const char *@var{s1}, const char *@var{s2}, size_t @var{n})
1282 @standards{BSD, string.h}
1283 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1284 This function is like @code{strncmp}, except that differences in case
1285 are ignored, and the compared parts of the arguments should consist of
1286 valid multibyte characters.
1287 Like @code{strcasecmp}, it is locale dependent how
1288 uppercase and lowercase characters are related.
1290 @noindent
1291 @code{strncasecmp} is a GNU extension.
1292 @end deftypefun
1294 @deftypefun int wcsncasecmp (const wchar_t *@var{ws1}, const wchar_t *@var{s2}, size_t @var{n})
1295 @standards{GNU, wchar.h}
1296 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1297 This function is like @code{wcsncmp}, except that differences in case
1298 are ignored.  Like @code{wcscasecmp}, it is locale dependent how
1299 uppercase and lowercase characters are related.
1301 @noindent
1302 @code{wcsncasecmp} is a GNU extension.
1303 @end deftypefun
1305 Here are some examples showing the use of @code{strcmp} and
1306 @code{strncmp} (equivalent examples can be constructed for the wide
1307 character functions).  These examples assume the use of the ASCII
1308 character set.  (If some other character set---say, EBCDIC---is used
1309 instead, then the glyphs are associated with different numeric codes,
1310 and the return values and ordering may differ.)
1312 @smallexample
1313 strcmp ("hello", "hello")
1314     @result{} 0    /* @r{These two strings are the same.} */
1315 strcmp ("hello", "Hello")
1316     @result{} 32   /* @r{Comparisons are case-sensitive.} */
1317 strcmp ("hello", "world")
1318     @result{} -15  /* @r{The byte @code{'h'} comes before @code{'w'}.} */
1319 strcmp ("hello", "hello, world")
1320     @result{} -44  /* @r{Comparing a null byte against a comma.} */
1321 strncmp ("hello", "hello, world", 5)
1322     @result{} 0    /* @r{The initial 5 bytes are the same.} */
1323 strncmp ("hello, world", "hello, stupid world!!!", 5)
1324     @result{} 0    /* @r{The initial 5 bytes are the same.} */
1325 @end smallexample
1327 @deftypefun int strverscmp (const char *@var{s1}, const char *@var{s2})
1328 @standards{GNU, string.h}
1329 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1330 @c Calls isdigit multiple times, locale may change in between.
1331 The @code{strverscmp} function compares the string @var{s1} against
1332 @var{s2}, considering them as holding indices/version numbers.  The
1333 return value follows the same conventions as found in the
1334 @code{strcmp} function.  In fact, if @var{s1} and @var{s2} contain no
1335 digits, @code{strverscmp} behaves like @code{strcmp}
1336 (in the sense that the sign of the result is the same).
1338 The comparison algorithm which the @code{strverscmp} function implements
1339 differs slightly from other version-comparison algorithms.  The
1340 implementation is based on a finite-state machine, whose behavior is
1341 approximated below.
1343 @itemize @bullet
1344 @item
1345 The input strings are each split into sequences of non-digits and
1346 digits.  These sequences can be empty at the beginning and end of the
1347 string.  Digits are determined by the @code{isdigit} function and are
1348 thus subject to the current locale.
1350 @item
1351 Comparison starts with a (possibly empty) non-digit sequence.  The first
1352 non-equal sequences of non-digits or digits determines the outcome of
1353 the comparison.
1355 @item
1356 Corresponding non-digit sequences in both strings are compared
1357 lexicographically if their lengths are equal.  If the lengths differ,
1358 the shorter non-digit sequence is extended with the input string
1359 character immediately following it (which may be the null terminator),
1360 the other sequence is truncated to be of the same (extended) length, and
1361 these two sequences are compared lexicographically.  In the last case,
1362 the sequence comparison determines the result of the function because
1363 the extension character (or some character before it) is necessarily
1364 different from the character at the same offset in the other input
1365 string.
1367 @item
1368 For two sequences of digits, the number of leading zeros is counted (which
1369 can be zero).  If the count differs, the string with more leading zeros
1370 in the digit sequence is considered smaller than the other string.
1372 @item
1373 If the two sequences of digits have no leading zeros, they are compared
1374 as integers, that is, the string with the longer digit sequence is
1375 deemed larger, and if both sequences are of equal length, they are
1376 compared lexicographically.
1378 @item
1379 If both digit sequences start with a zero and have an equal number of
1380 leading zeros, they are compared lexicographically if their lengths are
1381 the same.  If the lengths differ, the shorter sequence is extended with
1382 the following character in its input string, and the other sequence is
1383 truncated to the same length, and both sequences are compared
1384 lexicographically (similar to the non-digit sequence case above).
1385 @end itemize
1387 The treatment of leading zeros and the tie-breaking extension characters
1388 (which in effect propagate across non-digit/digit sequence boundaries)
1389 differs from other version-comparison algorithms.
1391 @smallexample
1392 strverscmp ("no digit", "no digit")
1393     @result{} 0    /* @r{same behavior as strcmp.} */
1394 strverscmp ("item#99", "item#100")
1395     @result{} <0   /* @r{same prefix, but 99 < 100.} */
1396 strverscmp ("alpha1", "alpha001")
1397     @result{} >0   /* @r{different number of leading zeros (0 and 2).} */
1398 strverscmp ("part1_f012", "part1_f01")
1399     @result{} >0   /* @r{lexicographical comparison with leading zeros.} */
1400 strverscmp ("foo.009", "foo.0")
1401     @result{} <0   /* @r{different number of leading zeros (2 and 1).} */
1402 @end smallexample
1404 @code{strverscmp} is a GNU extension.
1405 @end deftypefun
1407 @deftypefun int bcmp (const void *@var{a1}, const void *@var{a2}, size_t @var{size})
1408 @standards{BSD, string.h}
1409 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1410 This is an obsolete alias for @code{memcmp}, derived from BSD.
1411 @end deftypefun
1413 @node Collation Functions
1414 @section Collation Functions
1416 @cindex collating strings
1417 @cindex string collation functions
1419 In some locales, the conventions for lexicographic ordering differ from
1420 the strict numeric ordering of character codes.  For example, in Spanish
1421 most glyphs with diacritical marks such as accents are not considered
1422 distinct letters for the purposes of collation.  On the other hand, in
1423 Czech the two-character sequence @samp{ch} is treated as a single letter
1424 that is collated between @samp{h} and @samp{i}.
1426 You can use the functions @code{strcoll} and @code{strxfrm} (declared in
1427 the headers file @file{string.h}) and @code{wcscoll} and @code{wcsxfrm}
1428 (declared in the headers file @file{wchar}) to compare strings using a
1429 collation ordering appropriate for the current locale.  The locale used
1430 by these functions in particular can be specified by setting the locale
1431 for the @code{LC_COLLATE} category; see @ref{Locales}.
1432 @pindex string.h
1433 @pindex wchar.h
1435 In the standard C locale, the collation sequence for @code{strcoll} is
1436 the same as that for @code{strcmp}.  Similarly, @code{wcscoll} and
1437 @code{wcscmp} are the same in this situation.
1439 Effectively, the way these functions work is by applying a mapping to
1440 transform the characters in a multibyte string to a byte
1441 sequence that represents
1442 the string's position in the collating sequence of the current locale.
1443 Comparing two such byte sequences in a simple fashion is equivalent to
1444 comparing the strings with the locale's collating sequence.
1446 The functions @code{strcoll} and @code{wcscoll} perform this translation
1447 implicitly, in order to do one comparison.  By contrast, @code{strxfrm}
1448 and @code{wcsxfrm} perform the mapping explicitly.  If you are making
1449 multiple comparisons using the same string or set of strings, it is
1450 likely to be more efficient to use @code{strxfrm} or @code{wcsxfrm} to
1451 transform all the strings just once, and subsequently compare the
1452 transformed strings with @code{strcmp} or @code{wcscmp}.
1454 @deftypefun int strcoll (const char *@var{s1}, const char *@var{s2})
1455 @standards{ISO, string.h}
1456 @safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
1457 @c Calls strcoll_l with the current locale, which dereferences only the
1458 @c LC_COLLATE data pointer.
1459 The @code{strcoll} function is similar to @code{strcmp} but uses the
1460 collating sequence of the current locale for collation (the
1461 @code{LC_COLLATE} locale).  The arguments are multibyte strings.
1462 @end deftypefun
1464 @deftypefun int wcscoll (const wchar_t *@var{ws1}, const wchar_t *@var{ws2})
1465 @standards{ISO, wchar.h}
1466 @safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
1467 @c Same as strcoll, but calling wcscoll_l.
1468 The @code{wcscoll} function is similar to @code{wcscmp} but uses the
1469 collating sequence of the current locale for collation (the
1470 @code{LC_COLLATE} locale).
1471 @end deftypefun
1473 Here is an example of sorting an array of strings, using @code{strcoll}
1474 to compare them.  The actual sort algorithm is not written here; it
1475 comes from @code{qsort} (@pxref{Array Sort Function}).  The job of the
1476 code shown here is to say how to compare the strings while sorting them.
1477 (Later on in this section, we will show a way to do this more
1478 efficiently using @code{strxfrm}.)
1480 @smallexample
1481 /* @r{This is the comparison function used with @code{qsort}.} */
1484 compare_elements (const void *v1, const void *v2)
1486   char * const *p1 = v1;
1487   char * const *p2 = v2;
1489   return strcoll (*p1, *p2);
1492 /* @r{This is the entry point---the function to sort}
1493    @r{strings using the locale's collating sequence.} */
1495 void
1496 sort_strings (char **array, int nstrings)
1498   /* @r{Sort @code{temp_array} by comparing the strings.} */
1499   qsort (array, nstrings,
1500          sizeof (char *), compare_elements);
1502 @end smallexample
1504 @cindex converting string to collation order
1505 @deftypefun size_t strxfrm (char *restrict @var{to}, const char *restrict @var{from}, size_t @var{size})
1506 @standards{ISO, string.h}
1507 @safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
1508 The function @code{strxfrm} transforms the multibyte string
1509 @var{from} using the
1510 collation transformation determined by the locale currently selected for
1511 collation, and stores the transformed string in the array @var{to}.  Up
1512 to @var{size} bytes (including a terminating null byte) are
1513 stored.
1515 The behavior is undefined if the strings @var{to} and @var{from}
1516 overlap; see @ref{Copying Strings and Arrays}.
1518 The return value is the length of the entire transformed string.  This
1519 value is not affected by the value of @var{size}, but if it is greater
1520 or equal than @var{size}, it means that the transformed string did not
1521 entirely fit in the array @var{to}.  In this case, only as much of the
1522 string as actually fits was stored.  To get the whole transformed
1523 string, call @code{strxfrm} again with a bigger output array.
1525 The transformed string may be longer than the original string, and it
1526 may also be shorter.
1528 If @var{size} is zero, no bytes are stored in @var{to}.  In this
1529 case, @code{strxfrm} simply returns the number of bytes that would
1530 be the length of the transformed string.  This is useful for determining
1531 what size the allocated array should be.  It does not matter what
1532 @var{to} is if @var{size} is zero; @var{to} may even be a null pointer.
1533 @end deftypefun
1535 @deftypefun size_t wcsxfrm (wchar_t *restrict @var{wto}, const wchar_t *@var{wfrom}, size_t @var{size})
1536 @standards{ISO, wchar.h}
1537 @safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
1538 The function @code{wcsxfrm} transforms wide string @var{wfrom}
1539 using the collation transformation determined by the locale currently
1540 selected for collation, and stores the transformed string in the array
1541 @var{wto}.  Up to @var{size} wide characters (including a terminating null
1542 wide character) are stored.
1544 The behavior is undefined if the strings @var{wto} and @var{wfrom}
1545 overlap; see @ref{Copying Strings and Arrays}.
1547 The return value is the length of the entire transformed wide
1548 string.  This value is not affected by the value of @var{size}, but if
1549 it is greater or equal than @var{size}, it means that the transformed
1550 wide string did not entirely fit in the array @var{wto}.  In
1551 this case, only as much of the wide string as actually fits
1552 was stored.  To get the whole transformed wide string, call
1553 @code{wcsxfrm} again with a bigger output array.
1555 The transformed wide string may be longer than the original
1556 wide string, and it may also be shorter.
1558 If @var{size} is zero, no wide characters are stored in @var{to}.  In this
1559 case, @code{wcsxfrm} simply returns the number of wide characters that
1560 would be the length of the transformed wide string.  This is
1561 useful for determining what size the allocated array should be (remember
1562 to multiply with @code{sizeof (wchar_t)}).  It does not matter what
1563 @var{wto} is if @var{size} is zero; @var{wto} may even be a null pointer.
1564 @end deftypefun
1566 Here is an example of how you can use @code{strxfrm} when
1567 you plan to do many comparisons.  It does the same thing as the previous
1568 example, but much faster, because it has to transform each string only
1569 once, no matter how many times it is compared with other strings.  Even
1570 the time needed to allocate and free storage is much less than the time
1571 we save, when there are many strings.
1573 @smallexample
1574 struct sorter @{ char *input; char *transformed; @};
1576 /* @r{This is the comparison function used with @code{qsort}}
1577    @r{to sort an array of @code{struct sorter}.} */
1580 compare_elements (const void *v1, const void *v2)
1582   const struct sorter *p1 = v1;
1583   const struct sorter *p2 = v2;
1585   return strcmp (p1->transformed, p2->transformed);
1588 /* @r{This is the entry point---the function to sort}
1589    @r{strings using the locale's collating sequence.} */
1591 void
1592 sort_strings_fast (char **array, int nstrings)
1594   struct sorter temp_array[nstrings];
1595   int i;
1597   /* @r{Set up @code{temp_array}.  Each element contains}
1598      @r{one input string and its transformed string.} */
1599   for (i = 0; i < nstrings; i++)
1600     @{
1601       size_t length = strlen (array[i]) * 2;
1602       char *transformed;
1603       size_t transformed_length;
1605       temp_array[i].input = array[i];
1607       /* @r{First try a buffer perhaps big enough.}  */
1608       transformed = (char *) xmalloc (length);
1610       /* @r{Transform @code{array[i]}.}  */
1611       transformed_length = strxfrm (transformed, array[i], length);
1613       /* @r{If the buffer was not large enough, resize it}
1614          @r{and try again.}  */
1615       if (transformed_length >= length)
1616         @{
1617           /* @r{Allocate the needed space. +1 for terminating}
1618              @r{@code{'\0'} byte.}  */
1619           transformed = xrealloc (transformed,
1620                                   transformed_length + 1);
1622           /* @r{The return value is not interesting because we know}
1623              @r{how long the transformed string is.}  */
1624           (void) strxfrm (transformed, array[i],
1625                           transformed_length + 1);
1626         @}
1628       temp_array[i].transformed = transformed;
1629     @}
1631   /* @r{Sort @code{temp_array} by comparing transformed strings.} */
1632   qsort (temp_array, nstrings,
1633          sizeof (struct sorter), compare_elements);
1635   /* @r{Put the elements back in the permanent array}
1636      @r{in their sorted order.} */
1637   for (i = 0; i < nstrings; i++)
1638     array[i] = temp_array[i].input;
1640   /* @r{Free the strings we allocated.} */
1641   for (i = 0; i < nstrings; i++)
1642     free (temp_array[i].transformed);
1644 @end smallexample
1646 The interesting part of this code for the wide character version would
1647 look like this:
1649 @smallexample
1650 void
1651 sort_strings_fast (wchar_t **array, int nstrings)
1653   @dots{}
1654       /* @r{Transform @code{array[i]}.}  */
1655       transformed_length = wcsxfrm (transformed, array[i], length);
1657       /* @r{If the buffer was not large enough, resize it}
1658          @r{and try again.}  */
1659       if (transformed_length >= length)
1660         @{
1661           /* @r{Allocate the needed space. +1 for terminating}
1662              @r{@code{L'\0'} wide character.}  */
1663           transformed = xreallocarray (transformed,
1664                                        transformed_length + 1,
1665                                        sizeof *transformed);
1667           /* @r{The return value is not interesting because we know}
1668              @r{how long the transformed string is.}  */
1669           (void) wcsxfrm (transformed, array[i],
1670                           transformed_length + 1);
1671         @}
1672   @dots{}
1673 @end smallexample
1675 @noindent
1676 Note the additional multiplication with @code{sizeof (wchar_t)} in the
1677 @code{realloc} call.
1679 @strong{Compatibility Note:} The string collation functions are a new
1680 feature of @w{ISO C90}.  Older C dialects have no equivalent feature.
1681 The wide character versions were introduced in @w{Amendment 1} to @w{ISO
1682 C90}.
1684 @node Search Functions
1685 @section Search Functions
1687 This section describes library functions which perform various kinds
1688 of searching operations on strings and arrays.  These functions are
1689 declared in the header file @file{string.h}.
1690 @pindex string.h
1691 @cindex search functions (for strings)
1692 @cindex string search functions
1694 @deftypefun {void *} memchr (const void *@var{block}, int @var{c}, size_t @var{size})
1695 @standards{ISO, string.h}
1696 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1697 This function finds the first occurrence of the byte @var{c} (converted
1698 to an @code{unsigned char}) in the initial @var{size} bytes of the
1699 object beginning at @var{block}.  The return value is a pointer to the
1700 located byte, or a null pointer if no match was found.
1701 @end deftypefun
1703 @deftypefun {wchar_t *} wmemchr (const wchar_t *@var{block}, wchar_t @var{wc}, size_t @var{size})
1704 @standards{ISO, wchar.h}
1705 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1706 This function finds the first occurrence of the wide character @var{wc}
1707 in the initial @var{size} wide characters of the object beginning at
1708 @var{block}.  The return value is a pointer to the located wide
1709 character, or a null pointer if no match was found.
1710 @end deftypefun
1712 @deftypefun {void *} rawmemchr (const void *@var{block}, int @var{c})
1713 @standards{GNU, string.h}
1714 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1715 Often the @code{memchr} function is used with the knowledge that the
1716 byte @var{c} is available in the memory block specified by the
1717 parameters.  But this means that the @var{size} parameter is not really
1718 needed and that the tests performed with it at runtime (to check whether
1719 the end of the block is reached) are not needed.
1721 The @code{rawmemchr} function exists for just this situation which is
1722 surprisingly frequent.  The interface is similar to @code{memchr} except
1723 that the @var{size} parameter is missing.  The function will look beyond
1724 the end of the block pointed to by @var{block} in case the programmer
1725 made an error in assuming that the byte @var{c} is present in the block.
1726 In this case the result is unspecified.  Otherwise the return value is a
1727 pointer to the located byte.
1729 When looking for the end of a string, use @code{strchr}.
1731 This function is a GNU extension.
1732 @end deftypefun
1734 @deftypefun {void *} memrchr (const void *@var{block}, int @var{c}, size_t @var{size})
1735 @standards{GNU, string.h}
1736 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1737 The function @code{memrchr} is like @code{memchr}, except that it searches
1738 backwards from the end of the block defined by @var{block} and @var{size}
1739 (instead of forwards from the front).
1741 This function is a GNU extension.
1742 @end deftypefun
1744 @deftypefun {char *} strchr (const char *@var{string}, int @var{c})
1745 @standards{ISO, string.h}
1746 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1747 The @code{strchr} function finds the first occurrence of the byte
1748 @var{c} (converted to a @code{char}) in the string
1749 beginning at @var{string}.  The return value is a pointer to the located
1750 byte, or a null pointer if no match was found.
1752 For example,
1753 @smallexample
1754 strchr ("hello, world", 'l')
1755     @result{} "llo, world"
1756 strchr ("hello, world", '?')
1757     @result{} NULL
1758 @end smallexample
1760 The terminating null byte is considered to be part of the string,
1761 so you can use this function get a pointer to the end of a string by
1762 specifying zero as the value of the @var{c} argument.
1764 When @code{strchr} returns a null pointer, it does not let you know
1765 the position of the terminating null byte it has found.  If you
1766 need that information, it is better (but less portable) to use
1767 @code{strchrnul} than to search for it a second time.
1768 @end deftypefun
1770 @deftypefun {wchar_t *} wcschr (const wchar_t *@var{wstring}, wchar_t @var{wc})
1771 @standards{ISO, wchar.h}
1772 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1773 The @code{wcschr} function finds the first occurrence of the wide
1774 character @var{wc} in the wide string
1775 beginning at @var{wstring}.  The return value is a pointer to the
1776 located wide character, or a null pointer if no match was found.
1778 The terminating null wide character is considered to be part of the wide
1779 string, so you can use this function get a pointer to the end
1780 of a wide string by specifying a null wide character as the
1781 value of the @var{wc} argument.  It would be better (but less portable)
1782 to use @code{wcschrnul} in this case, though.
1783 @end deftypefun
1785 @deftypefun {char *} strchrnul (const char *@var{string}, int @var{c})
1786 @standards{GNU, string.h}
1787 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1788 @code{strchrnul} is the same as @code{strchr} except that if it does
1789 not find the byte, it returns a pointer to string's terminating
1790 null byte rather than a null pointer.
1792 This function is a GNU extension.
1793 @end deftypefun
1795 @deftypefun {wchar_t *} wcschrnul (const wchar_t *@var{wstring}, wchar_t @var{wc})
1796 @standards{GNU, wchar.h}
1797 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1798 @code{wcschrnul} is the same as @code{wcschr} except that if it does not
1799 find the wide character, it returns a pointer to the wide string's
1800 terminating null wide character rather than a null pointer.
1802 This function is a GNU extension.
1803 @end deftypefun
1805 One useful, but unusual, use of the @code{strchr}
1806 function is when one wants to have a pointer pointing to the null byte
1807 terminating a string.  This is often written in this way:
1809 @smallexample
1810   s += strlen (s);
1811 @end smallexample
1813 @noindent
1814 This is almost optimal but the addition operation duplicated a bit of
1815 the work already done in the @code{strlen} function.  A better solution
1816 is this:
1818 @smallexample
1819   s = strchr (s, '\0');
1820 @end smallexample
1822 There is no restriction on the second parameter of @code{strchr} so it
1823 could very well also be zero.  Those readers thinking very
1824 hard about this might now point out that the @code{strchr} function is
1825 more expensive than the @code{strlen} function since we have two abort
1826 criteria.  This is right.  But in @theglibc{} the implementation of
1827 @code{strchr} is optimized in a special way so that @code{strchr}
1828 actually is faster.
1830 @deftypefun {char *} strrchr (const char *@var{string}, int @var{c})
1831 @standards{ISO, string.h}
1832 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1833 The function @code{strrchr} is like @code{strchr}, except that it searches
1834 backwards from the end of the string @var{string} (instead of forwards
1835 from the front).
1837 For example,
1838 @smallexample
1839 strrchr ("hello, world", 'l')
1840     @result{} "ld"
1841 @end smallexample
1842 @end deftypefun
1844 @deftypefun {wchar_t *} wcsrchr (const wchar_t *@var{wstring}, wchar_t @var{wc})
1845 @standards{ISO, wchar.h}
1846 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1847 The function @code{wcsrchr} is like @code{wcschr}, except that it searches
1848 backwards from the end of the string @var{wstring} (instead of forwards
1849 from the front).
1850 @end deftypefun
1852 @deftypefun {char *} strstr (const char *@var{haystack}, const char *@var{needle})
1853 @standards{ISO, string.h}
1854 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1855 This is like @code{strchr}, except that it searches @var{haystack} for a
1856 substring @var{needle} rather than just a single byte.  It
1857 returns a pointer into the string @var{haystack} that is the first
1858 byte of the substring, or a null pointer if no match was found.  If
1859 @var{needle} is an empty string, the function returns @var{haystack}.
1861 For example,
1862 @smallexample
1863 strstr ("hello, world", "l")
1864     @result{} "llo, world"
1865 strstr ("hello, world", "wo")
1866     @result{} "world"
1867 @end smallexample
1868 @end deftypefun
1870 @deftypefun {wchar_t *} wcsstr (const wchar_t *@var{haystack}, const wchar_t *@var{needle})
1871 @standards{ISO, wchar.h}
1872 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1873 This is like @code{wcschr}, except that it searches @var{haystack} for a
1874 substring @var{needle} rather than just a single wide character.  It
1875 returns a pointer into the string @var{haystack} that is the first wide
1876 character of the substring, or a null pointer if no match was found.  If
1877 @var{needle} is an empty string, the function returns @var{haystack}.
1878 @end deftypefun
1880 @deftypefun {wchar_t *} wcswcs (const wchar_t *@var{haystack}, const wchar_t *@var{needle})
1881 @standards{XPG, wchar.h}
1882 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1883 @code{wcswcs} is a deprecated alias for @code{wcsstr}.  This is the
1884 name originally used in the X/Open Portability Guide before the
1885 @w{Amendment 1} to @w{ISO C90} was published.
1886 @end deftypefun
1889 @deftypefun {char *} strcasestr (const char *@var{haystack}, const char *@var{needle})
1890 @standards{GNU, string.h}
1891 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1892 @c There may be multiple calls of strncasecmp, each accessing the locale
1893 @c object independently.
1894 This is like @code{strstr}, except that it ignores case in searching for
1895 the substring.   Like @code{strcasecmp}, it is locale dependent how
1896 uppercase and lowercase characters are related, and arguments are
1897 multibyte strings.
1900 For example,
1901 @smallexample
1902 strcasestr ("hello, world", "L")
1903     @result{} "llo, world"
1904 strcasestr ("hello, World", "wo")
1905     @result{} "World"
1906 @end smallexample
1907 @end deftypefun
1910 @deftypefun {void *} memmem (const void *@var{haystack}, size_t @var{haystack-len},@*const void *@var{needle}, size_t @var{needle-len})
1911 @standards{GNU, string.h}
1912 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1913 This is like @code{strstr}, but @var{needle} and @var{haystack} are byte
1914 arrays rather than strings.  @var{needle-len} is the
1915 length of @var{needle} and @var{haystack-len} is the length of
1916 @var{haystack}.
1918 This function is a GNU extension.
1919 @end deftypefun
1921 @deftypefun size_t strspn (const char *@var{string}, const char *@var{skipset})
1922 @standards{ISO, string.h}
1923 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1924 The @code{strspn} (``string span'') function returns the length of the
1925 initial substring of @var{string} that consists entirely of bytes that
1926 are members of the set specified by the string @var{skipset}.  The order
1927 of the bytes in @var{skipset} is not important.
1929 For example,
1930 @smallexample
1931 strspn ("hello, world", "abcdefghijklmnopqrstuvwxyz")
1932     @result{} 5
1933 @end smallexample
1935 In a multibyte string, characters consisting of
1936 more than one byte are not treated as single entities.  Each byte is treated
1937 separately.  The function is not locale-dependent.
1938 @end deftypefun
1940 @deftypefun size_t wcsspn (const wchar_t *@var{wstring}, const wchar_t *@var{skipset})
1941 @standards{ISO, wchar.h}
1942 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1943 The @code{wcsspn} (``wide character string span'') function returns the
1944 length of the initial substring of @var{wstring} that consists entirely
1945 of wide characters that are members of the set specified by the string
1946 @var{skipset}.  The order of the wide characters in @var{skipset} is not
1947 important.
1948 @end deftypefun
1950 @deftypefun size_t strcspn (const char *@var{string}, const char *@var{stopset})
1951 @standards{ISO, string.h}
1952 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1953 The @code{strcspn} (``string complement span'') function returns the length
1954 of the initial substring of @var{string} that consists entirely of bytes
1955 that are @emph{not} members of the set specified by the string @var{stopset}.
1956 (In other words, it returns the offset of the first byte in @var{string}
1957 that is a member of the set @var{stopset}.)
1959 For example,
1960 @smallexample
1961 strcspn ("hello, world", " \t\n,.;!?")
1962     @result{} 5
1963 @end smallexample
1965 In a multibyte string, characters consisting of
1966 more than one byte are not treated as a single entities.  Each byte is treated
1967 separately.  The function is not locale-dependent.
1968 @end deftypefun
1970 @deftypefun size_t wcscspn (const wchar_t *@var{wstring}, const wchar_t *@var{stopset})
1971 @standards{ISO, wchar.h}
1972 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1973 The @code{wcscspn} (``wide character string complement span'') function
1974 returns the length of the initial substring of @var{wstring} that
1975 consists entirely of wide characters that are @emph{not} members of the
1976 set specified by the string @var{stopset}.  (In other words, it returns
1977 the offset of the first wide character in @var{string} that is a member of
1978 the set @var{stopset}.)
1979 @end deftypefun
1981 @deftypefun {char *} strpbrk (const char *@var{string}, const char *@var{stopset})
1982 @standards{ISO, string.h}
1983 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1984 The @code{strpbrk} (``string pointer break'') function is related to
1985 @code{strcspn}, except that it returns a pointer to the first byte
1986 in @var{string} that is a member of the set @var{stopset} instead of the
1987 length of the initial substring.  It returns a null pointer if no such
1988 byte from @var{stopset} is found.
1990 @c @group  Invalid outside the example.
1991 For example,
1993 @smallexample
1994 strpbrk ("hello, world", " \t\n,.;!?")
1995     @result{} ", world"
1996 @end smallexample
1997 @c @end group
1999 In a multibyte string, characters consisting of
2000 more than one byte are not treated as single entities.  Each byte is treated
2001 separately.  The function is not locale-dependent.
2002 @end deftypefun
2004 @deftypefun {wchar_t *} wcspbrk (const wchar_t *@var{wstring}, const wchar_t *@var{stopset})
2005 @standards{ISO, wchar.h}
2006 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2007 The @code{wcspbrk} (``wide character string pointer break'') function is
2008 related to @code{wcscspn}, except that it returns a pointer to the first
2009 wide character in @var{wstring} that is a member of the set
2010 @var{stopset} instead of the length of the initial substring.  It
2011 returns a null pointer if no such wide character from @var{stopset} is found.
2012 @end deftypefun
2015 @subsection Compatibility String Search Functions
2017 @deftypefun {char *} index (const char *@var{string}, int @var{c})
2018 @standards{BSD, string.h}
2019 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2020 @code{index} is another name for @code{strchr}; they are exactly the same.
2021 New code should always use @code{strchr} since this name is defined in
2022 @w{ISO C} while @code{index} is a BSD invention which never was available
2023 on @w{System V} derived systems.
2024 @end deftypefun
2026 @deftypefun {char *} rindex (const char *@var{string}, int @var{c})
2027 @standards{BSD, string.h}
2028 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2029 @code{rindex} is another name for @code{strrchr}; they are exactly the same.
2030 New code should always use @code{strrchr} since this name is defined in
2031 @w{ISO C} while @code{rindex} is a BSD invention which never was available
2032 on @w{System V} derived systems.
2033 @end deftypefun
2035 @node Finding Tokens in a String
2036 @section Finding Tokens in a String
2038 @cindex tokenizing strings
2039 @cindex breaking a string into tokens
2040 @cindex parsing tokens from a string
2041 It's fairly common for programs to have a need to do some simple kinds
2042 of lexical analysis and parsing, such as splitting a command string up
2043 into tokens.  You can do this with the @code{strtok} function, declared
2044 in the header file @file{string.h}.
2045 @pindex string.h
2047 @deftypefun {char *} strtok (char *restrict @var{newstring}, const char *restrict @var{delimiters})
2048 @standards{ISO, string.h}
2049 @safety{@prelim{}@mtunsafe{@mtasurace{:strtok}}@asunsafe{}@acsafe{}}
2050 A string can be split into tokens by making a series of calls to the
2051 function @code{strtok}.
2053 The string to be split up is passed as the @var{newstring} argument on
2054 the first call only.  The @code{strtok} function uses this to set up
2055 some internal state information.  Subsequent calls to get additional
2056 tokens from the same string are indicated by passing a null pointer as
2057 the @var{newstring} argument.  Calling @code{strtok} with another
2058 non-null @var{newstring} argument reinitializes the state information.
2059 It is guaranteed that no other library function ever calls @code{strtok}
2060 behind your back (which would mess up this internal state information).
2062 The @var{delimiters} argument is a string that specifies a set of delimiters
2063 that may surround the token being extracted.  All the initial bytes
2064 that are members of this set are discarded.  The first byte that is
2065 @emph{not} a member of this set of delimiters marks the beginning of the
2066 next token.  The end of the token is found by looking for the next
2067 byte that is a member of the delimiter set.  This byte in the
2068 original string @var{newstring} is overwritten by a null byte, and the
2069 pointer to the beginning of the token in @var{newstring} is returned.
2071 On the next call to @code{strtok}, the searching begins at the next
2072 byte beyond the one that marked the end of the previous token.
2073 Note that the set of delimiters @var{delimiters} do not have to be the
2074 same on every call in a series of calls to @code{strtok}.
2076 If the end of the string @var{newstring} is reached, or if the remainder of
2077 string consists only of delimiter bytes, @code{strtok} returns
2078 a null pointer.
2080 In a multibyte string, characters consisting of
2081 more than one byte are not treated as single entities.  Each byte is treated
2082 separately.  The function is not locale-dependent.
2083 @end deftypefun
2085 @deftypefun {wchar_t *} wcstok (wchar_t *@var{newstring}, const wchar_t *@var{delimiters}, wchar_t **@var{save_ptr})
2086 @standards{ISO, wchar.h}
2087 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2088 A string can be split into tokens by making a series of calls to the
2089 function @code{wcstok}.
2091 The string to be split up is passed as the @var{newstring} argument on
2092 the first call only.  The @code{wcstok} function uses this to set up
2093 some internal state information.  Subsequent calls to get additional
2094 tokens from the same wide string are indicated by passing a
2095 null pointer as the @var{newstring} argument, which causes the pointer
2096 previously stored in @var{save_ptr} to be used instead.
2098 The @var{delimiters} argument is a wide string that specifies
2099 a set of delimiters that may surround the token being extracted.  All
2100 the initial wide characters that are members of this set are discarded.
2101 The first wide character that is @emph{not} a member of this set of
2102 delimiters marks the beginning of the next token.  The end of the token
2103 is found by looking for the next wide character that is a member of the
2104 delimiter set.  This wide character in the original wide
2105 string @var{newstring} is overwritten by a null wide character, the
2106 pointer past the overwritten wide character is saved in @var{save_ptr},
2107 and the pointer to the beginning of the token in @var{newstring} is
2108 returned.
2110 On the next call to @code{wcstok}, the searching begins at the next
2111 wide character beyond the one that marked the end of the previous token.
2112 Note that the set of delimiters @var{delimiters} do not have to be the
2113 same on every call in a series of calls to @code{wcstok}.
2115 If the end of the wide string @var{newstring} is reached, or
2116 if the remainder of string consists only of delimiter wide characters,
2117 @code{wcstok} returns a null pointer.
2118 @end deftypefun
2120 @strong{Warning:} Since @code{strtok} and @code{wcstok} alter the string
2121 they is parsing, you should always copy the string to a temporary buffer
2122 before parsing it with @code{strtok}/@code{wcstok} (@pxref{Copying Strings
2123 and Arrays}).  If you allow @code{strtok} or @code{wcstok} to modify
2124 a string that came from another part of your program, you are asking for
2125 trouble; that string might be used for other purposes after
2126 @code{strtok} or @code{wcstok} has modified it, and it would not have
2127 the expected value.
2129 The string that you are operating on might even be a constant.  Then
2130 when @code{strtok} or @code{wcstok} tries to modify it, your program
2131 will get a fatal signal for writing in read-only memory.  @xref{Program
2132 Error Signals}.  Even if the operation of @code{strtok} or @code{wcstok}
2133 would not require a modification of the string (e.g., if there is
2134 exactly one token) the string can (and in the @glibcadj{} case will) be
2135 modified.
2137 This is a special case of a general principle: if a part of a program
2138 does not have as its purpose the modification of a certain data
2139 structure, then it is error-prone to modify the data structure
2140 temporarily.
2142 The function @code{strtok} is not reentrant, whereas @code{wcstok} is.
2143 @xref{Nonreentrancy}, for a discussion of where and why reentrancy is
2144 important.
2146 Here is a simple example showing the use of @code{strtok}.
2148 @comment Yes, this example has been tested.
2149 @smallexample
2150 #include <string.h>
2151 #include <stddef.h>
2153 @dots{}
2155 const char string[] = "words separated by spaces -- and, punctuation!";
2156 const char delimiters[] = " .,;:!-";
2157 char *token, *cp;
2159 @dots{}
2161 cp = strdupa (string);                /* Make writable copy.  */
2162 token = strtok (cp, delimiters);      /* token => "words" */
2163 token = strtok (NULL, delimiters);    /* token => "separated" */
2164 token = strtok (NULL, delimiters);    /* token => "by" */
2165 token = strtok (NULL, delimiters);    /* token => "spaces" */
2166 token = strtok (NULL, delimiters);    /* token => "and" */
2167 token = strtok (NULL, delimiters);    /* token => "punctuation" */
2168 token = strtok (NULL, delimiters);    /* token => NULL */
2169 @end smallexample
2171 @Theglibc{} contains two more functions for tokenizing a string
2172 which overcome the limitation of non-reentrancy.  They are not
2173 available available for wide strings.
2175 @deftypefun {char *} strtok_r (char *@var{newstring}, const char *@var{delimiters}, char **@var{save_ptr})
2176 @standards{POSIX, string.h}
2177 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2178 Just like @code{strtok}, this function splits the string into several
2179 tokens which can be accessed by successive calls to @code{strtok_r}.
2180 The difference is that, as in @code{wcstok}, the information about the
2181 next token is stored in the space pointed to by the third argument,
2182 @var{save_ptr}, which is a pointer to a string pointer.  Calling
2183 @code{strtok_r} with a null pointer for @var{newstring} and leaving
2184 @var{save_ptr} between the calls unchanged does the job without
2185 hindering reentrancy.
2187 This function is defined in POSIX.1 and can be found on many systems
2188 which support multi-threading.
2189 @end deftypefun
2191 @deftypefun {char *} strsep (char **@var{string_ptr}, const char *@var{delimiter})
2192 @standards{BSD, string.h}
2193 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2194 This function has a similar functionality as @code{strtok_r} with the
2195 @var{newstring} argument replaced by the @var{save_ptr} argument.  The
2196 initialization of the moving pointer has to be done by the user.
2197 Successive calls to @code{strsep} move the pointer along the tokens
2198 separated by @var{delimiter}, returning the address of the next token
2199 and updating @var{string_ptr} to point to the beginning of the next
2200 token.
2202 One difference between @code{strsep} and @code{strtok_r} is that if the
2203 input string contains more than one byte from @var{delimiter} in a
2204 row @code{strsep} returns an empty string for each pair of bytes
2205 from @var{delimiter}.  This means that a program normally should test
2206 for @code{strsep} returning an empty string before processing it.
2208 This function was introduced in 4.3BSD and therefore is widely available.
2209 @end deftypefun
2211 Here is how the above example looks like when @code{strsep} is used.
2213 @comment Yes, this example has been tested.
2214 @smallexample
2215 #include <string.h>
2216 #include <stddef.h>
2218 @dots{}
2220 const char string[] = "words separated by spaces -- and, punctuation!";
2221 const char delimiters[] = " .,;:!-";
2222 char *running;
2223 char *token;
2225 @dots{}
2227 running = strdupa (string);
2228 token = strsep (&running, delimiters);    /* token => "words" */
2229 token = strsep (&running, delimiters);    /* token => "separated" */
2230 token = strsep (&running, delimiters);    /* token => "by" */
2231 token = strsep (&running, delimiters);    /* token => "spaces" */
2232 token = strsep (&running, delimiters);    /* token => "" */
2233 token = strsep (&running, delimiters);    /* token => "" */
2234 token = strsep (&running, delimiters);    /* token => "" */
2235 token = strsep (&running, delimiters);    /* token => "and" */
2236 token = strsep (&running, delimiters);    /* token => "" */
2237 token = strsep (&running, delimiters);    /* token => "punctuation" */
2238 token = strsep (&running, delimiters);    /* token => "" */
2239 token = strsep (&running, delimiters);    /* token => NULL */
2240 @end smallexample
2242 @deftypefun {char *} basename (const char *@var{filename})
2243 @standards{GNU, string.h}
2244 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2245 The GNU version of the @code{basename} function returns the last
2246 component of the path in @var{filename}.  This function is the preferred
2247 usage, since it does not modify the argument, @var{filename}, and
2248 respects trailing slashes.  The prototype for @code{basename} can be
2249 found in @file{string.h}.  Note, this function is overridden by the XPG
2250 version, if @file{libgen.h} is included.
2252 Example of using GNU @code{basename}:
2254 @smallexample
2255 #include <string.h>
2258 main (int argc, char *argv[])
2260   char *prog = basename (argv[0]);
2262   if (argc < 2)
2263     @{
2264       fprintf (stderr, "Usage %s <arg>\n", prog);
2265       exit (1);
2266     @}
2268   @dots{}
2270 @end smallexample
2272 @strong{Portability Note:} This function may produce different results
2273 on different systems.
2275 @end deftypefun
2277 @deftypefun {char *} basename (char *@var{path})
2278 @standards{XPG, libgen.h}
2279 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2280 This is the standard XPG defined @code{basename}.  It is similar in
2281 spirit to the GNU version, but may modify the @var{path} by removing
2282 trailing '/' bytes.  If the @var{path} is made up entirely of '/'
2283 bytes, then "/" will be returned.  Also, if @var{path} is
2284 @code{NULL} or an empty string, then "." is returned.  The prototype for
2285 the XPG version can be found in @file{libgen.h}.
2287 Example of using XPG @code{basename}:
2289 @smallexample
2290 #include <libgen.h>
2293 main (int argc, char *argv[])
2295   char *prog;
2296   char *path = strdupa (argv[0]);
2298   prog = basename (path);
2300   if (argc < 2)
2301     @{
2302       fprintf (stderr, "Usage %s <arg>\n", prog);
2303       exit (1);
2304     @}
2306   @dots{}
2309 @end smallexample
2310 @end deftypefun
2312 @deftypefun {char *} dirname (char *@var{path})
2313 @standards{XPG, libgen.h}
2314 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2315 The @code{dirname} function is the compliment to the XPG version of
2316 @code{basename}.  It returns the parent directory of the file specified
2317 by @var{path}.  If @var{path} is @code{NULL}, an empty string, or
2318 contains no '/' bytes, then "." is returned.  The prototype for this
2319 function can be found in @file{libgen.h}.
2320 @end deftypefun
2322 @node Erasing Sensitive Data
2323 @section Erasing Sensitive Data
2325 Sensitive data, such as cryptographic keys, should be erased from
2326 memory after use, to reduce the risk that a bug will expose it to the
2327 outside world.  However, compiler optimizations may determine that an
2328 erasure operation is ``unnecessary,'' and remove it from the generated
2329 code, because no @emph{correct} program could access the variable or
2330 heap object containing the sensitive data after it's deallocated.
2331 Since erasure is a precaution against bugs, this optimization is
2332 inappropriate.
2334 The function @code{explicit_bzero} erases a block of memory, and
2335 guarantees that the compiler will not remove the erasure as
2336 ``unnecessary.''
2338 @smallexample
2339 @group
2340 #include <string.h>
2342 extern void encrypt (const char *key, const char *in,
2343                      char *out, size_t n);
2344 extern void genkey (const char *phrase, char *key);
2346 void encrypt_with_phrase (const char *phrase, const char *in,
2347                           char *out, size_t n)
2349   char key[16];
2350   genkey (phrase, key);
2351   encrypt (key, in, out, n);
2352   explicit_bzero (key, 16);
2354 @end group
2355 @end smallexample
2357 @noindent
2358 In this example, if @code{memset}, @code{bzero}, or a hand-written
2359 loop had been used, the compiler might remove them as ``unnecessary.''
2361 @strong{Warning:} @code{explicit_bzero} does not guarantee that
2362 sensitive data is @emph{completely} erased from the computer's memory.
2363 There may be copies in temporary storage areas, such as registers and
2364 ``scratch'' stack space; since these are invisible to the source code,
2365 a library function cannot erase them.
2367 Also, @code{explicit_bzero} only operates on RAM.  If a sensitive data
2368 object never needs to have its address taken other than to call
2369 @code{explicit_bzero}, it might be stored entirely in CPU registers
2370 @emph{until} the call to @code{explicit_bzero}.  Then it will be
2371 copied into RAM, the copy will be erased, and the original will remain
2372 intact.  Data in RAM is more likely to be exposed by a bug than data
2373 in registers, so this creates a brief window where the data is at
2374 greater risk of exposure than it would have been if the program didn't
2375 try to erase it at all.
2377 Declaring sensitive variables as @code{volatile} will make both the
2378 above problems @emph{worse}; a @code{volatile} variable will be stored
2379 in memory for its entire lifetime, and the compiler will make
2380 @emph{more} copies of it than it would otherwise have.  Attempting to
2381 erase a normal variable ``by hand'' through a
2382 @code{volatile}-qualified pointer doesn't work at all---because the
2383 variable itself is not @code{volatile}, some compilers will ignore the
2384 qualification on the pointer and remove the erasure anyway.
2386 Having said all that, in most situations, using @code{explicit_bzero}
2387 is better than not using it.  At present, the only way to do a more
2388 thorough job is to write the entire sensitive operation in assembly
2389 language.  We anticipate that future compilers will recognize calls to
2390 @code{explicit_bzero} and take appropriate steps to erase all the
2391 copies of the affected data, wherever they may be.
2393 @deftypefun void explicit_bzero (void *@var{block}, size_t @var{len})
2394 @standards{BSD, string.h}
2395 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2397 @code{explicit_bzero} writes zero into @var{len} bytes of memory
2398 beginning at @var{block}, just as @code{bzero} would.  The zeroes are
2399 always written, even if the compiler could determine that this is
2400 ``unnecessary'' because no correct program could read them back.
2402 @strong{Note:} The @emph{only} optimization that @code{explicit_bzero}
2403 disables is removal of ``unnecessary'' writes to memory.  The compiler
2404 can perform all the other optimizations that it could for a call to
2405 @code{memset}.  For instance, it may replace the function call with
2406 inline memory writes, and it may assume that @var{block} cannot be a
2407 null pointer.
2409 @strong{Portability Note:} This function first appeared in OpenBSD 5.5
2410 and has not been standardized.  Other systems may provide the same
2411 functionality under a different name, such as @code{explicit_memset},
2412 @code{memset_s}, or @code{SecureZeroMemory}.
2414 @Theglibc{} declares this function in @file{string.h}, but on other
2415 systems it may be in @file{strings.h} instead.
2416 @end deftypefun
2419 @node Shuffling Bytes
2420 @section Shuffling Bytes
2422 The function below addresses the perennial programming quandary: ``How do
2423 I take good data in string form and painlessly turn it into garbage?''
2424 This is not a difficult thing to code for oneself, but the authors of
2425 @theglibc{} wish to make it as convenient as possible.
2427 To @emph{erase} data, use @code{explicit_bzero} (@pxref{Erasing
2428 Sensitive Data}); to obfuscate it reversibly, use @code{memfrob}
2429 (@pxref{Obfuscating Data}).
2431 @deftypefun {char *} strfry (char *@var{string})
2432 @standards{GNU, string.h}
2433 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2434 @c Calls initstate_r, time, getpid, strlen, and random_r.
2436 @code{strfry} performs an in-place shuffle on @var{string}.  Each
2437 character is swapped to a position selected at random, within the
2438 portion of the string starting with the character's original position.
2439 (This is the Fisher-Yates algorithm for unbiased shuffling.)
2441 Calling @code{strfry} will not disturb any of the random number
2442 generators that have global state (@pxref{Pseudo-Random Numbers}).
2444 The return value of @code{strfry} is always @var{string}.
2446 @strong{Portability Note:}  This function is unique to @theglibc{}.
2447 It is declared in @file{string.h}.
2448 @end deftypefun
2451 @node Obfuscating Data
2452 @section Obfuscating Data
2453 @cindex Rot13
2455 The @code{memfrob} function reversibly obfuscates an array of binary
2456 data.  This is not true encryption; the obfuscated data still bears a
2457 clear relationship to the original, and no secret key is required to
2458 undo the obfuscation.  It is analogous to the ``Rot13'' cipher used on
2459 Usenet for obscuring offensive jokes, spoilers for works of fiction,
2460 and so on, but it can be applied to arbitrary binary data.
2462 Programs that need true encryption---a transformation that completely
2463 obscures the original and cannot be reversed without knowledge of a
2464 secret key---should use a dedicated cryptography library, such as
2465 @uref{https://www.gnu.org/software/libgcrypt/,,libgcrypt}.
2467 Programs that need to @emph{destroy} data should use
2468 @code{explicit_bzero} (@pxref{Erasing Sensitive Data}), or possibly
2469 @code{strfry} (@pxref{Shuffling Bytes}).
2471 @deftypefun {void *} memfrob (void *@var{mem}, size_t @var{length})
2472 @standards{GNU, string.h}
2473 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2475 The function @code{memfrob} obfuscates @var{length} bytes of data
2476 beginning at @var{mem}, in place.  Each byte is bitwise xor-ed with
2477 the binary pattern 00101010 (hexadecimal 0x2A).  The return value is
2478 always @var{mem}.
2480 @code{memfrob} a second time on the same data returns it to
2481 its original state.
2483 @strong{Portability Note:}  This function is unique to @theglibc{}.
2484 It is declared in @file{string.h}.
2485 @end deftypefun
2487 @node Encode Binary Data
2488 @section Encode Binary Data
2490 To store or transfer binary data in environments which only support text
2491 one has to encode the binary data by mapping the input bytes to
2492 bytes in the range allowed for storing or transferring.  SVID
2493 systems (and nowadays XPG compliant systems) provide minimal support for
2494 this task.
2496 @deftypefun {char *} l64a (long int @var{n})
2497 @standards{XPG, stdlib.h}
2498 @safety{@prelim{}@mtunsafe{@mtasurace{:l64a}}@asunsafe{}@acsafe{}}
2499 This function encodes a 32-bit input value using bytes from the
2500 basic character set.  It returns a pointer to a 7 byte buffer which
2501 contains an encoded version of @var{n}.  To encode a series of bytes the
2502 user must copy the returned string to a destination buffer.  It returns
2503 the empty string if @var{n} is zero, which is somewhat bizarre but
2504 mandated by the standard.@*
2505 @strong{Warning:} Since a static buffer is used this function should not
2506 be used in multi-threaded programs.  There is no thread-safe alternative
2507 to this function in the C library.@*
2508 @strong{Compatibility Note:} The XPG standard states that the return
2509 value of @code{l64a} is undefined if @var{n} is negative.  In the GNU
2510 implementation, @code{l64a} treats its argument as unsigned, so it will
2511 return a sensible encoding for any nonzero @var{n}; however, portable
2512 programs should not rely on this.
2514 To encode a large buffer @code{l64a} must be called in a loop, once for
2515 each 32-bit word of the buffer.  For example, one could do something
2516 like this:
2518 @smallexample
2519 char *
2520 encode (const void *buf, size_t len)
2522   /* @r{We know in advance how long the buffer has to be.} */
2523   unsigned char *in = (unsigned char *) buf;
2524   char *out = malloc (6 + ((len + 3) / 4) * 6 + 1);
2525   char *cp = out, *p;
2527   /* @r{Encode the length.} */
2528   /* @r{Using `htonl' is necessary so that the data can be}
2529      @r{decoded even on machines with different byte order.}
2530      @r{`l64a' can return a string shorter than 6 bytes, so }
2531      @r{we pad it with encoding of 0 (}'.'@r{) at the end by }
2532      @r{hand.} */
2534   p = stpcpy (cp, l64a (htonl (len)));
2535   cp = mempcpy (p, "......", 6 - (p - cp));
2537   while (len > 3)
2538     @{
2539       unsigned long int n = *in++;
2540       n = (n << 8) | *in++;
2541       n = (n << 8) | *in++;
2542       n = (n << 8) | *in++;
2543       len -= 4;
2544       p = stpcpy (cp, l64a (htonl (n)));
2545       cp = mempcpy (p, "......", 6 - (p - cp));
2546     @}
2547   if (len > 0)
2548     @{
2549       unsigned long int n = *in++;
2550       if (--len > 0)
2551         @{
2552           n = (n << 8) | *in++;
2553           if (--len > 0)
2554             n = (n << 8) | *in;
2555         @}
2556       cp = stpcpy (cp, l64a (htonl (n)));
2557     @}
2558   *cp = '\0';
2559   return out;
2561 @end smallexample
2563 It is strange that the library does not provide the complete
2564 functionality needed but so be it.
2566 @end deftypefun
2568 To decode data produced with @code{l64a} the following function should be
2569 used.
2571 @deftypefun {long int} a64l (const char *@var{string})
2572 @standards{XPG, stdlib.h}
2573 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2574 The parameter @var{string} should contain a string which was produced by
2575 a call to @code{l64a}.  The function processes at least 6 bytes of
2576 this string, and decodes the bytes it finds according to the table
2577 below.  It stops decoding when it finds a byte not in the table,
2578 rather like @code{atoi}; if you have a buffer which has been broken into
2579 lines, you must be careful to skip over the end-of-line bytes.
2581 The decoded number is returned as a @code{long int} value.
2582 @end deftypefun
2584 The @code{l64a} and @code{a64l} functions use a base 64 encoding, in
2585 which each byte of an encoded string represents six bits of an
2586 input word.  These symbols are used for the base 64 digits:
2588 @multitable {xxxxx} {xxx} {xxx} {xxx} {xxx} {xxx} {xxx} {xxx} {xxx}
2589 @item              @tab 0 @tab 1 @tab 2 @tab 3 @tab 4 @tab 5 @tab 6 @tab 7
2590 @item       0      @tab @code{.} @tab @code{/} @tab @code{0} @tab @code{1}
2591                    @tab @code{2} @tab @code{3} @tab @code{4} @tab @code{5}
2592 @item       8      @tab @code{6} @tab @code{7} @tab @code{8} @tab @code{9}
2593                    @tab @code{A} @tab @code{B} @tab @code{C} @tab @code{D}
2594 @item       16     @tab @code{E} @tab @code{F} @tab @code{G} @tab @code{H}
2595                    @tab @code{I} @tab @code{J} @tab @code{K} @tab @code{L}
2596 @item       24     @tab @code{M} @tab @code{N} @tab @code{O} @tab @code{P}
2597                    @tab @code{Q} @tab @code{R} @tab @code{S} @tab @code{T}
2598 @item       32     @tab @code{U} @tab @code{V} @tab @code{W} @tab @code{X}
2599                    @tab @code{Y} @tab @code{Z} @tab @code{a} @tab @code{b}
2600 @item       40     @tab @code{c} @tab @code{d} @tab @code{e} @tab @code{f}
2601                    @tab @code{g} @tab @code{h} @tab @code{i} @tab @code{j}
2602 @item       48     @tab @code{k} @tab @code{l} @tab @code{m} @tab @code{n}
2603                    @tab @code{o} @tab @code{p} @tab @code{q} @tab @code{r}
2604 @item       56     @tab @code{s} @tab @code{t} @tab @code{u} @tab @code{v}
2605                    @tab @code{w} @tab @code{x} @tab @code{y} @tab @code{z}
2606 @end multitable
2608 This encoding scheme is not standard.  There are some other encoding
2609 methods which are much more widely used (UU encoding, MIME encoding).
2610 Generally, it is better to use one of these encodings.
2612 @node Argz and Envz Vectors
2613 @section Argz and Envz Vectors
2615 @cindex argz vectors (string vectors)
2616 @cindex string vectors, null-byte separated
2617 @cindex argument vectors, null-byte separated
2618 @dfn{argz vectors} are vectors of strings in a contiguous block of
2619 memory, each element separated from its neighbors by null bytes
2620 (@code{'\0'}).
2622 @cindex envz vectors (environment vectors)
2623 @cindex environment vectors, null-byte separated
2624 @dfn{Envz vectors} are an extension of argz vectors where each element is a
2625 name-value pair, separated by a @code{'='} byte (as in a Unix
2626 environment).
2628 @menu
2629 * Argz Functions::              Operations on argz vectors.
2630 * Envz Functions::              Additional operations on environment vectors.
2631 @end menu
2633 @node Argz Functions, Envz Functions, , Argz and Envz Vectors
2634 @subsection Argz Functions
2636 Each argz vector is represented by a pointer to the first element, of
2637 type @code{char *}, and a size, of type @code{size_t}, both of which can
2638 be initialized to @code{0} to represent an empty argz vector.  All argz
2639 functions accept either a pointer and a size argument, or pointers to
2640 them, if they will be modified.
2642 The argz functions use @code{malloc}/@code{realloc} to allocate/grow
2643 argz vectors, and so any argz vector created using these functions may
2644 be freed by using @code{free}; conversely, any argz function that may
2645 grow a string expects that string to have been allocated using
2646 @code{malloc} (those argz functions that only examine their arguments or
2647 modify them in place will work on any sort of memory).
2648 @xref{Unconstrained Allocation}.
2650 All argz functions that do memory allocation have a return type of
2651 @code{error_t}, and return @code{0} for success, and @code{ENOMEM} if an
2652 allocation error occurs.
2654 @pindex argz.h
2655 These functions are declared in the standard include file @file{argz.h}.
2657 @deftypefun {error_t} argz_create (char *const @var{argv}[], char **@var{argz}, size_t *@var{argz_len})
2658 @standards{GNU, argz.h}
2659 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2660 The @code{argz_create} function converts the Unix-style argument vector
2661 @var{argv} (a vector of pointers to normal C strings, terminated by
2662 @code{(char *)0}; @pxref{Program Arguments}) into an argz vector with
2663 the same elements, which is returned in @var{argz} and @var{argz_len}.
2664 @end deftypefun
2666 @deftypefun {error_t} argz_create_sep (const char *@var{string}, int @var{sep}, char **@var{argz}, size_t *@var{argz_len})
2667 @standards{GNU, argz.h}
2668 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2669 The @code{argz_create_sep} function converts the string
2670 @var{string} into an argz vector (returned in @var{argz} and
2671 @var{argz_len}) by splitting it into elements at every occurrence of the
2672 byte @var{sep}.
2673 @end deftypefun
2675 @deftypefun {size_t} argz_count (const char *@var{argz}, size_t @var{argz_len})
2676 @standards{GNU, argz.h}
2677 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2678 Returns the number of elements in the argz vector @var{argz} and
2679 @var{argz_len}.
2680 @end deftypefun
2682 @deftypefun {void} argz_extract (const char *@var{argz}, size_t @var{argz_len}, char **@var{argv})
2683 @standards{GNU, argz.h}
2684 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2685 The @code{argz_extract} function converts the argz vector @var{argz} and
2686 @var{argz_len} into a Unix-style argument vector stored in @var{argv},
2687 by putting pointers to every element in @var{argz} into successive
2688 positions in @var{argv}, followed by a terminator of @code{0}.
2689 @var{Argv} must be pre-allocated with enough space to hold all the
2690 elements in @var{argz} plus the terminating @code{(char *)0}
2691 (@code{(argz_count (@var{argz}, @var{argz_len}) + 1) * sizeof (char *)}
2692 bytes should be enough).  Note that the string pointers stored into
2693 @var{argv} point into @var{argz}---they are not copies---and so
2694 @var{argz} must be copied if it will be changed while @var{argv} is
2695 still active.  This function is useful for passing the elements in
2696 @var{argz} to an exec function (@pxref{Executing a File}).
2697 @end deftypefun
2699 @deftypefun {void} argz_stringify (char *@var{argz}, size_t @var{len}, int @var{sep})
2700 @standards{GNU, argz.h}
2701 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2702 The @code{argz_stringify} converts @var{argz} into a normal string with
2703 the elements separated by the byte @var{sep}, by replacing each
2704 @code{'\0'} inside @var{argz} (except the last one, which terminates the
2705 string) with @var{sep}.  This is handy for printing @var{argz} in a
2706 readable manner.
2707 @end deftypefun
2709 @deftypefun {error_t} argz_add (char **@var{argz}, size_t *@var{argz_len}, const char *@var{str})
2710 @standards{GNU, argz.h}
2711 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2712 @c Calls strlen and argz_append.
2713 The @code{argz_add} function adds the string @var{str} to the end of the
2714 argz vector @code{*@var{argz}}, and updates @code{*@var{argz}} and
2715 @code{*@var{argz_len}} accordingly.
2716 @end deftypefun
2718 @deftypefun {error_t} argz_add_sep (char **@var{argz}, size_t *@var{argz_len}, const char *@var{str}, int @var{delim})
2719 @standards{GNU, argz.h}
2720 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2721 The @code{argz_add_sep} function is similar to @code{argz_add}, but
2722 @var{str} is split into separate elements in the result at occurrences of
2723 the byte @var{delim}.  This is useful, for instance, for
2724 adding the components of a Unix search path to an argz vector, by using
2725 a value of @code{':'} for @var{delim}.
2726 @end deftypefun
2728 @deftypefun {error_t} argz_append (char **@var{argz}, size_t *@var{argz_len}, const char *@var{buf}, size_t @var{buf_len})
2729 @standards{GNU, argz.h}
2730 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2731 The @code{argz_append} function appends @var{buf_len} bytes starting at
2732 @var{buf} to the argz vector @code{*@var{argz}}, reallocating
2733 @code{*@var{argz}} to accommodate it, and adding @var{buf_len} to
2734 @code{*@var{argz_len}}.
2735 @end deftypefun
2737 @deftypefun {void} argz_delete (char **@var{argz}, size_t *@var{argz_len}, char *@var{entry})
2738 @standards{GNU, argz.h}
2739 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2740 @c Calls free if no argument is left.
2741 If @var{entry} points to the beginning of one of the elements in the
2742 argz vector @code{*@var{argz}}, the @code{argz_delete} function will
2743 remove this entry and reallocate @code{*@var{argz}}, modifying
2744 @code{*@var{argz}} and @code{*@var{argz_len}} accordingly.  Note that as
2745 destructive argz functions usually reallocate their argz argument,
2746 pointers into argz vectors such as @var{entry} will then become invalid.
2747 @end deftypefun
2749 @deftypefun {error_t} argz_insert (char **@var{argz}, size_t *@var{argz_len}, char *@var{before}, const char *@var{entry})
2750 @standards{GNU, argz.h}
2751 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2752 @c Calls argz_add or realloc and memmove.
2753 The @code{argz_insert} function inserts the string @var{entry} into the
2754 argz vector @code{*@var{argz}} at a point just before the existing
2755 element pointed to by @var{before}, reallocating @code{*@var{argz}} and
2756 updating @code{*@var{argz}} and @code{*@var{argz_len}}.  If @var{before}
2757 is @code{0}, @var{entry} is added to the end instead (as if by
2758 @code{argz_add}).  Since the first element is in fact the same as
2759 @code{*@var{argz}}, passing in @code{*@var{argz}} as the value of
2760 @var{before} will result in @var{entry} being inserted at the beginning.
2761 @end deftypefun
2763 @deftypefun {char *} argz_next (const char *@var{argz}, size_t @var{argz_len}, const char *@var{entry})
2764 @standards{GNU, argz.h}
2765 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2766 The @code{argz_next} function provides a convenient way of iterating
2767 over the elements in the argz vector @var{argz}.  It returns a pointer
2768 to the next element in @var{argz} after the element @var{entry}, or
2769 @code{0} if there are no elements following @var{entry}.  If @var{entry}
2770 is @code{0}, the first element of @var{argz} is returned.
2772 This behavior suggests two styles of iteration:
2774 @smallexample
2775     char *entry = 0;
2776     while ((entry = argz_next (@var{argz}, @var{argz_len}, entry)))
2777       @var{action};
2778 @end smallexample
2780 (the double parentheses are necessary to make some C compilers shut up
2781 about what they consider a questionable @code{while}-test) and:
2783 @smallexample
2784     char *entry;
2785     for (entry = @var{argz};
2786          entry;
2787          entry = argz_next (@var{argz}, @var{argz_len}, entry))
2788       @var{action};
2789 @end smallexample
2791 Note that the latter depends on @var{argz} having a value of @code{0} if
2792 it is empty (rather than a pointer to an empty block of memory); this
2793 invariant is maintained for argz vectors created by the functions here.
2794 @end deftypefun
2796 @deftypefun error_t argz_replace (@w{char **@var{argz}, size_t *@var{argz_len}}, @w{const char *@var{str}, const char *@var{with}}, @w{unsigned *@var{replace_count}})
2797 @standards{GNU, argz.h}
2798 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2799 Replace any occurrences of the string @var{str} in @var{argz} with
2800 @var{with}, reallocating @var{argz} as necessary.  If
2801 @var{replace_count} is non-zero, @code{*@var{replace_count}} will be
2802 incremented by the number of replacements performed.
2803 @end deftypefun
2805 @node Envz Functions, , Argz Functions, Argz and Envz Vectors
2806 @subsection Envz Functions
2808 Envz vectors are just argz vectors with additional constraints on the form
2809 of each element; as such, argz functions can also be used on them, where it
2810 makes sense.
2812 Each element in an envz vector is a name-value pair, separated by a @code{'='}
2813 byte; if multiple @code{'='} bytes are present in an element, those
2814 after the first are considered part of the value, and treated like all other
2815 non-@code{'\0'} bytes.
2817 If @emph{no} @code{'='} bytes are present in an element, that element is
2818 considered the name of a ``null'' entry, as distinct from an entry with an
2819 empty value: @code{envz_get} will return @code{0} if given the name of null
2820 entry, whereas an entry with an empty value would result in a value of
2821 @code{""}; @code{envz_entry} will still find such entries, however.  Null
2822 entries can be removed with the @code{envz_strip} function.
2824 As with argz functions, envz functions that may allocate memory (and thus
2825 fail) have a return type of @code{error_t}, and return either @code{0} or
2826 @code{ENOMEM}.
2828 @pindex envz.h
2829 These functions are declared in the standard include file @file{envz.h}.
2831 @deftypefun {char *} envz_entry (const char *@var{envz}, size_t @var{envz_len}, const char *@var{name})
2832 @standards{GNU, envz.h}
2833 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2834 The @code{envz_entry} function finds the entry in @var{envz} with the name
2835 @var{name}, and returns a pointer to the whole entry---that is, the argz
2836 element which begins with @var{name} followed by a @code{'='} byte.  If
2837 there is no entry with that name, @code{0} is returned.
2838 @end deftypefun
2840 @deftypefun {char *} envz_get (const char *@var{envz}, size_t @var{envz_len}, const char *@var{name})
2841 @standards{GNU, envz.h}
2842 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2843 The @code{envz_get} function finds the entry in @var{envz} with the name
2844 @var{name} (like @code{envz_entry}), and returns a pointer to the value
2845 portion of that entry (following the @code{'='}).  If there is no entry with
2846 that name (or only a null entry), @code{0} is returned.
2847 @end deftypefun
2849 @deftypefun {error_t} envz_add (char **@var{envz}, size_t *@var{envz_len}, const char *@var{name}, const char *@var{value})
2850 @standards{GNU, envz.h}
2851 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2852 @c Calls envz_remove, which calls enz_entry and argz_delete, and then
2853 @c argz_add or equivalent code that reallocs and appends name=value.
2854 The @code{envz_add} function adds an entry to @code{*@var{envz}}
2855 (updating @code{*@var{envz}} and @code{*@var{envz_len}}) with the name
2856 @var{name}, and value @var{value}.  If an entry with the same name
2857 already exists in @var{envz}, it is removed first.  If @var{value} is
2858 @code{0}, then the new entry will be the special null type of entry
2859 (mentioned above).
2860 @end deftypefun
2862 @deftypefun {error_t} envz_merge (char **@var{envz}, size_t *@var{envz_len}, const char *@var{envz2}, size_t @var{envz2_len}, int @var{override})
2863 @standards{GNU, envz.h}
2864 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2865 The @code{envz_merge} function adds each entry in @var{envz2} to @var{envz},
2866 as if with @code{envz_add}, updating @code{*@var{envz}} and
2867 @code{*@var{envz_len}}.  If @var{override} is true, then values in @var{envz2}
2868 will supersede those with the same name in @var{envz}, otherwise not.
2870 Null entries are treated just like other entries in this respect, so a null
2871 entry in @var{envz} can prevent an entry of the same name in @var{envz2} from
2872 being added to @var{envz}, if @var{override} is false.
2873 @end deftypefun
2875 @deftypefun {void} envz_strip (char **@var{envz}, size_t *@var{envz_len})
2876 @standards{GNU, envz.h}
2877 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2878 The @code{envz_strip} function removes any null entries from @var{envz},
2879 updating @code{*@var{envz}} and @code{*@var{envz_len}}.
2880 @end deftypefun
2882 @deftypefun {void} envz_remove (char **@var{envz}, size_t *@var{envz_len}, const char *@var{name})
2883 @standards{GNU, envz.h}
2884 @safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2885 The @code{envz_remove} function removes an entry named @var{name} from
2886 @var{envz}, updating @code{*@var{envz}} and @code{*@var{envz_len}}.
2887 @end deftypefun
2889 @c FIXME this are undocumented:
2890 @c strcasecmp_l @safety{@mtsafe{}@assafe{}@acsafe{}} see strcasecmp