S390: Optimize wmemset.
[glibc.git] / sysdeps / powerpc / fpu / e_sqrtf.c
bloba684cf977aa7621e00e57358fa6ff2e0f2b35a03
1 /* Single-precision floating point square root.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
19 #include <math.h>
20 #include <math_private.h>
21 #include <fenv_libc.h>
22 #include <inttypes.h>
23 #include <stdint.h>
24 #include <sysdep.h>
25 #include <ldsodefs.h>
27 #ifndef _ARCH_PPCSQ
28 static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */
29 static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
30 static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
31 static const float two48 = 281474976710656.0;
32 static const float twom24 = 5.9604644775390625e-8;
33 extern const float __t_sqrt[1024];
35 /* The method is based on a description in
36 Computation of elementary functions on the IBM RISC System/6000 processor,
37 P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
38 Basically, it consists of two interleaved Newton-Raphson approximations,
39 one to find the actual square root, and one to find its reciprocal
40 without the expense of a division operation. The tricky bit here
41 is the use of the POWER/PowerPC multiply-add operation to get the
42 required accuracy with high speed.
44 The argument reduction works by a combination of table lookup to
45 obtain the initial guesses, and some careful modification of the
46 generated guesses (which mostly runs on the integer unit, while the
47 Newton-Raphson is running on the FPU). */
49 float
50 __slow_ieee754_sqrtf (float x)
52 const float inf = a_inf.value;
54 if (x > 0)
56 if (x != inf)
58 /* Variables named starting with 's' exist in the
59 argument-reduced space, so that 2 > sx >= 0.5,
60 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
61 Variables named ending with 'i' are integer versions of
62 floating-point values. */
63 float sx; /* The value of which we're trying to find the square
64 root. */
65 float sg, g; /* Guess of the square root of x. */
66 float sd, d; /* Difference between the square of the guess and x. */
67 float sy; /* Estimate of 1/2g (overestimated by 1ulp). */
68 float sy2; /* 2*sy */
69 float e; /* Difference between y*g and 1/2 (note that e==se). */
70 float shx; /* == sx * fsg */
71 float fsg; /* sg*fsg == g. */
72 fenv_t fe; /* Saved floating-point environment (stores rounding
73 mode and whether the inexact exception is
74 enabled). */
75 uint32_t xi, sxi, fsgi;
76 const float *t_sqrt;
78 GET_FLOAT_WORD (xi, x);
79 fe = fegetenv_register ();
80 relax_fenv_state ();
81 sxi = (xi & 0x3fffffff) | 0x3f000000;
82 SET_FLOAT_WORD (sx, sxi);
83 t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
84 sg = t_sqrt[0];
85 sy = t_sqrt[1];
87 /* Here we have three Newton-Raphson iterations each of a
88 division and a square root and the remainder of the
89 argument reduction, all interleaved. */
90 sd = -__builtin_fmaf (sg, sg, -sx);
91 fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
92 sy2 = sy + sy;
93 sg = __builtin_fmaf (sy, sd, sg); /* 16-bit approximation to
94 sqrt(sx). */
95 e = -__builtin_fmaf (sy, sg, -almost_half);
96 SET_FLOAT_WORD (fsg, fsgi);
97 sd = -__builtin_fmaf (sg, sg, -sx);
98 sy = __builtin_fmaf (e, sy2, sy);
99 if ((xi & 0x7f800000) == 0)
100 goto denorm;
101 shx = sx * fsg;
102 sg = __builtin_fmaf (sy, sd, sg); /* 32-bit approximation to
103 sqrt(sx), but perhaps
104 rounded incorrectly. */
105 sy2 = sy + sy;
106 g = sg * fsg;
107 e = -__builtin_fmaf (sy, sg, -almost_half);
108 d = -__builtin_fmaf (g, sg, -shx);
109 sy = __builtin_fmaf (e, sy2, sy);
110 fesetenv_register (fe);
111 return __builtin_fmaf (sy, d, g);
112 denorm:
113 /* For denormalised numbers, we normalise, calculate the
114 square root, and return an adjusted result. */
115 fesetenv_register (fe);
116 return __slow_ieee754_sqrtf (x * two48) * twom24;
119 else if (x < 0)
121 /* For some reason, some PowerPC32 processors don't implement
122 FE_INVALID_SQRT. */
123 #ifdef FE_INVALID_SQRT
124 feraiseexcept (FE_INVALID_SQRT);
126 fenv_union_t u = { .fenv = fegetenv_register () };
127 if ((u.l & FE_INVALID) == 0)
128 #endif
129 feraiseexcept (FE_INVALID);
130 x = a_nan.value;
132 return f_washf (x);
134 #endif /* _ARCH_PPCSQ */
136 #undef __ieee754_sqrtf
137 float
138 __ieee754_sqrtf (float x)
140 double z;
142 #ifdef _ARCH_PPCSQ
143 asm ("fsqrts %0,%1\n" :"=f" (z):"f" (x));
144 #else
145 z = __slow_ieee754_sqrtf (x);
146 #endif
148 return z;
150 strong_alias (__ieee754_sqrtf, __sqrtf_finite)