* resolv/Versions [libresolv] (GLIBC_PRIVATE): Add
[glibc.git] / crypt / sha256.c
blob941612e17b0bb6275d46fef67a2ae3a0295c5904
1 /* Functions to compute SHA256 message digest of files or memory blocks.
2 according to the definition of SHA256 in FIPS 180-2.
3 Copyright (C) 2007 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
21 /* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */
23 #ifdef HAVE_CONFIG_H
24 # include <config.h>
25 #endif
27 #include <endian.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/types.h>
32 #include "sha256.h"
34 #if __BYTE_ORDER == __LITTLE_ENDIAN
35 # ifdef _LIBC
36 # include <byteswap.h>
37 # define SWAP(n) bswap_32 (n)
38 # else
39 # define SWAP(n) \
40 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
41 # endif
42 #else
43 # define SWAP(n) (n)
44 #endif
47 /* This array contains the bytes used to pad the buffer to the next
48 64-byte boundary. (FIPS 180-2:5.1.1) */
49 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
52 /* Constants for SHA256 from FIPS 180-2:4.2.2. */
53 static const uint32_t K[64] =
55 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
56 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
57 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
58 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
59 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
60 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
61 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
62 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
63 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
64 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
65 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
66 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
67 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
68 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
69 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
70 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
74 /* Process LEN bytes of BUFFER, accumulating context into CTX.
75 It is assumed that LEN % 64 == 0. */
76 static void
77 sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
79 const uint32_t *words = buffer;
80 size_t nwords = len / sizeof (uint32_t);
81 uint32_t a = ctx->H[0];
82 uint32_t b = ctx->H[1];
83 uint32_t c = ctx->H[2];
84 uint32_t d = ctx->H[3];
85 uint32_t e = ctx->H[4];
86 uint32_t f = ctx->H[5];
87 uint32_t g = ctx->H[6];
88 uint32_t h = ctx->H[7];
90 /* First increment the byte count. FIPS 180-2 specifies the possible
91 length of the file up to 2^64 bits. Here we only compute the
92 number of bytes. Do a double word increment. */
93 ctx->total[0] += len;
94 if (ctx->total[0] < len)
95 ++ctx->total[1];
97 /* Process all bytes in the buffer with 64 bytes in each round of
98 the loop. */
99 while (nwords > 0)
101 uint32_t W[64];
102 uint32_t a_save = a;
103 uint32_t b_save = b;
104 uint32_t c_save = c;
105 uint32_t d_save = d;
106 uint32_t e_save = e;
107 uint32_t f_save = f;
108 uint32_t g_save = g;
109 uint32_t h_save = h;
111 /* Operators defined in FIPS 180-2:4.1.2. */
112 #define Ch(x, y, z) ((x & y) ^ (~x & z))
113 #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
114 #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
115 #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
116 #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
117 #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
119 /* It is unfortunate that C does not provide an operator for
120 cyclic rotation. Hope the C compiler is smart enough. */
121 #define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
123 /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
124 for (unsigned int t = 0; t < 16; ++t)
126 W[t] = SWAP (*words);
127 ++words;
129 for (unsigned int t = 16; t < 64; ++t)
130 W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
132 /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
133 for (unsigned int t = 0; t < 64; ++t)
135 uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
136 uint32_t T2 = S0 (a) + Maj (a, b, c);
137 h = g;
138 g = f;
139 f = e;
140 e = d + T1;
141 d = c;
142 c = b;
143 b = a;
144 a = T1 + T2;
147 /* Add the starting values of the context according to FIPS 180-2:6.2.2
148 step 4. */
149 a += a_save;
150 b += b_save;
151 c += c_save;
152 d += d_save;
153 e += e_save;
154 f += f_save;
155 g += g_save;
156 h += h_save;
158 /* Prepare for the next round. */
159 nwords -= 16;
162 /* Put checksum in context given as argument. */
163 ctx->H[0] = a;
164 ctx->H[1] = b;
165 ctx->H[2] = c;
166 ctx->H[3] = d;
167 ctx->H[4] = e;
168 ctx->H[5] = f;
169 ctx->H[6] = g;
170 ctx->H[7] = h;
174 /* Initialize structure containing state of computation.
175 (FIPS 180-2:5.3.2) */
176 void
177 __sha256_init_ctx (ctx)
178 struct sha256_ctx *ctx;
180 ctx->H[0] = 0x6a09e667;
181 ctx->H[1] = 0xbb67ae85;
182 ctx->H[2] = 0x3c6ef372;
183 ctx->H[3] = 0xa54ff53a;
184 ctx->H[4] = 0x510e527f;
185 ctx->H[5] = 0x9b05688c;
186 ctx->H[6] = 0x1f83d9ab;
187 ctx->H[7] = 0x5be0cd19;
189 ctx->total[0] = ctx->total[1] = 0;
190 ctx->buflen = 0;
194 /* Process the remaining bytes in the internal buffer and the usual
195 prolog according to the standard and write the result to RESBUF.
197 IMPORTANT: On some systems it is required that RESBUF is correctly
198 aligned for a 32 bits value. */
199 void *
200 __sha256_finish_ctx (ctx, resbuf)
201 struct sha256_ctx *ctx;
202 void *resbuf;
204 /* Take yet unprocessed bytes into account. */
205 uint32_t bytes = ctx->buflen;
206 size_t pad;
208 /* Now count remaining bytes. */
209 ctx->total[0] += bytes;
210 if (ctx->total[0] < bytes)
211 ++ctx->total[1];
213 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
214 memcpy (&ctx->buffer[bytes], fillbuf, pad);
216 /* Put the 64-bit file length in *bits* at the end of the buffer. */
217 *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
218 *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
219 (ctx->total[0] >> 29));
221 /* Process last bytes. */
222 sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);
224 /* Put result from CTX in first 32 bytes following RESBUF. */
225 for (unsigned int i = 0; i < 8; ++i)
226 ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);
228 return resbuf;
232 void
233 __sha256_process_bytes (buffer, len, ctx)
234 const void *buffer;
235 size_t len;
236 struct sha256_ctx *ctx;
238 /* When we already have some bits in our internal buffer concatenate
239 both inputs first. */
240 if (ctx->buflen != 0)
242 size_t left_over = ctx->buflen;
243 size_t add = 128 - left_over > len ? len : 128 - left_over;
245 memcpy (&ctx->buffer[left_over], buffer, add);
246 ctx->buflen += add;
248 if (ctx->buflen > 64)
250 sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
252 ctx->buflen &= 63;
253 /* The regions in the following copy operation cannot overlap. */
254 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
255 ctx->buflen);
258 buffer = (const char *) buffer + add;
259 len -= add;
262 /* Process available complete blocks. */
263 if (len >= 64)
265 #if !_STRING_ARCH_unaligned
266 /* To check alignment gcc has an appropriate operator. Other
267 compilers don't. */
268 # if __GNUC__ >= 2
269 # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
270 # else
271 # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
272 # endif
273 if (UNALIGNED_P (buffer))
274 while (len > 64)
276 sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
277 buffer = (const char *) buffer + 64;
278 len -= 64;
280 else
281 #endif
283 sha256_process_block (buffer, len & ~63, ctx);
284 buffer = (const char *) buffer + (len & ~63);
285 len &= 63;
289 /* Move remaining bytes into internal buffer. */
290 if (len > 0)
292 size_t left_over = ctx->buflen;
294 memcpy (&ctx->buffer[left_over], buffer, len);
295 left_over += len;
296 if (left_over >= 64)
298 sha256_process_block (ctx->buffer, 64, ctx);
299 left_over -= 64;
300 memcpy (ctx->buffer, &ctx->buffer[64], left_over);
302 ctx->buflen = left_over;