1 /* Compute complex natural logarithm.
2 Copyright (C) 1997-2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
22 #include <math_private.h>
26 M_DECL_FUNC (__clog
) (CFLOAT x
)
29 int rcls
= fpclassify (__real__ x
);
30 int icls
= fpclassify (__imag__ x
);
32 if (__glibc_unlikely (rcls
== FP_ZERO
&& icls
== FP_ZERO
))
34 /* Real and imaginary part are 0.0. */
35 __imag__ result
= signbit (__real__ x
) ? (FLOAT
) M_MLIT (M_PI
) : 0;
36 __imag__ result
= M_COPYSIGN (__imag__ result
, __imag__ x
);
37 /* Yes, the following line raises an exception. */
38 __real__ result
= -1 / M_FABS (__real__ x
);
40 else if (__glibc_likely (rcls
!= FP_NAN
&& icls
!= FP_NAN
))
42 /* Neither real nor imaginary part is NaN. */
43 FLOAT absx
= M_FABS (__real__ x
), absy
= M_FABS (__imag__ x
);
56 absx
= M_SCALBN (absx
, scale
);
57 absy
= (absy
>= M_MIN
* 2 ? M_SCALBN (absy
, scale
) : 0);
59 else if (absx
< M_MIN
&& absy
< M_MIN
)
62 absx
= M_SCALBN (absx
, scale
);
63 absy
= M_SCALBN (absy
, scale
);
66 if (absx
== 1 && scale
== 0)
68 __real__ result
= M_LOG1P (absy
* absy
) / 2;
69 math_check_force_underflow_nonneg (__real__ result
);
71 else if (absx
> 1 && absx
< 2 && absy
< 1 && scale
== 0)
73 FLOAT d2m1
= (absx
- 1) * (absx
+ 1);
74 if (absy
>= M_EPSILON
)
76 __real__ result
= M_LOG1P (d2m1
) / 2;
79 && absx
>= M_LIT (0.5)
80 && absy
< M_EPSILON
/ 2
83 FLOAT d2m1
= (absx
- 1) * (absx
+ 1);
84 __real__ result
= M_LOG1P (d2m1
) / 2;
87 && absx
>= M_LIT (0.5)
89 && absx
* absx
+ absy
* absy
>= M_LIT (0.5))
91 FLOAT d2m1
= M_SUF (__x2y2m1
) (absx
, absy
);
92 __real__ result
= M_LOG1P (d2m1
) / 2;
96 FLOAT d
= M_HYPOT (absx
, absy
);
97 __real__ result
= M_LOG (d
) - scale
* (FLOAT
) M_MLIT (M_LN2
);
100 __imag__ result
= M_ATAN2 (__imag__ x
, __real__ x
);
104 __imag__ result
= M_NAN
;
105 if (rcls
== FP_INFINITE
|| icls
== FP_INFINITE
)
106 /* Real or imaginary part is infinite. */
107 __real__ result
= M_HUGE_VAL
;
109 __real__ result
= M_NAN
;
115 declare_mgen_alias (__clog
, clog
)